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Abstract. We investigate the notion of the so-called Double Ball Property, which con-

cerns the nonnegative sub-solutions of some differential operators. Thanks to the ax-

iomatic approach developed in [6], this is an important tool in order to solve the Krylov-

Safonov’s Harnack inequality problem for this kind of operators. In particular, we are

interested in linear second order horizontally-elliptic operators in non-divergence form

and with measurable coefficients. In the setting of homogeneous Carnot groups, we would

like to stress the relation between the Double Ball Property and a kind of solvability of

the Dirichlet problem for the operator in the exterior of some homogeneous balls. We

present a recent result obtained in [15], where the double ball property has been proved

in a generic Carnot group of step two.

Sunto. Si desidera studiare la nozione della cosiddetta proprietà di Palla Doppia, la

quale si riferisce a sottosoluzioni non-negative di certi operatori differenziali. Grazie

all’approccio assiomatico sviluppato in [6], questa proprietà diventa un tassello impor-

tante per la dimostrazione di una disuguaglianza di Harnack di tipo Krylov-Safonov

per questo tipo di operatori. In particolare, si considerano operatori lineari del secondo

ordine in forma di non-divergenza e coefficienti misurabili che siano orizzontalmente el-

littici. Si desidera sottolineare come, nell’ambito dei gruppi di Carnot omogenei, questa

proprietà sia legata alla risolubilità del problema di Dirichlet per l’operatore all’esterno

di certe palle omogenee. Viene qui presentato un recente risultato ottenuto in [15], dove

viene dimostrata la validità della proprietà di Palla Doppia in un generico gruppo di

Carnot di passo due.
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1. Introduction

In the theory of fully nonlinear elliptic equations a crucial role is played by the Krylov-

Safonov’s Harnack inequality for nonnegative solutions to the linear equations in non-

divergence form and measurable coefficients. To be precise, let us consider a second order

linear operator in non-divergence form

(1) L =
n∑

i,j=1

aij(x)∂2
xixj

, for x ∈ Rn.

Let us suppose that the matrix A(x) = (aij(x))ni,j=1 is symmetric and uniformly elliptic,

i.e. there exist 0 < λ ≤ Λ such that

(2) λ ‖ξ‖2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ ‖ξ‖2

for every ξ ∈ Rn. Under these hypotheses, Krylov and Safonov proved in [9] the following

theorem.

Theorem 1.1. There exists a positive constant C, depending just on the dimension n and

on the ellipticity constants λ,Λ, such that, for every nonnegative solution u of Lu = 0 in

Ω and for every cube Q with 3Q ⊂ Ω, we have

sup
Q
u ≤ C inf

Q
u.

From the previous invariant Harnack inequality, one can deduce an Hölder regularity

result for the solutions of L: the Hölder constants will depend just on n, λ,Λ.

By the way, in several research areas such as Complex or CR Geometry, there are fully

nonlinear equations which are characterized by an underlying sub-Riemannian structure

and are not elliptic at any point, see e.g. [11],[14],[12],[13],[4],[5],[10]. The existence

theory for viscosity solutions to such equations is well settled, mainly thanks to the papers

[14],[12],[5]. On the contrary, the problem of the solutions regularity is still widely open.

This is mainly due to the lack of pointwise estimates for solutions to linear sub-elliptic

equations with rough coefficients. In this context, a long standing open problem is the

invariant Harnack inequality for positive solutions to horizontally elliptic equations on Lie

groups, in non-divergence form and rough coefficients.

