INTRINSIC STRATIFICATIONS OF ANALYTIC VARIETIES

FRANÇOIS TREVES, RUTGERS UNIVERSITY

ABSTRACT. By associating a Lie algebra of analytic vector fields to every point of an analytic variety and using the associated Nagano foliation, this work presents a coordinatefree stratification of analytic sets.

2010 MSC. Primary 32C05, Secondary 32C15

KEYWORDS. Analytic varieties, Stratification, Symplectic manifolds

Contents

1. Notations and Basics	76
1.1. Complex Whitney's umbrella	77
1.2. Real Whitney's umbrella	78
1.3. Nagano foliation of an an analytic subvariety	78
2. Local Analysis and Nagano Stratification	80
2.1. The classical local partition (Osgood, Lojasiewicz)	80
2.2. Nagano stratification	83
References	83

1. NOTATIONS AND BASICS

Let \mathcal{M} be an analytic (ie, \mathcal{C}^{ω}) manifold and V an **analytic subvariety** of \mathcal{M} , ie, every $x \in \mathcal{M}$ belongs to an arbitrary open subset \mathcal{U} of \mathcal{M} with the following property: \exists a

Bruno Pini Mathematical Analysis Seminar, Vol. 1 (2013) pp. 76–83 Dipartimento di Matematica, Università di Bologna ISSN 2240-2829.

family F(V, U) of \mathbb{R} -valued, analytic functions in U s. t.

$$oldsymbol{V}\cap\mathcal{U}=$$

$$\{x \in \mathcal{U}; \forall f \in \mathcal{F}(\mathbf{V}, \mathcal{U}), f(x) = 0\};$$

V is always *closed*. \mathcal{M} . We can take $\mathcal{F}(V, \mathcal{U}) = \Im(V, \mathcal{U})$ the set of all real, analytic functions in \mathcal{U} s. t. $f \equiv 0$ in \mathcal{U} ; $\Im(V, \mathcal{U})$ is an ideal in $\mathcal{C}^{\omega}(\mathcal{U})$, finitely generated if $\mathcal{U} \subset \subset \mathcal{M}$ is small.

We shall denote by \overline{S} the *closure* of S in $\mathcal{M}, \partial S = \overline{S} \setminus S$ its *boundary*.

Definition 1. An analytic stratification of V is a locally finite partition

(1.1)
$$\boldsymbol{V} = \bigcup_{\alpha} \mathcal{S}_{\alpha}$$

s. t., for every index α :

- (1) S_{α} is a connected, immersed analytic submanifold of \mathcal{M} ;
- (2) $\forall \beta \neq \alpha, \ \mathcal{S}_{\alpha} \cap \overline{\mathcal{S}_{\beta}} \neq \emptyset \Longrightarrow \dim \mathcal{S}_{\alpha} < \dim \mathcal{S}_{\beta} \text{ and } \mathcal{S}_{\alpha} \subset \partial \mathcal{S}_{\beta}.$

Every S_{α} is an **analytic stratum** of V.

Thus $\alpha \neq \beta \iff S_{\alpha} \cap S_{\beta} = \emptyset$; then $S_{\alpha} \subset \partial S_{\beta} \iff S_{\alpha} \subset \overline{S_{\beta}}$. That (1.1) is locally finite means that each compact set $K \subset \mathcal{M}$ intersects at most finitely many S_{α} .

1.1. Complex Whitney's umbrella. This is the complex hypersurface

$$\boldsymbol{W}^{\mathbb{C}} = \left\{ z \in \mathbb{C}^3; \ z_1^2 = z_3 z_2^2 \right\};$$

we have

$$d\left(z_1^2 - z_3 z_2^2\right) = 2z_1 dz_1 - 2z_2 z_3 dz_2 - z_2^2 dz_3$$

The regular part of $\boldsymbol{W}^{\mathbb{C}}$ is the complex-analytic submanifold of \mathbb{C}^3 ,

$$\Re \left(\boldsymbol{W}^{\mathbb{C}} \right) = \\ \left\{ z \in \mathbb{R}^3; \ z_1^2 = z_3 z_2^2, \ |z_1| + |z_2| \neq 0 \right\};$$

 $\mathfrak{R}\left(\boldsymbol{W}^{\mathbb{C}}\right)$ is connected ($\Longleftrightarrow \boldsymbol{W}^{\mathbb{C}}$ irreducible).

