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Abstract

We prove an interpolation inequality in every dimension d, which let to control the L4/3-

norm of a function u with the product of the square roots of its BV-norm and H−1-norm.

In dimension d = 2 and for functions u bounded below, we can improve this result gaining

a factor of the scaling log1/4 |u| on the left-hand side. Our two interpolation inequalities

are the strong version of two already known estimates in weak form, which play a crucial

role in the study of pattern formation in physics.
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1. Introduction

In these notes we prove two interpolation inequalities, involving the BV-norm and the

H−1-norm of a function u. The first estimate holds in any dimension d and it is established

in Proposition 1.1 below. The second inequality (see Proposition 1.2) holds in dimension

2 for functions bounded below, and it improves the result in Proposition 1.1 by a factor

log1/4 u. Both inequalities are the strong version of two already known estimates in weak

form, which play a crucial role in the study of pattern formation in physics.

In many physical problems described by a variational model, in order to understand

why certain patterns are preferred, it is natural to study whether these patterns are

energy optimal. In several applications (coarsening, domain branching in ferromagnets,

superconductors, twin branching in shape memory alloys) the energy is given by the com-

petitions of two main terms: an interfacial energy and a field energy. Our interpolations

inequalities are crucial ingredients in the proof of a lower bound for the energy, since they

have a natural form which involves a BV-norm (which describes an interfecial energy) and

a H−1-norm (which is related to a field energy).

A lot of pioneering work in the exploration of this connection between physical phenom-

ena and interpolation inequalities has been done by Kohn and Otto, a particular starting

point is [4].

In [4] Kohn and Otto established an upper bound of the coarsening rate (which cor-

responds to lower bound of the energy) for two standard model of surface-energy-driven

coarsening: a constant-mobility Cahn-Hilliard equation (whose large-time behaviour cor-

responds to Mullins-Sekerka dynamics) and a degenerate mobility Cahn-Hilliard equation

(whose large-time behaviour corresponds to motion by surface diffusion). The basic idea

is to use the gradient-flow structure of the Cahn-Hilliard equation.

In the Cahn-Hilliard model for phase transitions we have a scalar order parameter

u : [0,Λd] → R, periodic with length Λ and that typically takes values in [0, 1]. The

energy is given by

E(u) = 1

2

∫
[0,Λd]

(|∇u|2 + (1− u2)2)dx.
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It is easy to see that the Cahn-Hilliard evolution is the gradient flow of E with respect to

the Euclidian structure given by ||∇|−1 · ||L2 . We recall that the H−1-norm of a function

u with vanishing average is defined as follows

|||∇|−1u||22 = inf
j

{∫
|j|2|∇ · j = u

}
=

∫
|∇ϕ|2 where −∆ϕ = u.

It can also be defined via Fourier transform:

|||∇|−1u||22 =
∫
(|k|−1F (u))2dk.

If in the Cahn-Hilliard model we choose u to take values only in {−1,+1}, then the

interfacial area density is given by 1
2Λd

∫
|∇u|.

In [4] essentially the argument makes use of the following two quantities: the interfacial

area density E := 1
2Λd

∫
|∇u|, which has the dimension of 1/length and the physical

scale L :=
(

1
Λd

∫
||∇|−1u|2

)1/2
, which has the dimension of length. The proof of the

lower bound of the energy relies on two main ingredients. The first one consists of an

interpolation inequality involving the quantities E and L, which implies that EL > C, for

some universal constant C. The second ingredient is given by some differential inequalities

that are consequences of the energy-dissipating structure of the dynamic. Using these two

ingredients, the lower bound of the energy follows by an ODE argument.

These ideas have been used in several works on coarsening rates. In [3] Conti, Nietham-

mer and Otto studied coarsening of a binary mixture within the Mullins-Sekerka evolution

in the regime where one phase has small volume fraction Φ � 1. In particular, they gave

a lower bound on how the energy decreases depending on Φ. Their main contribution is

an interpolation inequality in dimension d = 2 which let to gain a term of the scaling

log1/3Φ (see Proposition 3.1).

In Viehmann’s PhD thesis [7] interpolation estimates are used to study branching in

micromagnetics. In this problem the magnetic direction (more precisely one component)

plays a role similar to that of the order parameter u in the Cahn-Hilliard equation.