To this aim, Di Fazio, Gutiérrez and Lanconelli in [6] developed an axiomatic procedure to
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establish scale invariant Harnack inequality in very general settings like doubling Hölder

quasi metric spaces. This approach allows to handle both divergence and non divergence

linear equations. They proved that the double-ball property and the ε-critical density are

sufficient conditions for the Harnack inequality to hold. What are these notions? These

properties arose from the techniques developed in [2] and [3] for uniformly elliptic fully

nonlinear equations and for the linearized Monge-Ampère equation (see also [7], Chapter

2, and the references therein). In [6] these notions have found a precise and abstract

statement, for the purpose of being used in general settings. In [8] this approach has been

in fact exploited by Gutiérrez and Tournier in the setting of the Heisenberg group H:

they proved, for second order linear operators wich are elliptic with respect to the fields

generating H, the double ball property and, under an extra-assumption on the eigenvalues

of the coefficient matrix, the critical density.

In Section 2 we are going to show the outline of the powerful approach adopted in [6]. In

Section 3 we investigate the double-ball property in the particular case of the homogeneous

Carnot groups: following the argument in [15], we highlight as this property is related to

the solvability of a kind of exterior Dirichlet problem for the operator. More precisely, it

is a consequence of the existence of some suitable interior barrier functions of Bouligand-

type. In Section 4 we give a sketch of the proof of the double-ball property for a generic

step two Carnot group, which is the main result of [15].

2. An axiomatic approach

As already mentioned, in [6] Di Fazio, Gutiérrez and Lanconelli presented their ax-

iomatic approach in the abstract setting of doubling quasi metric Hölder space. For the

sake of clearness, we need some definitions.

Definition 2.1. Let Y be a non empty set. We say that Y is a quasi metric space if there

exists a function d : Y × Y −→ [0,+∞) which is symmetric, strictly positive away from

{(x, y) ∈ Y × Y : x = y} and such that, for some constant K ≥ 1, we have

d(x, y) ≤ K(d(x, z) + d(z, y))
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for all x, y, z ∈ Y . The d-ball with center x0 ∈ Y and radius R > 0 is given by

BR(x0) := {y ∈ Y : d(x0, y) < R}.

Definition 2.2. Let (Y, d) be a quasi metric space and µ be a positive measure on a σ-

algebra of subsets of Y containing the d-balls. We say that µ satisfies the doubling property

if there exists a positive constant Cd such that

0 < µ(B2R(x0)) ≤ Cdµ(BR(x0))

for all x0 ∈ Y and R > 0.

Definition 2.3. Let (Y, d) be a quasi metric space. The quasi distance d is Hölder con-

tinuous if there exist positive constants β and 0 < α ≤ 1 such that

|d(x, y)− d(x, z)| ≤ βd(y, z)α (d(x, y) + d(x, z))1−α

for all x, y, z ∈ Y .

Therefore, by taking into account all the previous definitions, we can now fix a doubling

quasi metric Hölder space (Y, d, µ). In such a space, let Ω be an open subset of Y .

Following the notations in [6], we denote by KΩ a family of µ-measurable functions with

domain contained in Ω. If u ∈ KΩ and its domain contains a set A ⊂ Ω, we will write

u ∈ KΩ(A).

We are ready to give the precise statements of the double-ball property and the ε-critical

density.

Definition 2.4. (Double Ball Property) We say that KΩ satisfies the double ball

property if there exists a positive constant γ such that, for every B3R(x0) ⊂ Ω and every

u ∈ KΩ(B3R(x0)) with infBR(x0) u ≥ 1, we have

inf
B2R(x0)

u ≥ γ.

Definition 2.5. (ε-Critical Density) Let 0 < ε < 1. We say that KΩ satisfies the ε-

critical density property if there exists a positive constant c such that, for every B2R(x0) ⊂

Ω and for every u ∈ KΩ(B2R(x0)) with

µ({x ∈ BR(x0) : u(x) ≥ 1}) ≥ εµ(BR(x0)),
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we have

inf
BR

2
(x0)

u ≥ c.

Example 2.1. In order to understand these abstract definitions, we go back to the case

of linear uniformly elliptic second order operators. So, let us consider an operator L as

in (1) with ellipticity constants λ and Λ. In [7], we can find a proof of the double ball

property (Theorem 2.1.2) and the ε-critical density property (Theorem 2.1.1) for this class

of functions

(3) KΩ := {u ∈ C2(V,R) : V ⊂ Ω, u ≥ 0 and Lu ≤ 0 in V }.