The singular part:

$$\mathfrak{S}\left(\boldsymbol{W}^{\mathbb{C}}\right) = z_{3}$$
- "axis" = z_{3} -plane,

is a complex-analytic subvariety of \mathbb{C}^3 .

1.2. Real Whitney's umbrella. The intersection $W^{\mathbb{C}} \cap \mathbb{R}^3$ is the hypersurface,

$$W = \{x \in \mathbb{R}^3; x_1^2 = x_3 x_2^2\}.$$

The regular part of \boldsymbol{W} ,

$$\Re(\mathbf{W}) = \{x \in \mathbf{W}; |x_1| + |x_2| \neq 0, x_3 > 0\} \cup \{x \in \mathbf{W}; x_1 = x_2 = 0, x_3 < 0\}.$$

is the union of two disjoint \mathcal{C}^{ω} submanifolds of dimension 2 and 1.

The singular part of \boldsymbol{W} ,

$$\mathfrak{S}(\mathbf{W}) =$$

{ $x \in \mathbf{W}; x_1 = x_2 = 0, x_3 \ge 0$ }.

is not a \mathcal{C}^{ω} submanifold but a semi-analytic set.

1.3. Nagano foliation of an an analytic subvariety.

Definition 2. An analytic foliation of \mathcal{M} is a family Φ of immersed analytic submanifolds (without self-intersections) s. t.

- (1) Every submanifold $\mathcal{L} \in \Phi$ is connected.
- (2) Every $x \in \mathcal{M}$ lies in a unique $\mathcal{L} \in \Phi$.

In general dim \mathcal{L} varies with \mathcal{L} .

We recall the classical **Nagano theorem** (see [Nagano, 1966]):

Theorem 1. Let \mathfrak{g} be a Lie algebra (for the Lie bracket) of analytic, real vector fields in \mathcal{M} . There is a foliation of \mathcal{M} consisting of integral manifolds of \mathfrak{g} .

78

If \mathcal{L} is a leaf of \mathfrak{g} and $x \in \mathcal{L}$ then $T_x \mathcal{L} = \mathfrak{g}_x$. Integral manifolds are *maximal* by definition.

In the sequel $\mathcal{U} \subset \mathcal{M}$ is open, $\mathcal{C}^{\omega}(\mathcal{U}; T\mathcal{M})$ is the Lie algebra of real \mathcal{C}^{ω} vector fields in \mathcal{U} .

Definition 3. We denote by $\mathfrak{g}(\mathbf{V}, \mathcal{U})$ the Lie subalgebra of $\mathcal{C}^{\omega}(\mathcal{U}; T\mathcal{M})$ consisting of the real \mathcal{C}^{ω} vector fields X in \mathcal{U} verifying:

(*): The restriction of X to an arbitrary open set $\mathcal{U}' \subset \mathcal{U}$ maps $\mathfrak{I}(\mathbf{V}, \mathcal{U}')$ into itself.