In [7] the crucial interpolation inequality in the proof of the lower bound for the energy

in every dimension d > 2 reads as follows. Given a periodic function u : [0,Λd] → R
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satisfying
∫
u = 0, we have

(1.1) ||u||w−4/3 ≤ C||∇u||1/21 |||∇|−1u||1/22 ,

where ||u||w−4/3 := supµ>0 µ|{|u| ≥ µ}|3/4 denotes the weak L4/3−norm of u. However,

in dimension d = 2 this inequality does not allow to deduce the optimal scaling of the

energy. In this case, the following stronger interpolation inequality is needed:

(1.2) µ log1/4
(µ
Φ

)
{|u| ≥ µ}|3/4 ≤ C||∇u||1/21 |||∇|−1(u− Φ)||1/22 ,

where now u ≥ −1 is a function bounded below with 1
Λ2

∫
u = Φ and µ ≥ 2Φ + 2.

Following [3], to gain a factor of the scaling log1/4( µ
Φ
), the author uses a careful choice of

the convolution kernel.

The aim of these notes is to establish the corresponding strong versions of inequalities

(1.1) and (1.2), that is to replace the weak L4/3-norm of u by the strong one. More

precisely we prove the following two propositions.

Proposition 1.1. There exists a constant C < ∞ such that for all periodic functions

u : (0,Λ)d → R, with
∫
u = 0, we have

(1.3) ‖u‖L4/3 ≤ C||∇u||1/21 |||∇|−1u||1/22 .

The proof of Proposition 1.1 uses a technique introduced by Ledoux in [5] to give a

direct proof of some improved Sobolev inequalities. These inequalities were already been

studied by Cohen, Dahmen, Daubechies, and DeVore in [2] using the wavelet analysis of

the space BV.

The following proposition is the corresponding strong version of inequality (1.2), which

holds in dimension d = 2 for functions bounded below.

Proposition 1.2. There exists a constant C < ∞ such that for all periodic functions

u : (0,Λ)2 → R, with u ≥ −1 and 1
Λ2

∫
u = 0, we have

(1.4) ‖u ln
1
4 max{u, e}‖ 4

3
≤ C‖∇u‖

1
2
1 ‖|∇|−1u‖

1
2
2 .
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2. Interpolation inequality in general dimension

In this section we give the proof of Proposition 1.1. We start by recalling the weak

version of estimate (1.3).

Lemma 2.1 ([7]). There exists a constant C < ∞ such that for all periodic functions

u : (0,Λ)d → R, with
∫
u = 0, we have

‖u‖w− 4
3
:= sup

µ≥0
µ|{|u| > µ}|

3
4 ≤ C‖∇u‖

1
2
1 ‖|∇|−1u‖

1
2
2 .

This Lemma is proven in [7]. Here, for the sake of completeness, we give the proof of

this weak estimate, since it is also useful to prove the strong version (1.3).

Proof of Lemma 2.1. For simplicity in the following we will write “a . b” to mean that

there exists a positive constant C such that a ≤ Cb. By a scaling argument in x, it is

enough to show

sup
µ≥0

µ
4
3 |{|u| > µ}| . ‖∇u‖1 + ‖|∇|−1u‖22.

Indeed, the change of variables x = Lx̂ yields

sup
µ≥0

µ
4
3 |{|u| > µ}| . L−1‖∇̂u‖1 + L2‖|∇̂|−1u‖22,

where the symbol ∇̂ denotes the gradient with respect to the new variable x̂. The choice

of L = ‖∇̂u‖
1
3
1 ‖|∇̂|−1u‖−

2
3

2 yields

sup
µ≥0

µ
4
3 |{|u| > µ}| . ‖∇̂u‖

2
3
1 ‖|∇̂|−1u‖

2
3
2 .

Raising to the power 3
4
we get as desired

‖u‖w− 4
3
. ‖∇̂u‖

1
2
1 ‖|∇̂|−1u‖

1
2
2 .

For an arbitrary level µ ≥ 0 we introduce the signed characteristic function χµ(x) of

the level set of u:

(2.1) χµ :=


1 for µ < u

0 for −µ ≤ u ≤ µ

−1 for u < −µ

 .
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We select a smooth symmetric ψ(x̂) ≥ 0 supported in {|x̂| ≤ 1} with
∫
ψdx̂ = 1 and

define the Dirac sequence ψR(x) =
1
Rdψ(

x
R
). Consider the mollification of a function v on

scale R: vR := ψR ∗ v. We have the identity∫
χµu =

∫
χµ(u− uR) +

∫
χµ,Ru.

