DOUBLE BALL PROPERTY: AN OVERVIEW AND THE CASE OF
STEP TWO CARNOT GROUPS

PROPRIETA DI PALLA DOPPIA IN GRUPPI DI CARNOT DI PASSO
DUE

GIULIO TRALLI

ABSTRACT. We investigate the notion of the so-called Double Ball Property, which con-
cerns the nonnegative sub-solutions of some differential operators. Thanks to the ax-
iomatic approach developed in [6], this is an important tool in order to solve the Krylov-
Safonov’s Harnack inequality problem for this kind of operators. In particular, we are
interested in linear second order horizontally-elliptic operators in non-divergence form
and with measurable coefficients. In the setting of homogeneous Carnot groups, we would
like to stress the relation between the Double Ball Property and a kind of solvability of
the Dirichlet problem for the operator in the exterior of some homogeneous balls. We
present a recent result obtained in [I5], where the double ball property has been proved

in a generic Carnot group of step two.

SUNTO. Si desidera studiare la nozione della cosiddetta proprieta di Palla Doppia, la
quale si riferisce a sottosoluzioni non-negative di certi operatori differenziali. Grazie
all’approccio assiomatico sviluppato in [6], questa proprieta diventa un tassello impor-
tante per la dimostrazione di una disuguaglianza di Harnack di tipo Krylov-Safonov
per questo tipo di operatori. In particolare, si considerano operatori lineari del secondo
ordine in forma di non-divergenza e coefficienti misurabili che siano orizzontalmente el-
littici. Si desidera sottolineare come, nell’ambito dei gruppi di Carnot omogenei, questa
proprieta sia legata alla risolubilita del problema di Dirichlet per 'operatore all’esterno
di certe palle omogenee. Viene qui presentato un recente risultato ottenuto in [I5], dove
viene dimostrata la validita della proprieta di Palla Doppia in un generico gruppo di

Carnot di passo due.
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1. INTRODUCTION

In the theory of fully nonlinear elliptic equations a crucial role is played by the Krylov-
Safonov’s Harnack inequality for nonnegative solutions to the linear equations in non-
divergence form and measurable coefficients. To be precise, let us consider a second order
linear operator in non-divergence form

n
(1) L= Z aij(x)ﬁixj, for x € R".
ij=1
Let us suppose that the matrix A(x) = (a;;(z));;=; is symmetric and uniformly elliptic,

i.e. there exist 0 < A < A such that

(2) MIEN® < (A2)€,€) < Allg]®

for every ¢ € R™. Under these hypotheses, Krylov and Safonov proved in [9] the following

theorem.

Theorem 1.1. There exists a positive constant C', depending just on the dimension n and
on the ellipticity constants \, A, such that, for every nonnegative solution u of Lu =0 in
Q and for every cube QQ with 3Q) C €2, we have

supu < C'inf u.
Q Q

From the previous invariant Harnack inequality, one can deduce an Holder regularity
result for the solutions of £: the Holder constants will depend just on n, A, A.
By the way, in several research areas such as Complex or CR Geometry, there are fully
nonlinear equations which are characterized by an underlying sub-Riemannian structure
and are not elliptic at any point, see e.g. [I1],[14],[12],[13],[4],[5],[L0]. The existence
theory for viscosity solutions to such equations is well settled, mainly thanks to the papers
[14],[12],[5). On the contrary, the problem of the solutions regularity is still widely open.
This is mainly due to the lack of pointwise estimates for solutions to linear sub-elliptic
equations with rough coefficients. In this context, a long standing open problem is the
invariant Harnack inequality for positive solutions to horizontally elliptic equations on Lie
groups, in non-divergence form and rough coefficients.

