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Abstract. By associating a Lie algebra of analytic vector fields to every point of an an-

alytic variety and using the associated Nagano foliation, this work presents a coordinate-

free stratification of analytic sets.
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1. Notations and Basics

LetM be an analytic (ie, Cω) manifold and V an analytic subvariety ofM, ie, every

x ∈ M belongs to an arbitrary open subset U of M with the following property: ∃ a
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family z (V ,U) of R-valued, analytic functions in U s. t.

V ∩ U =

{x ∈ U ; ∀f ∈ z (V ,U) , f (x) = 0} ;

V is always closed. M. We can take z (V ,U) = I (V ,U) the set of all real, analytic

functions in U s. t. f ≡ 0 in U ; I (V ,U) is an ideal in Cω (U), finitely generated if

U ⊂⊂M is small.

We shall denote by S the closure of S in M, ∂S = S\S its boundary.

Definition 1. An analytic stratification of V is a locally finite partition

(1.1) V =
⋃
α

Sα

s. t., for every index α:

(1) Sα is a connected, immersed analytic submanifold of M;

(2) ∀β 6= α, Sα ∩ Sβ 6= ∅ =⇒ dimSα < dimSβ and Sα ⊂ ∂Sβ.

Every Sα is an analytic stratum of V .

Thus α 6= β ⇐⇒ Sα∩Sβ = ∅; then Sα ⊂ ∂Sβ ⇐⇒ Sα ⊂ Sβ. That (1.1) is locally finite

means that each compact set K ⊂M intersects at most finitely many Sα.

1.1. Complex Whitney’s umbrella. This is the complex hypersurface

W C =
{
z ∈ C3; z2

1 = z3z
2
2

}
;

we have

d
(
z2
1 − z3z

2
2

)
= 2z1dz1 − 2z2z3dz2 − z2

2dz3

The regular part of W C is the complex-analytic submanifold of C3,

R
(
W C) ={

z ∈ R3; z2
1 = z3z

2
2 , |z1|+ |z2| 6= 0

}
;

R
(
W C) is connected (⇐⇒W C irreducible).
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The singular part:

S
(
W C) = z3-“axis” = z3-plane,

is a complex-analytic subvariety of C3.

1.2. Real Whitney’s umbrella. The intersection W C ∩ R3 is the hypersurface,

W =
{
x ∈ R3; x2

1 = x3x
2
2

}
.

The regular part of W ,

R (W ) =

{x ∈W ; |x1|+ |x2| 6= 0, x3 > 0}∪

{x ∈W ; x1 = x2 = 0, x3 < 0} .

is the union of two disjoint Cω submanifolds of dimension 2 and 1.

The singular part of W ,

S (W ) =

{x ∈W ; x1 = x2 = 0, x3 ≥ 0} .

is not a Cω submanifold but a semi-analytic set.

1.3. Nagano foliation of an an analytic subvariety.

Definition 2. An analytic foliation of M is a family Φ of immersed analytic sub-

manifolds (without self-intersections) s. t.

(1) Every submanifold L ∈ Φ is connected.

(2) Every x ∈M lies in a unique L ∈ Φ.

In general dimL varies with L.

We recall the classical Nagano theorem (see [Nagano, 1966]):

Theorem 1. Let g be a Lie algebra (for the Lie bracket) of analytic, real vector fields in

M. There is a foliation of M consisting of integral manifolds of g.
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If L is a leaf of g and x ∈ L then TxL =gx. Integral manifolds are maximal by definition.

In the sequel U ⊂M is open, Cω (U ;TM) is the Lie algebra of real Cω vector fields in

U .

Definition 3. We denote by g (V ,U) the Lie subalgebra of Cω (U ;TM) consisting of the

real Cω vector fields X in U verifying:

(?): The restriction of X to an arbitrary open set U ′ ⊂ U maps I (V ,U ′) into itself.

If U ∩V = U then I (V ,U ′) = {0} whatever U ′ ⊂ U open and g (V ,U) = Cω (U ;TM).

If U ∩ V = ∅ then I (V ,U ′) = Cω (U ′) whatever U ′ ⊂ U open and here also g (V ,U) =

Cω (U ;TM). Possibly g (V ,U) = {0} if U is “too large”; g (V ,U) 6= {0} if U is the domain

of analytic local coordinates x1, ..., xn and if I (V ,U) 6= {0}: in this case, g (V ,U) contains

every X =
∑n

j=1 cj (x) ∂
∂xj

with cj ∈ I (V ,U).

If U1 ⊃ U2 is open in M there is a restriction map g (V ,U1) −→ g (V ,U2) thanks to

(?).