We get the inequality

(2.2) µ

∫
χµ ≤

∫
χµu ≤ ‖u− uR‖1 + ‖∇χµ,R‖2 ‖|∇|−1u‖2.

On the one hand, since ψR is supported in {|x| ≤ R}, we have

(2.3) ‖u− uR‖1 ≤ R‖∇u‖1.

On the other hand, we have

(2.4) ‖∇χµ,R‖2 ≤ ‖∇ψR‖1‖χµ‖2 = R−1‖∇̂ψ‖1
(∫

χµ

) 1
2

.

Plugging (2.3) and (2.4) into (2.2), we get

µ

∫
χµ ≤ R‖∇u‖1 +R−1‖∇̂ψ‖1

(∫
χµ

) 1
2

‖|∇|−1u‖2.

The choice of R = µ− 1
3 thus yields after multiplication with µ

1
3 :

µ
4
3

∫
χµ ≤ ‖∇u‖1 + ‖∇̂ψ‖1

(
µ

4
3

∫
χµ

) 1
2

‖|∇|−1u‖2.

With help of Young’s inequality, we may absorb the first factor of the second term on the

right-hand side and obtain the desired estimate.

�

We give now the proof of Proposition 1.1. The interpolation estimate (1.3) was first

established by Cohen, Dahmen, Daubechies, and Devore [2] by wavelet methods. We give

here an elementary proof.

Proof of Proposition 1.1. Again, by scaling in x as in the proof of Lemma 2.1 it is enough

to prove ∫
|u|

4
3 . ‖∇u‖1 + ‖|∇|−1u‖22.
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For arbitrary level µ > 0 we use the signed characteristic function χµ defined in (2.1).

Following an idea of Ledoux [5] for the proof a similar interpolation inequality we introduce

a factor M � 1 to be adjusted later. We have:

∫
χµu =

∫
(χµ − χµ,R)u+

∫
χµ,Ru

=

∫
|u|≤Mµ

(χµ − χµ,R)u+

∫
|u|>Mµ

(χµ − χµ,R)u+

∫
χµ,Ru.

Using that ‖χµ − χµ,R‖∞ ≤ 2, we obtain the inequality

∫
|u|>µ

|u| ≤ Mµ

∫
|χµ − χµ,R|+ 2

∫
|u|>Mµ

|u|+
∫
χµ,Ru

≤ MµR

∫
|∇χµ|+ 2

∫
|u|>Mµ

|u|+
∫
χµ,Ru.

We multiply with µ− 2
3 and choose R = µ− 1

3 as in the proof of Lemma 2.1. Integrating

over µ ∈ (0,∞), we get

∫ ∞

0

µ− 2
3

∫
|u|>µ

|u|dxdµ

≤ M

∫ ∞

0

∫
|∇χµ|dxdµ+ 2

∫ ∞

0

µ− 2
3

∫
|u|>Mµ

|u|dxdµ

+

∫ ∫ ∞

0

µ− 2
3χµ,Rdµ udx

≤ M

∫ ∞

0

∫
|∇χµ|dxdµ+ 2

∫ ∞

0

µ− 2
3

∫
|u|>Mµ

|u|dxdµ

+‖∇(

∫ ∞

0

µ− 2
3χµ,Rdµ)‖2 ‖|∇|−1u‖2,

where we keep the abbreviation R = µ− 1
3 .

On the left-hand side we have

∫ ∞

0

µ− 2
3

∫
|u(x)|>µ

|u(x)|dxdµ =

∫
|u(x)|

∫ |u(x)|

0

µ− 2
3dµdx = 3

∫
|u|

4
3 .
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We address the three terms on the right-hand side one by one. We start by the second

one: ∫ ∞

0

µ− 2
3

∫
|u(x)|>Mµ

|u(x)|dxdµ

=

∫
|u(x)|

∫ M−1|u(x)|

0

µ− 2
3dµdx = 3M− 1

3

∫
|u|

4
3 .