To this aim, Di Fazio, Gutiérrez and Lanconelli in [6] developed an axiomatic procedure to
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establish scale invariant Harnack inequality in very general settings like doubling Holder
quasi metric spaces. This approach allows to handle both divergence and non divergence
linear equations. They proved that the double-ball property and the e-critical density are
sufficient conditions for the Harnack inequality to hold. What are these notions? These
properties arose from the techniques developed in [2] and [3] for uniformly elliptic fully
nonlinear equations and for the linearized Monge-Ampere equation (see also [7], Chapter
2, and the references therein). In [6] these notions have found a precise and abstract
statement, for the purpose of being used in general settings. In [8] this approach has been
in fact exploited by Gutiérrez and Tournier in the setting of the Heisenberg group H:
they proved, for second order linear operators wich are elliptic with respect to the fields
generating Hl, the double ball property and, under an extra-assumption on the eigenvalues
of the coefficient matrix, the critical density.

In Section 2 we are going to show the outline of the powerful approach adopted in [6]. In
Section 3 we investigate the double-ball property in the particular case of the homogeneous
Carnot groups: following the argument in [I5], we highlight as this property is related to
the solvability of a kind of exterior Dirichlet problem for the operator. More precisely, it
is a consequence of the existence of some suitable interior barrier functions of Bouligand-
type. In Section 4 we give a sketch of the proof of the double-ball property for a generic

step two Carnot group, which is the main result of [15].

2. AN AXIOMATIC APPROACH

As already mentioned, in [6] Di Fazio, Gutiérrez and Lanconelli presented their ax-
iomatic approach in the abstract setting of doubling quasi metric Hélder space. For the

sake of clearness, we need some definitions.

Definition 2.1. Let Y be a non empty set. We say that'Y is a quasi metric space if there
exists a function d : Y XY — [0,400) which is symmetric, strictly positive away from

{(z,y) €Y xY 12 =y} and such that, for some constant K > 1, we have

d(z,y) < K(d(z,2) + d(z,9))
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for all x,y,z € Y. The d-ball with center xqg € Y and radius R > 0 is given by
Br(zo) :={y €Y : d(xo,y) < R}.

Definition 2.2. Let (Y, d) be a quasi metric space and p be a positive measure on a o-
algebra of subsets of Y containing the d-balls. We say that i satisfies the doubling property

if there exists a positive constant Cyq such that

0 < u(Bar(w0)) < Cap(Br(z0))

forallzg € Y and R > 0.

Definition 2.3. Let (Y,d) be a quasi metric space. The quasi distance d is Holder con-

tinuous if there exist positive constants 3 and 0 < o < 1 such that

|d(w,y) —d(z, 2)| < Bd(y, 2)* (d(z,y) + d(z,2))" "
forallz,y,z €Y.

Therefore, by taking into account all the previous definitions, we can now fix a doubling
quasi metric Holder space (Y, d,u). In such a space, let € be an open subset of Y.
Following the notations in [6], we denote by Kq a family of y-measurable functions with
domain contained in Q. If u € Kq and its domain contains a set A C €2, we will write
u € Kqo(A).

We are ready to give the precise statements of the double-ball property and the e-critical
density.

Definition 2.4. (Double Ball Property) We say that Kq satisfies the double ball
property if there exists a positive constant v such that, for every Bsr(zo) C Q and every

u € Ka(Bsr(wo)) with infp, ) u > 1, we have

inf u>n.
Bar(zo) =7

Definition 2.5. (e-Critical Density) Let 0 < e < 1. We say that Kq satisfies the e-
critical density property if there exists a positive constant ¢ such that, for every Bag(zg) C

Q and for every u € Kq(Bar(xo)) with

p({z € Br(zo) = u(z) = 1}) = ep(Br(w0)),
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we have

inf uw>ec
Bg(xo)

Example 2.1. In order to understand these abstract definitions, we go back to the case
of linear uniformly elliptic second order operators. So, let us consider an operator L as
n with ellipticity constants X\ and A. In [7], we can find a proof of the double ball
property (Theorem 2.1.2) and the e-critical density property (Theorem 2.1.1) for this class

of functions
(3) Kqo:={ucC*V,R):VCQu>0and Lu<0inV}.

In this case, the doubling quasi metric Holder space s R™ with the classical euclidean dis-
tance and the Lebesque measure. We stress that this Kq is invariant under multiplication
by positive constants. Moreover, the constants appearing in the Definitions and
depend just on n, A\, \.