If $\mathcal{U} \cap \mathbf{V} = \mathcal{U}$ then $\mathfrak{I}(\mathbf{V}, \mathcal{U}') = \{0\}$ whatever $\mathcal{U}' \subset \mathcal{U}$ open and $\mathfrak{g}(\mathbf{V}, \mathcal{U}) = \mathcal{C}^{\omega}(\mathcal{U}; T\mathcal{M})$. If $\mathcal{U} \cap \mathbf{V} = \emptyset$ then $\mathfrak{I}(\mathbf{V}, \mathcal{U}') = \mathcal{C}^{\omega}(\mathcal{U}')$ whatever $\mathcal{U}' \subset \mathcal{U}$ open and here also $\mathfrak{g}(\mathbf{V}, \mathcal{U}) = \mathcal{C}^{\omega}(\mathcal{U}; T\mathcal{M})$. Possibly $\mathfrak{g}(\mathbf{V}, \mathcal{U}) = \{0\}$ if \mathcal{U} is "too large"; $\mathfrak{g}(\mathbf{V}, \mathcal{U}) \neq \{0\}$ if \mathcal{U} is the domain of analytic local coordinates $x_1, ..., x_n$ and if $\mathfrak{I}(\mathbf{V}, \mathcal{U}) \neq \{0\}$: in this case, $\mathfrak{g}(\mathbf{V}, \mathcal{U})$ contains every $X = \sum_{j=1}^n c_j(x) \frac{\partial}{\partial x_j}$ with $c_j \in \mathfrak{I}(\mathbf{V}, \mathcal{U})$.

If $\mathcal{U}_1 \supset \mathcal{U}_2$ is open in \mathcal{M} there is a restriction map $\mathfrak{g}(\mathbf{V}, \mathcal{U}_1) \longrightarrow \mathfrak{g}(\mathbf{V}, \mathcal{U}_2)$ thanks to (*).

Notation: $\mathfrak{g}_{x}(V)$ = freezing of $\mathfrak{g}(V, \mathcal{U})$ at x, independent of \mathcal{U} .

Proposition 1. Let $\mathcal{U}_1 \supset \mathcal{U}_2$ be open subsets of \mathcal{M} . If \mathcal{L}_j is an integral manifold of $\mathfrak{g}(\mathbf{V},\mathcal{U}_j), j = 1,2, and \mathcal{L}_1 \cap \mathcal{L}_2 \neq \emptyset$ then $\mathcal{L}_1 \cap \mathcal{U}_2 \subset \mathcal{L}_2$ and thus dim $\mathcal{L}_1 \leq \dim \mathcal{L}_2$.

Proposition 2. If $\mathbf{V} \cap \mathcal{U}$ is an analytic submanifold of \mathcal{U} then an analytic vector field X in \mathcal{U} belongs to $\mathfrak{g}(\mathbf{V}, \mathcal{U})$ if and only if X is tangent to $\mathbf{V} \cap \mathcal{U}$ at every point of $\mathbf{V} \cap \mathcal{U}$.

By Nagano's Theorem there is a foliation of \mathcal{U} whose leaves are integral manifolds of $\mathfrak{g}(\mathbf{V},\mathcal{U})$ in \mathcal{U} . If $\mathfrak{g}(\mathbf{V},\mathcal{U}) = \{0\}$ then every point of \mathcal{U} is an integral manifold of $\mathfrak{g}(\mathbf{V},\mathcal{U})$; if $\mathfrak{g}(\mathbf{V},\mathcal{U}) = \mathcal{C}^{\omega}(\mathcal{U};T\mathcal{M})$ then each connected component of \mathcal{U} is an integral manifold of $\mathfrak{g}(\mathbf{V},\mathcal{U})$.

Proposition 3. Every $x \in \mathcal{M}$ belongs to a unique \mathcal{C}^{ω} submanifold \mathcal{L} of \mathcal{M} s. t.

- (1) \mathcal{L} is connected and dim $\mathcal{L} = \dim \mathfrak{g}_x(V)$ whatever $x \in \mathcal{L}$;
- (2) each $x \in \mathcal{L}$ has a neighborhood \mathcal{U}_x s. t. $\mathcal{L} \cap \mathcal{U}_x$ is an integral manifold of $\mathfrak{g}(\mathbf{V}, \mathcal{U}_x)$;
- (3) \mathcal{L} is maximal for these properties.