Notation: gx (V ) =freezing of g (V ,U) at x, independent of U .

Proposition 1. Let U1 ⊃ U2 be open subsets of M. If Lj is an integral manifold of

g (V ,Uj), j = 1, 2, and L1 ∩ L2 6= ∅ then L1 ∩ U2 ⊂ L2 and thus dimL1 ≤ dimL2.

Proposition 2. If V ∩U is an analytic submanifold of U then an analytic vector field X

in U belongs to g (V ,U) if and only if X is tangent to V ∩ U at every point of V ∩ U .

By Nagano’s Theorem there is a foliation of U whose leaves are integral manifolds of

g (V ,U) in U . If g (V ,U) = {0} then every point of U is an integral manifold of g (V ,U);

if g (V ,U) = Cω (U ;TM) then each connected component of U is an integral manifold of

g (V ,U).

Proposition 3. Every x ∈M belongs to a unique Cω submanifold L of M s. t.

(1) L is connected and dimL = dim gx (V ) whatever x ∈ L;

(2) each x ∈ L has a neighborhood Ux s. t. L∩Ux is an integral manifold of g (V ,Ux);

(3) L is maximal for these properties.
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These submanifolds will be called maximal integral manifolds of g (V ,M).

Proposition 4. If a maximal integral manifold L of g (V ,M) intersects V then L ⊂ V .

Trivial since every connected component ofM\V is an integral manifold of g (V ,M).

Definition 4. A maximal integral manifold of g (V ,M), L ⊂ V , will be called a Nagano

leaf of V .

Proposition 5. Every connected component of R (V ) is contained in a Nagano leaf of

V .

Main result:

Theorem 2. The Nagano foliation of V is a stratification (Definition 1).

2. Local Analysis and Nagano Stratification

2.1. The classical local partition (Osgood, Lojasiewicz). Now Ω is an open subset

of Rn, 0 ∈ V ∩ Ω; ∃U ⊂ Ω open, 0 ∈ U , and fj ∈ Cω (U ; R), j = 1, ..., r, s. t.

V ∩ U =

{x ∈ U ; fj (x) = 0, j = 1..., r} .

But then V ∩ U = {x ∈ U ; F (x) = 0}, F = f 2
1 + · · ·+ f 2

r .

Weierstrass Preparation Thm: F = EP , E ∈ Cω (U), E (x) 6= 0 whatever x ∈ U , and

for suitable coordinates xi,

P (x) = P (x′;xn) =

xmn + a1 (x′)xm−1
n + · · ·+ am (x′) ;

x′ = (x1, ..., xn−1), aj ∈ Cω (U ; R), aj (0) = 0, j = 1, ...,m; P is a Weierstrass polyno-

mial.

Unique factorization of Weierstrass polynomials:

P = P q1
1 · · ·P qν

ν , 1 ≤ qj ∈ Z.
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The Pj are irreducible and distinct (hence coprime) but not necessarily real. If Pj is not

real then ∃k such that Pk = Pj and qk = qj.

We can assume P = P1 · · ·Pν : it has no effect on the null-set V ∩ U . Then P and ∂P
∂xn

are coprime⇐⇒ D (x′) 6≡ 0, D (x′): discriminant of P .

We take U = U ′×(−rn, rn). If Z(0) = {x′ ∈ U ′; D (x′) = 0} the real roots of P (x′; zn) =

0 are true Cω functions of x′ in U ′\Z(0) (but there might be none!); the set of pts (x′, xn) ∈

V , z′ ∈ U ′\Z(0), is a union (possibly ∅) of Cω graphs Λk,α (k = 1, ..., d
(0)
α ≤ degP ),

xn = ρk,α (x′) , x′ ∈ Γ(0)
α ,

where the Γ
(0)
α are connected components of U ′\Z(0). For fixed α,

−rn < ρ1,α < · · · < ρ
d
(0)
a
< rn.

If Z(0) = ∅ the procedure stops: V is a Cω submanifold in a neighborhood of 0.

If Z(0) 6= ∅ we repeat for D (x′) what was done for F (x): D = E(1)P (1), E(1) (x′) 6= 0

∀x′ ∈ U ′, and we select the coordinates so that

P (1) (x) = P (1) (x′′;xn) =

xmn−1 + a
(1)
1 (x′′)xm−1

n−1 + · · ·+ a(1)
m (x′′) ;

x′′ = (x1, ..., xn−2), a
(1)
j ∈ Cω (U ; R), aj (0) = 0. Unique factorization:

P (1) =
(
P

(1)
1

)q′1 · · ·(P (1)
ν′

)q′ν′
, 1 ≤ q′j ∈ Z

the P
(1)
j irreducible and distinct. We take P (1) = P

(1)
1 · · ·P

(1)
ν′ with no effect on the null-set

Z(0); P (1) and ∂P (1)

∂xn−1
are coprime⇐⇒ D(1) (x′′) 6≡ 0, D(1) (x′′): discriminant of P (1).