We now address the first term. By the coarea formula we get∫ ∞

0

∫
|∇χµ|dxdµ =

∫ ∞

0

(Per({u > µ}) + Per({u < −µ}))dµ = ‖∇u‖1.

Finally we consider the last term (with R′ := µ′− 1
3 ):

‖∇(

∫ ∞

0

µ− 2
3χµ,Rdµ)‖22

=

∫ ∞

0

∫ ∞

0

µ− 2
3µ′− 2

3

∫
∇χµ,R · ∇χµ′,R′dxdµ′dµ

= 2

∫ ∞

0

∫ µ

0

µ− 2
3µ′− 2

3

∫
(−4)χµ,R χµ′,R′dxdµ′dµ

= 2

∫ ∞

0

∫ µ

0

µ− 2
3µ′− 2

3

∫
ψR′ ∗ (−4ψR) ∗ χµ χµ′dxdµ′dµ

≤ 2

∫ ∞

0

∫ µ

0

µ− 2
3µ′− 2

3‖ψR′‖1 ‖4ψR‖1 ‖χµ‖1 ‖χµ′‖∞dµ′dµ

= 2‖4̂ψ‖1
∫ ∞

0

∫ µ

0

µ− 2
3µ′− 2

3R−2 ‖χµ‖1dµ′dµ

= 2‖4̂ψ‖1
∫ ∞

0

∫ µ

0

µ′− 2
3dµ′ ‖χµ‖1dµ

= 6‖4̂ψ‖1
∫ ∞

0

µ
1
3 |{|u| > µ}|dµ = 6‖4̂ψ‖1

∫ ∫ |u(x)|

0

µ
1
3dµdx

=
9

2
‖4̂ψ‖1

∫
|u|

4
3 .

These inequalities combine to

3

∫
|u|

4
3

≤ M‖∇u‖1 + 6M− 1
3

∫
|u|

4
3 +

(
9

2
‖4̂ψ‖1

∫
|u|

4
3

) 1
2

‖|∇|−1u‖2.
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We obtain the desired estimate by absorbing the middle right-hand side term for M � 1

and absorbing the first factor of the last right-hand side term by Young’s inequality. �

3. Interpolation inequality in dimension 2

In this section we prove Proposition 1.2. We begin by recalling a geometric version of

estimate (1.4), which was established by Conti, Niethammer, and Otto in [3].

Lemma 3.1 ([3]). For d = 2 and a characteristic function χ(x) ∈ {0, 1} with volume

fraction Φ := Λ−2
∫
χ� 1 we have

(3.1) Φ ln
1
3
1

Φ
.

(
Λ−2

∫
|∇χ|

) 2
3
(
Λ−2

∫
||∇|−1(χ− Φ)|2

) 1
3

.

The proof of this Lemma made use of the following geometric construction, that plays

a crucial role also in the proof of the weak estimate (1.2) and of the strong one (1.4).

Lemma 3.2 ([3]). For χ(x) ∈ {0, 1} and R � L there exists a potential φR,L(x) ∈ [0, 1]

such that ∫
χ . R

∫
|∇χ|+

∫
χφR,L,(3.2) ∫

max{−4φR,L, 0} . R−2(ln−1 L

R
)

∫
χ,(3.3) ∫

φR,L . L2R−2

∫
χ.(3.4)

We note that for L = R we could just choose φR,L = ψR ∗ χ = χR; the interest here is

the logarithmic gain ln−1 L
R
for L� R.

Remark 3.3. We observe, for later reference, that for any function φ′(x) ∈ [0, 1] we have∫
∇φR,L · ∇φ′ . R−2 ln−1 L

R

∫
χ.

Indeed, we have ∫
∇φR,L · ∇φ′

=

∫
(−4φR,L)φ

′≤
∫

max{−4φR,L, 0}φ′

≤
∫

max{−4φR,L, 0} ≤ R−2 ln−1 L

R

∫
χ,
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where in the first two inequailities we have used φ′ ≥ 0 and φ′ ≤ 1 respectively. The last

inequality follows by applying (3.3).

In particular, we obtain for φ′ = φR,L

(3.5)

∫
|∇φR,L|2 . R−2(ln−1 L

R
)

∫
χ.

This type of geometric construction was first used by Choksi, Conti, Kohn, and Otto in

[1] in the context of branched patterns in superconductors, but its main ingredient goes

back to De Giorgi.