In this case, the doubling quasi metric Hölder space is Rn with the classical euclidean dis-

tance and the Lebesgue measure. We stress that this KΩ is invariant under multiplication

by positive constants. Moreover, the constants appearing in the Definitions 2.4 and 2.5

depend just on n, λ,Λ.

Before stating the result in [6], we need two more definitions.

Definition 2.6. We say that (Y, d, µ) has the reverse doubling condition in Ω if there

exists 0 < δ < 1 such that

µ(BR(x0)) ≤ δµ(B2R(x0))

for every B2R(x0) ⊂ Ω.

Definition 2.7. We say that (Y, d, µ) satisfies a log-ring condition if there exists a non-

negative function ω(ε), with ω(ε) = o((log(1
ε
))−2) as ε→ 0+, such that

µ
(
BR(x0) rB(1−ε)R(x0)

)
≤ ω(ε)µ(BR(x0))

for every ball BR(x0) and all ε sufficiently small.

Among the results proved by Di Fazio, Gutiérrez and Lanconelli in [6], the one we are

interested in is the following theorem.

Theorem 2.1. Let (Y, d, µ) be a doubling quasi metric Hölder space and let Ω ⊂ Y be

an open set such that (Y, d, µ) has the reverse doubling condition in Ω. Let us suppose



38 GIULIO TRALLI

that (Y, d, µ) also satisfies a log-ring condition. Let us assume in addition that the set

KΩ is closed under multiplications by positive constants and if u ∈ KΩ(BR(x0)) satisfies

u ≤ m in BR(x0) then m − u ∈ KΩ(BR(x0)). Finally, we suppose that KΩ satisfies the

double-ball property and the ε-critical density property for some 0 < ε < 1. Then, there

exist C, η > 1 independent of u,R and x0 such that, if u ∈ KΩ(B2ηR(x0)) is nonnegative

and locally bounded, we have

sup
BR(x0)

u ≤ C inf
BR(x0)

u.

Example 2.2. Keeping in mind Example 2.1, we now put

KΩ := {u ∈ C2(V,R) : V ⊂ Ω, u ≥ 0 and Lu = 0 in V }.

This class is a subset of the one defined in (3), since we have to verify the condition

u ∈ KΩ(BR(x0)), u ≤ m in BR(x0) ⇒ m− u ∈ KΩ(BR(x0)).

Anyway, with this choice all the assumptions of the previous theorem are satisfied. There-

fore, in the case of linear uniformly elliptic second order operators, Theorem 2.1 gives

back the result by Krylov and Safonov of Theorem 1.1.

3. Homogeneous Carnot groups and interior barriers

Where is it possible to apply this axiomatic approach? Besides the double-ball prop-

erty and the ε-critical density property, in the previous section we have seen five more

definitions involved in Theorem 2.1 concerning just the structure of the setting we are

working in. It has been stressed in [6] that a remarkable example where these stuctural

assumptions are satisfied is the setting of homogeneous Lie groups.

As a matter of fact, let G = (RN , ◦, δλ) be an homogeneous Lie group, where

δλ(x1, . . . , xN) = (λσ1x1, . . . , λ
σNxN)

with 1 ≤ σ1 ≤ . . . ≤ σN . In G there exists an homogeneous symmetric norm, i.e. a

continuous function d : RN −→ R, δλ-homogeneous of degree one, smooth and strictly

positive outside the origin and such that d(x−1) = d(x) (see [1], Example 5.1.1). If we
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denote d(x, y) := d(y−1 ◦ x) for x, y ∈ RN , we have, for some K ≥ 1,

d(x, y) ≤ K(d(x, z) + d(z, y))

for all x, y, z ∈ RN (see [1], Proposition 5.1.6). Thus, (RN , d) is a quasi-metric space. In

[6] (Remark 2.5) it is also proved that d is Hölder continuous with respect to Definition

2.3 with α = 1: in fact, there exist β such that

d(x, y) ≤ d(x, z) + βd(y, z) ∀x, y, z ∈ RN .