Before stating the result in [6], we need two more definitions.

Definition 2.6. We say that (Y,d, ) has the reverse doubling condition in §) if there

exists 0 < 0 < 1 such that
1(Br(zo)) < 0p(Bar(wo))

for every Bop(xo) C Q.

Definition 2.7. We say that (Y,d, 1) satisfies a log-ring condition if there exists a non-

negative function w(e), with w(e) = o((log(+))~2) as € — 0T, such that
#t (Br(xo) N Bu-gr(w0)) < w(€)pu(Br(xo))
for every ball Br(zo) and all € sufficiently small.

Among the results proved by Di Fazio, Gutiérrez and Lanconelli in [6], the one we are

interested in is the following theorem.

Theorem 2.1. Let (Y,d, ) be a doubling quasi metric Holder space and let Q@ C'Y be

an open set such that (Y,d, ) has the reverse doubling condition in Q. Let us suppose
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that (Y,d, ) also satisfies a log-ring condition. Let us assume in addition that the set
Kq is closed under multiplications by positive constants and if u € Kq(Bgr(xg)) satisfies
u < m in Bgr(zg) then m —u € Kq(Bgr(zo)). Finally, we suppose that Kq satisfies the
double-ball property and the e-critical density property for some 0 < e < 1. Then, there
ezist C,n > 1 independent of u, R and xy such that, if u € Kq(Bayr(zo)) is nonnegative

and locally bounded, we have

sup v < C inf wu.
Br(zo) Br(zo)

Example 2.2. Keeping in mind Example we now put
Ko:={ueC*(V,R):VCQu>0and Lu=0 inV}.
This class is a subset of the one defined in (@, since we have to verify the condition
u € Ko(Br(xo)), uw<m in Br(zg) = m—ué€ Kq(Bg(xg)).

Anyway, with this choice all the assumptions of the previous theorem are satisfied. There-
fore, in the case of linear uniformly elliptic second order operators, Theorem gives

back the result by Krylov and Safonov of Theorem [I.1].

3. HOMOGENEOUS CARNOT GROUPS AND INTERIOR BARRIERS

Where is it possible to apply this axiomatic approach? Besides the double-ball prop-
erty and the e-critical density property, in the previous section we have seen five more
definitions involved in Theorem [2.1] concerning just the structure of the setting we are
working in. It has been stressed in [6] that a remarkable example where these stuctural
assumptions are satisfied is the setting of homogeneous Lie groups.

As a matter of fact, let G = (RY,0,4,) be an homogeneous Lie group, where
Wz, .., xn) = (A2, .., AN ay)

with 1 < 07 < ... < on. In G there exists an homogeneous symmetric norm, i.e. a
continuous function d : RY — R, §y,-homogeneous of degree one, smooth and strictly

positive outside the origin and such that d(x~') = d(x) (see [1], Example 5.1.1). If we
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denote d(z,y) := d(y~! o x) for z,y € RN, we have, for some K > 1,
d(z,y) < K(d(z,2) +d(2,9))

for all z,y, 2z € RY (see [1], Proposition 5.1.6). Thus, (RY,d) is a quasi-metric space. In
[6] (Remark 2.5) it is also proved that d is Holder continuous with respect to Definition

2.3 with a = 1: in fact, there exist § such that
d(z,y) < d(z,z) + Bd(y,2)  V,y,z € R"

Moreover, if we denote by | - | the Lebesgue measure in RY, we get by the dy-homogeneity

of the d-balls and Proposition 1.3.21 in [I] that
| Br(z0)| = RY |B1(0)] =: cqR,

where () = Zf\il 0;. Therefore, the doubling property and the reverse doubling hold
true for (RY,d,|-|): those inequalities are actually equalities with constant respectively

Cy;=2%and § = QLQ. Finally, also the log-ring condition is satisfied since we have
| Br(w0) \ Ba—r(0)| = cqR?(1 — (1 = €)?) < Q¢ |Br(x0)|-

Summing up, in this setting it is worthy of taking care of double ball property and e-critical
density.