We replace P (z′; zn) by

P (0) (z′′; zn) =

degP (1)∏
k=1

P
(
z′′, ρ

(1)
k (z′′) ; zn

)
,

ρ
(1)
k (z′′): roots of P (1) (z′′; zn−1) = 0. The coefficients of the Weierstrass polynomial

P (0) (z′′; zn) are symmetric polynomials wrto the roots ρ
(1)
k (z′′), therefore holomorphic

functions of z′′ in a complex neighborhood of U ′′.
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Unique factorization eliminates redundant factors of P (0): we can assume D(0) (z′′) 6≡ 0,

D(0): discriminant of P (0).

We take U ′ = U ′′ × (−rn−1, rn−1) and set Z(1) =

{
x′′ ∈ U ′′; D(0) (x′′)D(1) (x′′) = 0

}
.

The points x = (x′′, xn−1, xn) ∈ V s. t. x′ ∈ Z(0) are determined by the two equations

P (0) (x′′; zn) = 0,(2.1)

P (1) (x′′; zn−1) = 0,(2.2)

For x′′ ∈ U ′′\Z(1) the roots ρ
(j)
k (x′′), k = 1, ..., degP (j), j = 0, 1, are distinct and analytic

functions of x′′. If Γ′′ is a connected component of U ′′\Z(1) the points

(
x′′, ρ

(1)
` (x′′) , ρ

(0)
k (x′′)

)
∈ V

describe disjoint analytic graphs over Γ′′ 3 x′′.

To study V over Z(1) we repeat for D(0) (x′′)D(1) (x′′) the procedure used for F (x) and

D (x′); etc. At the end we get either dim Z(N) = 0 or Z(N) = ∅. We end up with a

partition

(2.3) V ∩Q(n)
r =

n−1⋃
q=0

⋃
ι∈Iq

Λ(q)
ι .

Q
(n)
r = {x ∈ Ω; |xi| < ri, i = 1, ..., n}; Λ

(q)
ι : Cω submanifolds, dim Λ

(q)
ι = q. Some index

sets Iq might be empty; (2.3) is coordinate dependent:

Example 1. V = {x ∈ R2; x2 = x2
1} has 1 stratum Λ

(1)
ι ; V = {x ∈ R2; x2

2 = x1} has 3

strata: two Λ
(1)
ι and Λ(0) = {0}.

Theorem 3. The partition (2.3) is a stratification (Definition 1).

For further details about the partition (2.3).
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2.2. Nagano stratification. In order to complete the proof of Thm 2 we need two

results:

(1) Λ
(q)
ι ∩ Λ

(q′)
ι′ 6= ∅ =⇒ Λ

(q)
ι ⊂ ∂Λ

(q′)
ι′ ;

(2) ∀ (q, ι), ∃ Nagano leaf (per force unique) L of V s. t. Λ
(q)
ι ⊂ L.

#1 is an easy consequence of the construction of (2.3); for details see the original

Lojasiewicz article.

To prove #2 one starts with the Λ
(q)
ι of highest dimension, d: Λ

(q)
ι ⊂ Rd (V ), regular

part of V of dimension d. We use this general fact:

Proposition 6. Let W be an analytic subvariety of a Cω manifold M. If dim W = d

then W \Rd (W ) is an analytic variety. If a Nagano leaf L of W intersects W \Rd (W )

then dimL < d and L ⊂W \Rd (W ).

To show that each connected component of Rd (V )∩Q
(n)
r is contained in a Nagano leaf

L of V we “wiggle” the coordinate frames, as can be shown on Example 1.

To summarize:

V =
⋃

Nag leaves

L.

If L and L′ are Nagano leaves of V , L ⊂ L′ ⇐⇒ L ⊂ ∂L′, a consequence of the analogous

property of the Λ
(q)
ι . Also a “Whitney property”:

Proposition 7. Let L and L′ be Nagano leaves of V such that L ⊂ ∂L′. Every vector

tangent to L at a point ℘ ∈ L is the limit of vectors tangent to L′ at points that converge

to ℘.

Detailed proofs will be provided in a forthcoming article.
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