Moreover, if we denote by | · | the Lebesgue measure in RN , we get by the δλ-homogeneity

of the d-balls and Proposition 1.3.21 in [1] that

|BR(x0)| = RQ |B1(0)| =: cQR
Q,

where Q =
∑N

i=1 σi. Therefore, the doubling property and the reverse doubling hold

true for (RN , d, | · |): those inequalities are actually equalities with constant respectively

Cd = 2Q and δ = 1
2Q

. Finally, also the log-ring condition is satisfied since we have∣∣BR(x0) rB(1−ε)R(x0)
∣∣ = cQR

Q(1− (1− ε)Q) ≤ Qε |BR(x0)| .

Summing up, in this setting it is worthy of taking care of double ball property and ε-critical

density.

Suppose in addition G is stratified, i.e. G is an homogeneous Carnot group. Let us say

G has m generators and take m left-invariant vector fields X1, . . . , Xm , δλ-homogeneous

of degree one, generating the Lie algebra. We want to consider the linear second order

operator in non-divergence form

(4) LA =
m∑

i,j=1

aij(x)XiXj for x ∈ RN .

The symmetric matrix A(x) = (aij(x))mi,j=1 is supposed to be uniformly elliptic: we recall

it means that there exist 0 < λ ≤ Λ such that, for every x, we have

λ ‖ξ‖2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ ‖ξ‖2

for every ξ ∈ Rn. We are going to denote by Mm(λ,Λ) the set of the m ×m symmetric

matrices satisfying these bounds. We will write simply A ∈ Mm(λ,Λ) instead of writing



40 GIULIO TRALLI

A(x) ∈Mm(λ,Λ) for every x. These operators are called horizontally elliptic.

Let us state again the double ball condition in this context. Keeping in mind Example

2.1, we put

(5) KAΩ := {u ∈ C2(V,R) : V ⊂ Ω, u ≥ 0 and LAu ≤ 0 in V },

for any fixed open set Ω ⊆ RN . Thus, the double ball property reads as follows.

Definition 3.1. (Double Ball Property) We say that the double ball property holds

true in G if, for every 0 < λ ≤ Λ, there exists a positive constant γ (depending just on

λ,Λ, the vectors fields Xj’s and G) such that, for every A ∈ Mm(λ,Λ) and for every

C2-function u in Ω ⊇ B3R(x0) with

u ≥ 0, LAu ≤ 0 in Ω and u ≥ 1 in BR(x0),

we have

u ≥ γ in B2R(x0).

Gutiérrez and Tournier considered in [8] the case of the Heinsenberg group H = H1

with generators X1 = ∂x1 − x2

2
∂x3 and X1 = ∂x2 + x1

2
∂x3 . They chose the homogeneous

norm d(x1, x2, x3) = ((x2
1 + x2

2)2 + µx2
3)

1
4 for some fixed constant µ. They worked in R3,

but all the arguments and the results work in R2n+1 (i.e. in Hn). In that context, they

proved the double ball property as we have just defined. They proved also the ε-critical

density (for the same family (5)) by assuming a bound for the ratio Λ
λ

.

In [15] we have stressed how the double ball property is related to the solvability of a kind

of exterior Dirichlet problem for the operator. The main tool is the existence of some

interior barrier functions. The important feature of these barrier functions for LA is that

they are uniform for A ∈Mm(λ,Λ): they have to be independent of the coefficients of the

matrix A(x) and of their regularity. Let us give the definition.