Suppose in addition G is stratified, i.e. G is an homogeneous Carnot group. Let us say
G has m generators and take m left-invariant vector fields X,..., X,, , d-homogeneous
of degree one, generating the Lie algebra. We want to consider the linear second order

operator in non-divergence form
(4) EA = Z aij(a:)Xin for x € RN.

The symmetric matrix A(x) = (a;;(x))]—, is supposed to be uniformly elliptic: we recall

it means that there exist 0 < A < A such that, for every x, we have

I < (A(x)€,€) < Allg]f®

for every £ € R". We are going to denote by M,,(\, A) the set of the m x m symmetric
matrices satisfying these bounds. We will write simply A € M,,(\, A) instead of writing
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A(x) € M, (N, A) for every x. These operators are called horizontally elliptic.

Let us state again the double ball condition in this context. Keeping in mind Example

2.1], we put
(5) Ka={uecC*V,R):VCQu>0and Lyu<0inV},

for any fixed open set Q C RY. Thus, the double ball property reads as follows.

Definition 3.1. (Double Ball Property) We say that the double ball property holds
true in G if, for every 0 < A\ < A, there ezists a positive constant v (depending just on
A, A, the vectors fields X;’s and G) such that, for every A € M,,(X\,A) and for every
C?-function u in Q D Bsgp(xg) with

u>0, Lyau<0 inQ and u>1 1in Bg(xo),

we have

u >y in Bog(xo).

Gutiérrez and Tournier considered in [8] the case of the Heinsenberg group H = H!
with generators X; = 0,, — %0,, and X; = 0,, + 50,,. They chose the homogeneous
norm d(zy, 2o, 23) = (22 + 22)? + pa)1 for some fixed constant y. They worked in R3,
but all the arguments and the results work in R***! (i.e. in H"). In that context, they
proved the double ball property as we have just defined. They proved also the e-critical

A

density (for the same family ) by assuming a bound for the ratio ¢

In [T5] we have stressed how the double ball property is related to the solvability of a kind
of exterior Dirichlet problem for the operator. The main tool is the existence of some
interior barrier functions. The important feature of these barrier functions for £, is that
they are uniform for A € M,,(\, A): they have to be independent of the coefficients of the

matrix A(x) and of their regularity. Let us give the definition.

Definition 3.2. Let O be an open set of RN with non-empty boundary. Fizx p € 00 and

0 <A< A. A function h is an interior L-barrier function for O at p if

- h is a C? function defined on an open bounded neghborhood U of p,
- h and U depend just on O,p, A\ (and on G,d and the X;’s),



DOUBLE BALL PROPERTY 41
- Lah <0 in U for any A € M,,(\,A),

- h(p) =0,
Az eU : h<0}~{p} CO.

In [I5] we considered the case of step two Carnot groups and we proved that the
existence, for any A < A, of an interior £-barrier for B;(0) at every point of its boundary
implies the double ball property. The generalization of this fact to every homogeneous

Carnot group is straightforward. Here we give the details by arguing in the same way.

Lemma 3.1. Let T be a compact subset of an open set O C R™. There exists vy > 1 such

that

0, T C O

for allv € [1, ).

Proof. The sets T and R \. O are close and disjoint. Thus, their distance ¢ is a positive
number. Since 7" is bounded, there exists M > 0 such that, if x = (z1,...,2x5) € T, we

have |z;| < M. Therefore, for x € T and v > 1, we get
N
dist(6,(x), T) < [|6,(z) — 2| < M > (v —1).
j=1

It is easy to choose vy > 1 such that sup, ., dist(0,(z),T) < 0 for all v € [1, ). O
We set
K& ={uc C’Z(B%(O)) cu>0and Lau <0 in B%(O), u>11in By(0)}.
The next lemma is an application of the weak maximum principle for the operator L 4.