Proof of Lemma 3.2. In a first step, we construct a set ΩR that covers most of {χ = 1}

(Claim 1) and has radius of curvature . R (Claim 2). As before, let χR = ψR ∗ χ denote

the mollification of χ on scale R. We define

ΩR := {χR >
1

2
}.

This time, we take the non-smooth “Dirac sequence”

ψR =

 4
πR2 for |x| < R

2

0 for |x| ≥ R
2

 ,

so that ΩR can be characterized via the density of {χ = 1} in balls of radius R
2
as follows

ΩR = {x | |{χ = 1} ∩BR
2
(x)| > 1

2
|BR

2
(x)|}.

Claim 1: We have ∫
χ . R

∫
|∇χ|+

∫
ΩR

χ.

Indeed,
∫
χ−

∫
ΩR
χ = |{χ = 1} ∩ {χR ≤ 1

2
}| ≤ 2‖χ− χR‖ ≤ 2R

∫
|∇χ|.

Claim 2: There exists a finite subset C ⊂ ΩR such that ΩR ⊂
⋃

y∈C BR(y) while

R2#C .
∫
χ, where #C denotes the cardinality of the set C.

Indeed, let C ⊂ ΩR be maximal with the property that BR
2
(y) ∩ BR

2
(y′) = ∅ for any

distinct y, y′ ∈ C. The first part of the claim follows from the maximality of C: if there

were an y0 ∈ ΩR with y0 6∈ BR(y) and thus BR
2
(y0) ∩ BR

2
(y) = ∅ for all y ∈ C, also the
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strictly larger set {y0}∪C would be admissible. The second part of the claim can be seen

as follows:

#C
π

4
R2 =

∑
y∈C

|BR
2
(y)| < 2

∑
y∈C

|{χ = 1} ∩BR
2
(y)| ≤ 2|{χ = 1}|,

where in the first inequality, we have used that by definition of ΩR, we have for y ∈ C ⊂ ΩR

that |{χ = 1} ∩ BR
2
(y)| > 1

2
|BR

2
(y)|. In the last inequality we have used the pairwise

disjointness of {BR
2
(y)}y∈C .

In the second step, we construct the potential φR,L. We introduce the capacity potential

φ̂R,L of BR(0) in BL(0) given by

φ̂R,L(x̂) :=


1 for |x̂| ≤ R

ln L
|x̂|

ln L
R

for R ≤ |x̂| ≤ L

0 for L ≤ |x̂|

 ∈ [0, 1].

We define

φR,L(x) := max
y∈C

φ̂R,L(x− y) ∈ [0, 1].

Claim 3: we claim that ∫
χ . R

∫
|∇χ|+

∫
χφR,L.

This follows from the first part of Claim 1 and the fact that φR,L = 1 on ΩR. The latter

follows from the first part of Claim 2 and the fact that φ̂R,L = 1 on BR(0).

Claim 4: ∫
φR,L . L2R−2

∫
χ.

Indeed, ∫
φR,L ≤ #C

∫
φ̂R,L . #CL2 . L2R−2

∫
χ,

where we have used the second part of Claim 2 in the last estimate.

Claim 5: ∫
max{−4φR,L, 0} . R−2(ln−1 L

R
)

∫
χ.
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Indeed, using the well-known fact that the singular part of (−4)max{φ1, φ2} is negative,

we conclude similarly to the previous step:∫
max{−4φR,L, 0} ≤ #C

∫
max{−4φ̂R,L, 0}

= #C2π ln−1 L

R
. R−2(ln−1 L

R
)

∫
χ.

This concludes the proof of Lemma 3.2. �

We can now give the proof of the geometric estimate (3.1).

Proof of Proposition 3.1. By the three properties of the geometric construction we have∫
χ

. R

∫
|∇χ|+

∫
φR,Lχ

= R

∫
|∇χ|+

∫
φR,L(χ− Φ) + Φ

∫
φR,L

≤ R

∫
|∇χ|+

(∫
|∇φR,L|2

∫
||∇|−1(χ− Φ)|2

) 1
2

+ Φ

∫
φR,L

. R

∫
|∇χ|+

(
R−2(ln−1 L

R
)

∫
χ

∫
||∇|−1(χ− Φ)|2

) 1
2

+ Φ(
L

R
)2
∫
χ.