Definition 3.2. Let O be an open set of RN with non-empty boundary. Fix p ∈ ∂O and

0 < λ ≤ Λ. A function h is an interior L-barrier function for O at p if

· h is a C2 function defined on an open bounded neghborhood U of p,

· h and U depend just on O, p,Λ,λ (and on G, d and the Xj’s),
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· LAh ≤ 0 in U for any A ∈Mm(λ,Λ),

· h(p) = 0,

· {x ∈ U : h ≤ 0}r {p} ⊆ O.

In [15] we considered the case of step two Carnot groups and we proved that the

existence, for any λ ≤ Λ, of an interior L-barrier for B1(0) at every point of its boundary

implies the double ball property. The generalization of this fact to every homogeneous

Carnot group is straightforward. Here we give the details by arguing in the same way.

Lemma 3.1. Let T be a compact subset of an open set O ⊂ Rn. There exists ν0 > 1 such

that

δνT ⊂ O

for all ν ∈ [1, ν0].

Proof. The sets T and RN rO are close and disjoint. Thus, their distance δ is a positive

number. Since T is bounded, there exists M > 0 such that, if x = (x1, . . . , xN) ∈ T , we

have |xj| ≤M . Therefore, for x ∈ T and ν ≥ 1, we get

dist(δν(x), T ) ≤ ‖δν(x)− x‖ ≤M
N∑
j=1

(νσj − 1).

It is easy to choose ν0 > 1 such that supx∈T dist(δν(x), T ) < δ for all ν ∈ [1, ν0]. �

We set

KA
0 = {u ∈ C2(B 3

2
(0)) : u ≥ 0 and LAu ≤ 0 in B 3

2
(0), u ≥ 1 in B1(0)}.

The next lemma is an application of the weak maximum principle for the operator LA.

Lemma 3.2. Suppose that, for every 0 < λ ≤ Λ and every p ∈ ∂B1(0), there exists an

interior L-barrier function for B1(0) at p. Then, there exists ν ∈ (1, 3
2
) such that

u ≥ 1

2
in Bν(0)

for any u ∈ KA
0 and any A ∈Mm(λ,Λ).
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Proof. Fix λ ≤ Λ and A ∈ Mm(λ,Λ). Fix also p ∈ ∂B1(0) and consider the barrier

function h = hp defined in U = Up. If we set V =
(
U ∩B 3

2
(0)
)

r B1(0), we have that

h ≥ 0 and LAh ≤ 0 in V . Let us now consider the boundary ∂V = Γ1 ∪ Γ2, where

Γ1 = ∂V ∩∂B1(0) and Γ2 = ∂V rΓ1. The number m = infΓ2 h is strictly positive because

{x ∈ ∂V : h(x) = 0} = {p}. So, the function w = 1− 1
m
h is well defined. We have

LAw = − 1

m
LAh ≥ 0 in V, w ≤ 1 on Γ1 and w ≤ 0 on Γ2.

If u ∈ KA
0 , we get

LAu ≤ LAw in V, u ≥ w on ∂V.

By the Weak Maximum Principle for LA, u ≥ w in V . Since w(p) = 1, there exists an

open neighborhood Wp of p contained in U∩B 3
2
(0) where w ≥ 1

2
. The compact set ∂B1(0)

is contained in the open set O = ∪p∈∂B1(0)Wp. By the previous lemma, there exists ν > 1

such that (Bν(0) rB1(0)) ⊂ O: the constant ν depends on A just through the ellipticity

contants λ,Λ (since it depends on the barriers). Therefore, we deduce

u ≥ 1

2
on Bν(0)

for all u ∈ KA
0 . �

Proposition 3.1. Suppose there exists, for any 0 < λ ≤ Λ, an interior L-barrier function

for B1(0) at every point of ∂B1(0). Then, the double ball property holds true in G.

Proof. Fix λ ≤ Λ and A ∈ Mm(λ,Λ). We are going to prove first the condition in

Definition 3.1 by assuming x0 = 0 and R = 1. If u ∈ KAΩ(B3(0)) (in the sense of (5)) with

u ≥ 1 in B1(0), in particular u ∈ KA
0 . By the last lemma, we have u ≥ 1

2
in Bν(0) for a

fixed 1 < ν < 3
2
. Let us consider the function

v = 2u ◦ δν .