These submanifolds will be called **maximal integral manifolds** of $\mathfrak{g}(V, \mathcal{M})$.

Proposition 4. If a maximal integral manifold \mathcal{L} of $\mathfrak{g}(V, \mathcal{M})$ intersects V then $\mathcal{L} \subset V$.

Trivial since every connected component of $\mathcal{M} \setminus V$ is an integral manifold of $\mathfrak{g}(V, \mathcal{M})$.

Definition 4. A maximal integral manifold of $\mathfrak{g}(V, \mathcal{M})$, $\mathcal{L} \subset V$, will be called a **Nagano** leaf of V.

Proposition 5. Every connected component of $\mathfrak{R}(V)$ is contained in a Nagano leaf of V.

Main result:

Theorem 2. The Nagano foliation of V is a stratification (Definition 1).

2. LOCAL ANALYSIS AND NAGANO STRATIFICATION

2.1. The classical local partition (Osgood, Lojasiewicz). Now Ω is an open subset of \mathbb{R}^n , $0 \in \mathbf{V} \cap \Omega$; $\exists U \subset \Omega$ open, $0 \in U$, and $f_j \in \mathcal{C}^{\omega}(U; \mathbb{R})$, j = 1, ..., r, s. t.

$$V \cap U =$$

{ $x \in U; f_j(x) = 0, j = 1..., r$ }.

But then $V \cap U = \{x \in U; F(x) = 0\}, F = f_1^2 + \dots + f_r^2$.

Weierstrass Preparation Thm: F = EP, $E \in \mathcal{C}^{\omega}(U)$, $E(x) \neq 0$ whatever $x \in U$, and for suitable coordinates x_i ,

$$P(x) = P(x'; x_n) =$$

 $x_n^m + a_1(x') x_n^{m-1} + \dots + a_m(x');$

 $x' = (x_1, ..., x_{n-1}), a_j \in \mathcal{C}^{\omega}(U; \mathbb{R}), a_j(0) = 0, j = 1, ..., m; P$ is a Weierstrass polynomial.

Unique factorization of Weierstrass polynomials:

$$P = P_1^{q_1} \cdots P_{\nu}^{q_{\nu}}, \ 1 \le q_j \in \mathbb{Z}.$$

The P_j are irreducible and distinct (hence *coprime*) but not necessarily real. If P_j is not real then $\exists k$ such that $P_k = \overline{P_j}$ and $q_k = q_j$.

We can assume $P = P_1 \cdots P_{\nu}$: it has no effect on the null-set $\mathbf{V} \cap U$. Then P and $\frac{\partial P}{\partial x_n}$ are coprime $\iff D(x') \neq 0, D(x')$: discriminant of P.

We take $U = U' \times (-r_n, r_n)$. If $\mathbf{Z}^{(0)} = \{x' \in U'; D(x') = 0\}$ the real roots of $P(x'; z_n) = 0$ are true \mathcal{C}^{ω} functions of x' in $U' \setminus \mathbf{Z}^{(0)}$ (but there might be none!); the set of pts $(x', x_n) \in \mathbf{V}, z' \in U' \setminus \mathbf{Z}^{(0)}$, is a union (possibly \emptyset) of \mathcal{C}^{ω} graphs $\Lambda_{k,\alpha}$ $(k = 1, ..., d_{\alpha}^{(0)} \leq \deg P)$,

$$x_n = \rho_{k,\alpha}\left(x'\right), \ x' \in \Gamma^{(0)}_{\alpha},$$

where the $\Gamma_{\alpha}^{(0)}$ are connected components of $U' \setminus \mathbf{Z}^{(0)}$. For fixed α ,

$$-r_n < \rho_{1,\alpha} < \dots < \rho_{d_\alpha^{(0)}} < r_n.$$

If $\mathbf{Z}^{(0)} = \emptyset$ the procedure stops: \mathbf{V} is a \mathcal{C}^{ω} submanifold in a neighborhood of 0.