We first absorb the first factor of the middle right-hand side term by Young’s inequality∫
χ . R

∫
|∇χ|+R−2(ln−1 L

R
)

∫
||∇|−1(χ− Φ)|2 + Φ(

L

R
)2
∫
χ.

In order to absorb the last right-hand side term, we choose L to be a small but order

one multiple of Φ− 1
2R. Since L is a small multiple of Φ− 1

2R, we have Φ(L
R
)2 � 1 so that

indeed we can absorb; since it is an order one multiple of Φ− 1
2R and Φ � 1, we have

L� R and ln L
R
∼ ln 1

Φ
. Hence we obtain:∫

χ . R

∫
|∇χ|+R−2(ln−1 1

Φ
)

∫
||∇|−1(χ− Φ)|2.

We finally optimize in R by choosing and we get R = (
∫
|∇χ|)− 1

3 ((ln−1 1
Φ
)
∫
||∇|−1(χ −

Φ)|2) 1
3 : ∫

χ . (ln− 1
3
1

Φ
)

(∫
|∇χ|

) 2
3
(∫

||∇|−1(χ− Φ)|2
) 1

3

.
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Dividing by Λ2 and multiplying by ln
1
3 1

Φ
yields the desired estimate. �

As in the previous section, we recall here the weak version of our interpolation inequality

(1.4) in dimension 2.

Proposition 3.4 ([7]). For d = 2 and u(x) ≥ −1 we have

sup
µ≥e

µ(ln
1
4 µ) |{|u| > µ}|

3
4 . ‖∇u‖

1
2
1 ‖|∇|−1u‖

1
2
2 .

This estimate was first proved in the PhD thesis of Viehmann [7].

Proof of Proposition 3.4. By Proposition 2.1 and by a scaling argument, it is enough to

show

sup
µ�1

µ
4
3 (ln

1
3 µ) |{|u| > µ}| . ‖∇u‖1 + ‖|∇|−1u‖22.

For a given level µ � 1 we consider the characteristic function χµ(x) ∈ {0, 1} of the

corresponding level set of u, that is

{χµ = 1} = {u > µ}.

For given length scales L� R (to be chosen later) let φµ,R,L be the potential constructed

in Lemma 3.2 based on χµ. According to Lemma 3.2 we have

∫
χµ . R

∫
|∇χµ|+

∫
χµφµ,R,L.
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Crucially using the assumption u ≥ −1 we rewrite this as

R

∫
|∇χµ|+

∫
χµφµ,R,L

φµ,R,L≥0

≤ R

∫
|∇χµ|+ µ−1

∫
χµφµ,R,Lu

= R

∫
|∇χµ|+ µ−1

∫
χµφµ,R,L(u+ 1)− µ−1

∫
χµφµ,R,L

u≥−1

≤ R

∫
|∇χµ|+ µ−1

∫
φµ,R,L(u+ 1)− µ−1

∫
χµφµ,R,L

= R

∫
|∇χµ|+ µ−1

∫
φµ,R,Lu+ µ−1

∫
(1− χµ)φµ,R,L

φµ,R,L≥0

≤ R

∫
|∇χµ|+ µ−1

∫
φµ,R,Lu+ µ−1

∫
φµ,R,L

≤ R

∫
|∇χµ|+ µ−1

(∫
|∇φµ,R,L|2

∫
||∇|−1u|2

) 1
2

+ µ−1

∫
φµ,R,L.

We now insert estimates (3.4) and (3.5) from Lemma 3.2 to obtain∫
χµ . R

∫
|∇χµ|

+µ−1

(
R−2(ln−1 L

R
)

∫
χµ

∫
||∇|−1u|2

) 1
2

+ µ−1(
L

R
)2
∫
χµ.

In order to absorb the last right-hand side term, we choose L to be a small but order one

multiple of µ
1
2R. Since L is a small multiple of µ

1
2R, we have µ−1(L

R
)2 � 1 so that indeed

we can absorb; since it is an order one multiple of µ
1
2R and µ � 1, we have L � R and

ln L
R
∼ lnµ. Hence we obtain:

∫
χµ . R

∫
|∇χµ|+ µ−1

(
R−2(ln−1 µ)

∫
χµ

∫
||∇|−1u|2

) 1
2

.