It is a non-negative function of class C2 defined at least in B 3
ν
(0) ⊇ B 3

2
(0) (since ν < 2).

We have that v ≥ 1 in B1(0). By denoting Ã(x) = A(δν(x)), we get

LÃv(x) = 2ν2(LAu)(δν(x)) ≤ 0
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because of the homogeneity of the vector fields. This means that v ∈ KÃ
0 . The matrix

Ã has the same ellipticity constants of A and ν depends just on these. Thus, v ≥ 1
2

in

Bν(0), that is u ≥ 1
4

in Bν2(0). If ν2 ≥ 2, we have just proved the statement. If it is not,

the argument can be reapplied. Since ν > 1, there exists an integer n0 such that νn0 ≥ 2.

Therefore, we get

u ≥ 1

2n0
=: γ in B2(0).

If x0 and R are arbitrary, we can argue in a similar way. As a matter of fact, we consider

the function

ũ(x) = u(x0 ◦ δR(x))

for u ∈ C2(B3R(x0)). The homogeneity and the left-invariance properties of horizontally

elliptic operators imply that

∑
i,j

Ai,j(x0 ◦ δR(x))XiXjũ(x) = R2(LAu)(x0 ◦ δR(x)).

Therefore, if u ∈ KAΩ(B3R(x0)) with u ≥ 1 in BR(x0), we have ũ ∈ KÃΩ and ũ ≥ 1 in B1(0),

where Ã(x) = A(x0 ◦ δR(x)). By what we have just proved, we get ũ ≥ γ in B2(0), i.e.

u ≥ γ in B2R(x0). �

Example 3.1. Proposition 3.1 allows us to prove the double ball property for the euclidean

case in a different way from the one in [7] (Theorem 2.1.2). As a matter of fact, if L is as

in (1), we can build up interior L-barrier functions for the euclidean ball Be
1(0) = B at the

boundary points which are similar to the ones in the Hopf’s lemma. Fix a point p ∈ ∂B

and take an euclidean ball Be
δ(ξ0) which is tangent to ∂B at p and strictly contained in

B, that is Be
δ(ξ0) r {p} ⊂ B (let’s say ξ0 = 1

2
p and δ = 1

2
). For any λ ≤ Λ, we can choose

α big enough such that the function

h(x) = e−αδ
2 − e−α‖x−ξ0‖2

is an L-barrier for Be
1(0) at p.
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4. Carnot groups of step two

We want to study the case of an N -dimensional Carnot group of step two with m

generators. Up to a canonical isomorphism (see [1], Theorem 3.2.2), we can thus consider

an homogeneous Carnot group G = (RN , ◦, δλ) such that the composition law ◦ is defined

by

(6) (x, t) ◦ (x1, t1) =

(
x+ x1, t+ t1 +

1

2
〈Bx, x1〉

)
for (x, t), (x1, t1) ∈ Rm × Rn = RN . Here we have denoted by 〈Bx, x1〉 the vector of Rn

whose components are
〈
Bkx, x1

〉
(for k = 1, . . . , n) and B1, . . . , Bn are m × m linearly

independent skew-symmetric matrices. The group of dilations is defined as

δλ((x, t)) = (λx, λ2t)

and the inverse of (x, t) is (−x,−t). We can choose as homogeneous symmetric norm the

function d : RN −→ R such that

d ((x, t)) =
(
‖x‖4 + ‖t‖2) 1

4 ;

from here on we denote by ‖·‖ both the euclidean norms in Rm and in Rn. Hence, we

have BR(x0) = x0 ◦BR(0) where

BR(0) = {(x, t) ∈ RN : ‖x‖4 + ‖t‖2 < R4}.