Lemma 3.2. Suppose that, for every 0 < A\ < A and every p € 9B1(0), there exists an

interior L-barrier function for By(0) at p. Then, there exists v € (1,3) such that

u> = in B,(0)

DN | —

for any u € K§' and any A € M,,(\, ).
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Proof. Fix A < A and A € M,,(\,A). Fix also p € 9B;(0) and consider the barrier
function h = h,, defined in U = U,. If we set V = <U N Bg(O)) ~ B1(0), we have that
h > 0 and L4h < 0in V. Let us now consider the boundary 0V = I'y U 'y, where
[y =0V NoBi(0) and I'y = OV \I';. The number m = infr, h is strictly positive because
{z € 9V : h(z) = 0} = {p}. So, the function w =1 — +h is well defined. We have

1
Low=——Lh>0inV, w<1onI; and w<0 on I's.
m

If u e K, we get

Lau<Law inV, u>w on OV.

By the Weak Maximum Principle for £4, v > w in V. Since w(p) = 1, there exists an
open neighborhood W, of p contained in UﬂB% (0) where w > % The compact set 9B;(0)
is contained in the open set O = Upecap, 0)W)p. By the previous lemma, there exists v > 1
such that (B,(0) ~\ B1(0)) C O: the constant v depends on A just through the ellipticity

contants A\, A (since it depends on the barriers). Therefore, we deduce

u> = on B,(0)

DN | —

for all u € K§'. 4

Proposition 3.1. Suppose there exists, for any 0 < X < A, an interior L-barrier function

for B1(0) at every point of 0B1(0). Then, the double ball property holds true in G.

Proof. Fix A < A and A € M, (\,A). We are going to prove first the condition in
Definition [3.1] by assuming zo = 0 and R = 1. If u € K4(B3(0)) (in the sense of (5)) with
u > 1in By(0), in particular u € K¢'. By the last lemma, we have u > $ in B,(0) for a

fixedl <v< % Let us consider the function
v=2uod,.

It is a non-negative function of class C* defined at least in Bz (0) 2 Bs (0) (since v < 2).
We have that v > 1 in B;(0). By denoting A(z) = A(J,(z)), we get

L v(z) = 202 (L au)(5,(z)) <0
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because of the homogeneity of the vector fields. This means that v € KOA. The matrix
A has the same ellipticity constants of A and v depends just on these. Thus, v > % in
B,(0), that is u > 1 in B,2(0). If v > 2, we have just proved the statement. If it is not,
the argument can be reapplied. Since v > 1, there exists an integer ng such that ™ > 2.
Therefore, we get

1

uz%zzv

If 2o and R are arbitrary, we can argue in a similar way. As a matter of fact, we consider

the function
t(z) = u(zg o 0r(x))

for u € C*(Bsgr(1g)). The homogeneity and the left-invariance properties of horizontally

elliptic operators imply that

Z A; (0 0 0p(2)) X, X,u(x) = R*(Lau)(xo 0 6g(z)).

Therefore, if u € KA(Bsg(xo)) with v > 1 in Bg(z), we have & € K& and @ > 1 in B;(0),
where A(z) = A(z o 6r(x)). By what we have just proved, we get @ > v in By(0), i.e.
u >y in Bag(wo). d

Example 3.1. Proposition[3.1] allows us to prove the double ball property for the euclidean
case in a different way from the one in [7] (Theorem 2.1.2). As a matter of fact, if L is as
mn , we can build up interior L-barrier functions for the euclidean ball B{(0) = B at the
boundary points which are similar to the ones in the Hopf’s lemma. Fix a point p € OB
and take an euclidean ball B§(&y) which is tangent to OB at p and strictly contained in
B, that is B§(&) ~{p} C B (let’s say & = ip and § = 1). For any A < A, we can choose
a big enough such that the function

h(x) = e — e~olle-sl?

is an L-barrier for B{(0) at p.
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4. CARNOT GROUPS OF STEP TWO