If $\mathbf{Z}^{(0)} \neq \emptyset$ we repeat for D(x') what was done for F(x): $D = E^{(1)}P^{(1)}$, $E^{(1)}(x') \neq 0$ $\forall x' \in U'$, and we select the coordinates so that

$$P^{(1)}(x) = P^{(1)}(x'';x_n) =$$
$$x_{n-1}^m + a_1^{(1)}(x'') x_{n-1}^{m-1} + \dots + a_m^{(1)}(x'');$$

 $x'' = (x_1, ..., x_{n-2}), a_j^{(1)} \in \mathcal{C}^{\omega}(U; \mathbb{R}), a_j(0) = 0.$ Unique factorization:

$$P^{(1)} = \left(P_1^{(1)}\right)^{q'_1} \cdots \left(P_{\nu'}^{(1)}\right)^{q'_{\nu'}}, \ 1 \le q'_j \in \mathbb{Z}$$

the $P_j^{(1)}$ irreducible and distinct. We take $P^{(1)} = P_1^{(1)} \cdots P_{\nu'}^{(1)}$ with no effect on the null-set $\mathbf{Z}^{(0)}$; $P^{(1)}$ and $\frac{\partial P^{(1)}}{\partial x_{n-1}}$ are coprime $\iff D^{(1)}(x'') \neq 0$, $D^{(1)}(x'')$: discriminant of $P^{(1)}$.

We replace $P(z'; z_n)$ by

$$P^{(0)}(z'';z_n) = \prod_{k=1}^{\deg P^{(1)}} P\left(z'',\rho_k^{(1)}(z'');z_n\right),$$

 $\rho_k^{(1)}(z'')$: roots of $P^{(1)}(z''; z_{n-1}) = 0$. The coefficients of the Weierstrass polynomial $P^{(0)}(z''; z_n)$ are symmetric polynomials wrot the roots $\rho_k^{(1)}(z'')$, therefore holomorphic functions of z'' in a complex neighborhood of U''.

Unique factorization eliminates redundant factors of $P^{(0)}$: we can assume $D^{(0)}(z'') \neq 0$, $D^{(0)}$: discriminant of $P^{(0)}$.

We take $U' = U'' \times (-r_{n-1}, r_{n-1})$ and set $Z^{(1)} =$

$$\left\{x'' \in U''; \ D^{(0)}\left(x''\right) D^{(1)}\left(x''\right) = 0\right\}.$$

The points $x = (x'', x_{n-1}, x_n) \in \mathbf{V}$ s. t. $x' \in \mathbf{Z}^{(0)}$ are determined by the two equations

(2.1)
$$P^{(0)}(x'';z_n) = 0,$$

(2.2)
$$P^{(1)}(x''; z_{n-1}) = 0,$$

For $x'' \in U'' \setminus \mathbf{Z}^{(1)}$ the roots $\rho_k^{(j)}(x'')$, $k = 1, ..., \deg P^{(j)}$, j = 0, 1, are distinct and analytic functions of x''. If Γ'' is a connected component of $U'' \setminus \mathbf{Z}^{(1)}$ the points

$$\left(x'', \rho_{\ell}^{(1)}(x''), \rho_{k}^{(0)}(x'')\right) \in \mathbf{V}$$

describe disjoint analytic graphs over $\Gamma'' \ni x''$.