In order to absorb the first factor of the last remaining right-hand side term, we use

Young’s inequality

|{u > µ}| =
∫
χµ

. R

∫
|∇χµ|+ µ−2R−2(ln−1 µ)

∫
||∇|−1u|2.
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By the coarea formula, we have
∫ µ

µ
2

∫
|∇χµ|dµ ≤

∫
|∇u| so that there exists a µ′ ∈ [µ

2
, µ]

with µ
∫
|∇χµ′| ≤ 2

∫
|∇u|. Using the above for µ replaced by µ′ we thus have

|{u > µ′}| . Rµ−1

∫
|∇u|+ µ′−2

R−2(ln−1 µ′)

∫
||∇|−1u|2,

which because of µ′ ∈ [µ
2
, µ] turns into

|{u > µ}| . Rµ−1

∫
|∇u|+ µ−2R−2(ln−1 µ)

∫
||∇|−1u|2.

We multiply with µ
4
3 ln

1
3 µ and we get

µ
4
3 ln

1
3 µ|{u > µ}|

. R(µ lnµ)
1
3

∫
|∇u|+R−2(µ lnµ)−

2
3

∫
||∇|−1u|2.

The choice of R = (µ lnµ)−
1
3 yields the desired estimate. �

We can now give the proof of the strong interpolation inequality in dimension 2.

Proof of Proposition 1.2. By a scaling argument and the result in Proposition 1.1, it is

enough to show for M � 1:∫
u≥M

u
4
3 ln

1
3 u . ‖∇u‖1 + ‖|∇|−1u‖22.

We consider an arbitrary level µ ≥ M � 1 and start as in the proof of Proposition 3.4,

considering the potential φµ,R,L. For L chosen such that (L
R
)2 ∼ µ, we get∫

χµ . R

∫
|∇χµ|+ µ−1

∫
φµ,R,Lu.

But we now rather proceed as in Proposition 1.1. We multiply with (µ lnµ)
1
3 , choose

R = (µ lnµ)−
1
3 and integrate in µ ∈ (M,∞) for M � 1:∫ ∞

M

(µ lnµ)
1
3

∫
χµdx dµ

.
∫ ∞

M

∫
|∇χµ|dxdµ+

∫ ∫ ∞

M

ln
1
3 µ

µ
2
3

φµ,R,Ldµudx

≤ ‖∇u‖1 + ‖∇
∫ ∞

M

ln
1
3 µ

µ
2
3

φµ,R,Ldµ‖2 ‖∇|−1u‖2.
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On the last right-hand side term we argue along the lines of Proposition 1.1, now using

the property of our geometric construction that
∫
∇φµ,R,L · ∇φµ′,R′,L′dx . 1

R2
1

ln L
R

∫
χµdx

(we use the short-hand notation R′ := µ′− 1
3 , (L

′

R′ )
2 ∼ µ′):

‖∇(

∫ ∞

M

ln
1
3 µ

µ
2
3

φµ,R,Ldµ)‖22

=

∫ ∞

M

∫ ∞

M

ln
1
3 µ

µ
2
3

ln
1
3 µ′

µ′ 23

∫
∇φµ,R,L · ∇φµ′,R′,L′dxdµ′dµ

= 2

∫ ∞

M

∫ µ

M

ln
1
3 µ

µ
2
3

ln
1
3 µ′

µ′ 23

∫
∇φµ,R,L · ∇φµ′,R′,L′dxdµ′dµ

.
∫ ∞

M

∫ µ

M

ln
1
3 µ

µ
2
3

ln
1
3 µ′

µ′ 23

1

R2

1

ln L
R

∫
χµdxdµ

′dµ

choice R,L∼
∫ ∞

M

∫ µ

M

ln
1
3 µ′

µ′ 23
dµ′

∫
χµdxdµ

.
∫ ∞

M

(µ lnµ)
1
3

∫
χµdxdµ.

Hence we can absorb this term by Young’s inequality and obtain∫ ∞

M

(µ lnµ)
1
3

∫
χµdxdµ . ‖∇u‖1 + ‖|∇|−1u‖22.

We conclude by observing that∫ ∞

M

(µ lnµ)
1
3

∫
χµdx dµ =

∫
u>M

∫ u(x)

M

(µ lnµ)
1
3dµ dx

M�1

&
∫
u>2M

u
4
3 ln

1
3 u.

�
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