We want to study the case of an N-dimensional Carnot group of step two with m
generators. Up to a canonical isomorphism (see [1], Theorem 3.2.2), we can thus consider
an homogeneous Carnot group G = (RY, 0, §,) such that the composition law o is defined

by
(6) (x,t) o (x1,t1) = (x—i—xl,t—i—tl—i—%(Bx,xQ)

for (z,t), (z1,t;) € R™ x R® = RY. Here we have denoted by (Bz,z;) the vector of R"
whose components are <ka,x1> (for k =1,...,n) and B',... B™ are m x m linearly

independent skew-symmetric matrices. The group of dilations is defined as
5)\((1’, t)) = (Ax> )‘2t>

and the inverse of (z,t) is (—z, —t). We can choose as homogeneous symmetric norm the

function d : RY — R such that
1
d((z,t) = (llz|" + [1£]1*)*;

from here on we denote by ||-|| both the euclidean norms in R™ and in R™. Hence, we

have Bgr(zg) = x¢ o Br(0) where
Br(0) = {(z,t) e RY : |lz||* + [|t]* < R}

Let us fix m vector fields generating the Lie algebra of G, for example the ones of the
Jacobian basis (this choice does not affect our problem, by changing it we would change
at most A\ and A): they are given by

1 ¢ .
Xi(x,t) = 0y, + 3 Z(ka)iatk fori=1,...,m.

k=1

For A € M,, (A, A), we build up the operators as in (4]), i.e.

L= Z a;i(z, 1) X, X; for (z,t) € RN,

ij=1
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Remark 4.1. The hypothesis of being Carnot is crucial. In fact, if we consider an
homogeneous Lie group with a composition law as in @, it is a Carnot group if and only
if the matrices B¥’s are linear independent (see [1], Section 3.2). Thus, if the group has
not the Carnot property, up to a change of variable we can say that B™ is the null matrix.
This would imply that every function u depending just on the variable t, is a solution of

Lu = 0. If this is the case, it is not difficult to falsify the double ball property.

In order to apply Proposition [3.1, we have to prove that there exists an interior L-
barrier function for B;(0) at every point of 0B1(0). The characteristic points of 9B;(0)
are the points where the horizontal gradient Vx = (X3,..., X,,) of the defining function
of B;1(0) vanishes. In [I5] we showed that, at the non-characteristic points, the functions

like the ones used in Example for the euclidean case work as interior L-barriers.
Remark 4.2. If we denote with F the defining function of B1(0), i.e.
F(w,t) = d*((z,1) = |l + |I¢]* — 1,

we have

VxF(z,t) = (XiF,... Xy F)(x,t) =4 |z* 2+ > B .
k=1
Since the matrices B¥’s are skewsymmetric, the vectors x and B*z are orthogonal for

every k=1,...,n. So, we can state that
VxF(z,t)=0 < 2=0.

Thus, the problem is to find, for any A < A, an interior L-barrier function at the points

(0, to) with ||to|| = 1.

Remark 4.3. Suppose for a moment that G is an H-group in the sense of Métivier. This
means that every non-vanishing linear combination of the matrices B*’s is non singular
(see [1, Proposition 3.7.4). Denoting t' =t — (t,to) to, for B big enough and § small
enough the function

Tt (2,) = e — e Bl +IE I+ 0t0)).

defined in {(z,t) € R™ : (t,to) > 0, ||t’|| < &}, is an interior L-barrier for B1(0) at (0,t).
The Heisenberg group H"™ belongs to the class of the H-groups in the sense of Métivier:
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thus, by exploiting the functions hyr, we have a different proof for the result by Gutiérrez
and Tournier ([8], Theorem 4.1) in H".

In the case of a generic step two Carnot group, the functions hj; do not always work
as barriers. The difference is that, for any fixed unit vector to = (¢}, ...,t5), the matrix
> or_, teB* might have a non-trivial kernel. Hence, let us denote by P the orthogonal
projector on Range(Y ,_, t9B*) = Ker(>_,_, t2B*)* and with Q the orthogonal projector
on Ker(> p_ t9B*). In [15] we proved that, for any A < A, there are convenient choices

of v, 8 and § such that the function

Bz, t) = eB — e BURIHIQIP I PP+ 17+ 110))

Y

defined in {(x,t) : (t,to) > 0, ||t'|| < ¢}, is an interior L-barrier function for B;(0) at
(0,to).

Summing up all these facts, the main result in [15] reads as follows.
Theorem 4.1. The double ball property holds true in every Carnot group of step two.
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