To study \boldsymbol{V} over $\boldsymbol{Z}^{(1)}$ we repeat for $D^{(0)}(x'') D^{(1)}(x'')$ the procedure used for F(x) and D(x'); etc. At the end we get either dim $\boldsymbol{Z}^{(N)} = 0$ or $\boldsymbol{Z}^{(N)} = \emptyset$. We end up with a partition

(2.3)
$$\boldsymbol{V} \cap \mathfrak{Q}_r^{(n)} = \bigcup_{q=0}^{n-1} \bigcup_{\iota \in \boldsymbol{I}_q} \Lambda_{\iota}^{(q)}$$

 $\mathfrak{Q}_r^{(n)} = \{x \in \Omega; |x_i| < r_i, i = 1, ..., n\}; \Lambda_\iota^{(q)}: \mathcal{C}^{\omega} \text{ submanifolds, } \dim \Lambda_\iota^{(q)} = q. \text{ Some index sets } \mathbf{I}_q \text{ might be empty; (2.3) is coordinate dependent:}$

Example 1. $V = \{x \in \mathbb{R}^2; x_2 = x_1^2\}$ has 1 stratum $\Lambda_{\iota}^{(1)}; V = \{x \in \mathbb{R}^2; x_2^2 = x_1\}$ has 3 strata: two $\Lambda_{\iota}^{(1)}$ and $\Lambda^{(0)} = \{0\}$.

Theorem 3. The partition (2.3) is a stratification (Definition 1).

For further details about the partition (2.3).

2.2. Nagano stratification. In order to complete the proof of Thm 2 we need two results:

- (1) $\Lambda_{\iota}^{(q)} \cap \overline{\Lambda_{\iota'}^{(q')}} \neq \varnothing \Longrightarrow \Lambda_{\iota}^{(q)} \subset \partial \Lambda_{\iota'}^{(q')};$
- (2) $\forall (q, \iota), \exists$ Nagano leaf (per force unique) \mathcal{L} of \mathbf{V} s. t. $\Lambda_{\iota}^{(q)} \subset \mathcal{L}$.

#1 is an easy consequence of the construction of (2.3); for details see the original Lojasiewicz article.

To prove #2 one starts with the $\Lambda_{\iota}^{(q)}$ of highest dimension, $d: \Lambda_{\iota}^{(q)} \subset \mathfrak{R}_{d}(\mathbf{V})$, regular part of \mathbf{V} of dimension d. We use this general fact:

Proposition 6. Let W be an analytic subvariety of a \mathcal{C}^{ω} manifold \mathcal{M} . If dim W = dthen $W \setminus \mathfrak{R}_d(W)$ is an analytic variety. If a Nagano leaf \mathcal{L} of W intersects $W \setminus \mathfrak{R}_d(W)$ then dim $\mathcal{L} < d$ and $\mathcal{L} \subset W \setminus \mathfrak{R}_d(W)$.

To show that each connected component of $\mathfrak{R}_d(\mathbf{V}) \cap \mathfrak{Q}_r^{(n)}$ is contained in a Nagano leaf \mathcal{L} of \mathbf{V} we "wiggle" the coordinate frames, as can be shown on Example 1. To summarize

To summarize:

$$V = \bigcup_{Nag \ leaves} \mathcal{L}.$$

If \mathcal{L} and \mathcal{L}' are Nagano leaves of \mathbf{V} , $\mathcal{L} \subset \overline{\mathcal{L}'} \iff \mathcal{L} \subset \partial \mathcal{L}'$, a consequence of the analogous property of the $\Lambda_{\iota}^{(q)}$. Also a "Whitney property":

Proposition 7. Let \mathcal{L} and \mathcal{L}' be Nagano leaves of V such that $\mathcal{L} \subset \partial \mathcal{L}'$. Every vector tangent to \mathcal{L} at a point $\wp \in \mathcal{L}$ is the limit of vectors tangent to \mathcal{L}' at points that converge to \wp .

Detailed proofs will be provided in a forthcoming article.

References

[Lojasiewicz, 1959]	Lojaciewicz, S., Sur le problème de la division, Studia Math. XVIII (1959), 87-136.
[Nagano, 1966]	Nagano, T., Linear differential systems with singularities and applications to tran-
	sitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404.
[Osgood, 1929]	Osgood, W. P., Lehrbuch der Funktionentheorie, II , 1, Leipsig 1929.

E-mail address: treves.jeanfrancois@gmail.com