Let us fix m vector fields generating the Lie algebra of G, for example the ones of the

Jacobian basis (this choice does not affect our problem, by changing it we would change

at most λ and Λ): they are given by

Xi(x, t) = ∂xi +
1

2

n∑
k=1

(Bkx)i∂tk for i = 1, . . . ,m.

For A ∈Mm(λ,Λ), we build up the operators as in (4), i.e.

LA =
m∑

i,j=1

aij(x, t)XiXj for (x, t) ∈ RN .
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Remark 4.1. The hypothesis of being Carnot is crucial. In fact, if we consider an

homogeneous Lie group with a composition law as in (6), it is a Carnot group if and only

if the matrices Bk’s are linear independent (see [1], Section 3.2). Thus, if the group has

not the Carnot property, up to a change of variable we can say that Bn is the null matrix.

This would imply that every function u depending just on the variable tn is a solution of

Lu = 0. If this is the case, it is not difficult to falsify the double ball property.

In order to apply Proposition 3.1, we have to prove that there exists an interior L-

barrier function for B1(0) at every point of ∂B1(0). The characteristic points of ∂B1(0)

are the points where the horizontal gradient ∇X = (X1, . . . , Xm) of the defining function

of B1(0) vanishes. In [15] we showed that, at the non-characteristic points, the functions

like the ones used in Example 3.1 for the euclidean case work as interior L-barriers.

Remark 4.2. If we denote with F the defining function of B1(0), i.e.

F (x, t) = d4((x, t)) = ‖x‖4 + ‖t‖2 − 1,

we have

∇XF (x, t) = (X1F, . . . , XmF )(x, t) = 4 ‖x‖2 x+
n∑
k=1

tkB
kx.

Since the matrices Bk’s are skewsymmetric, the vectors x and Bkx are orthogonal for

every k = 1, . . . , n. So, we can state that

∇XF (x, t) = 0 ⇔ x = 0.

Thus, the problem is to find, for any λ ≤ Λ, an interior L-barrier function at the points

(0, t0) with ‖t0‖ = 1.

Remark 4.3. Suppose for a moment that G is an H-group in the sense of Métivier. This

means that every non-vanishing linear combination of the matrices Bk’s is non singular

(see [1], Proposition 3.7.4). Denoting t′ = t − 〈t, t0〉 t0, for β big enough and δ small

enough the function

hM(x, t) = e−β − e−β(‖x‖4+‖t′‖2+〈t,t0〉),

defined in {(x, t) ∈ Rn : 〈t, t0〉 > 0, ‖t′‖ < δ}, is an interior L-barrier for B1(0) at (0, t0).

The Heisenberg group Hn belongs to the class of the H-groups in the sense of Métivier:
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thus, by exploiting the functions hM , we have a different proof for the result by Gutiérrez

and Tournier ([8], Theorem 4.1) in Hn.

In the case of a generic step two Carnot group, the functions hM do not always work

as barriers. The difference is that, for any fixed unit vector t0 = (t10, . . . , t
n
0 ), the matrix∑n

k=1 t
k
0B

k might have a non-trivial kernel. Hence, let us denote by P the orthogonal

projector onRange(
∑n

k=1 t
0
kB

k) = Ker(
∑n

k=1 t
0
kB

k)⊥ and withQ the orthogonal projector

on Ker(
∑n

k=1 t
0
kB

k). In [15] we proved that, for any λ ≤ Λ, there are convenient choices

of γ, β and δ such that the function

h(x, t) = e−β − e−β(‖x‖
4+(‖Qx‖2−γ‖Px‖2)2+‖t′‖2+〈t,t0〉),

defined in {(x, t) : 〈t, t0〉 > 0, ‖t′‖ < δ}, is an interior L-barrier function for B1(0) at

(0, t0).

Summing up all these facts, the main result in [15] reads as follows.

Theorem 4.1. The double ball property holds true in every Carnot group of step two.
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