
DIFFERENTIAL FORMS IN CARNOT GROUPS: A
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ANNALISA BALDI

Abstract. Carnot groups (connected simply connected nilpotent strat-
ified Lie groups) can be endowed with a complex (E∗0 , dc) of “intrinsic”
differential forms. In this paper we want to provide an evidence of the
intrinsic character of Rumin’s complex, in the spirit of the Riemannian
approximation, like in [15] and [20]. More precisely, we want to show
that the intrinsic differential dc is a limit of suitably weighted usual first
order de Rham differentials dε. As an application, we prove that the L2-
energies associated to classical Maxwell’s equations in Rn Γ-converges
to the L2-energies associated tp an ”intrinsic” Maxwell’s equation in a
free Carnot group.

1. Introduction

Classical Maxwell’s equations for time-harmonic vector fields

eiωs ~E, eiωs ~H, eiωs ~B, eiωs ~D

in R× R3 read as follows:

curl ~H − iω

c
~D =

4π
c
~J,

curl ~E +
iω

c
~B = 0,

div ~D = 4πρ, div ~B = 0,
together with the constitutive relations

~D = ε ~E, ~B = µ ~H,

where ε, µ : R3 → R3 are linear maps and the constant c is the speed light.
We denote by [ε], [µ] the matrices of ε and µ with respect to the Euclidean
canonical basis. Usually, [ε], [µ] are called respectively the dielectric permit-
tivity and the magnetic permeability.

Suppose for sake of simplicity ~J ≡ 0 and ρ ≡ 0. Therefore

curl ε−1 ~D = − iω
c
µ ~H,

and then

curl µ−1curl ε−1 ~D =
ω2

c2
~D.
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If (Ω∗, d) is the de Rham complex of differential forms in R3, classical
Maxwell’s equations can be formulated in their simplest form as follows.
We fix the standard volume form dV in R3. If α, β ∈ Ωh we denote by
〈α, β〉Euc their Euclidean scalar product (i.e. the scalar product making the
basis {e1, e2, e3} and {dx1, dx2, dx3} be orthonormal); we denote by ∗ the
Hodge duality operator. Consider now the 2-form D := −(∗ ~D)\ (recall that
if v is a vector field in Rn, then its dual form v\ acts as v\(w) = 〈v, w〉Euc,
for all w ∈ Rn). We have

curl µ−1curl ε−1(∗D)\ − ω2

c2
(∗D)\ = 0.

We remind the following definition (see e.g. [13], Section 2.1).

Definition 1.1. If V,W are finite dimensional linear vector spaces and
L : V →W is a linear map, we define

ΛhL :
∧

h
V →

∧
h
W

as the linear map defined by

(ΛhL)(v1 ∧ · · · ∧ vh) = L(v1) ∧ · · · ∧ L(vh)

for any simple h-vector v1 ∧ · · · ∧ vh ∈
∧
h V , and

ΛhL :
∧h

W →
∧h

V

as the linear map defined by

〈(ΛhL)(α)|v1 ∧ · · · ∧ vh〉 = 〈α|(ΛhL)(v1 ∧ · · · ∧ vh)〉

for any α ∈
∧hW and any simple h-vector v1 ∧ · · · ∧ vh ∈

∧
h V .

As it is proved in [3], we obtain that, eventually, ∗D satisfies the differ-
ential equation

(1) δMdNα+
ω2 · detµ

c2
α = 0,

where M := Λ2µ, N := Λ1(εt)−1 (see also Section 5 for more details).
It is well known that (31) makes perfectly sense in Rn for any n ∈ N.
Therefore ∗D is a stationary point of the functional

(2) Jµ,ε(α) :=
∫

Rn

〈MdNα, dNα〉Euc dV +
ω2 · detµ

c2

∫
Rn

〈Nα,α〉Euc dV

where α ∈W 1,2
loc (Rn).

In this note we want to show that a Γ-limit of functionals of the previous
type is related to an intinsic Maxwell equations in Carnot groups.

A Carnot group G (see below for precise definition and [5] for a general
survey), can be thought, roughly speaking, as the Lie group (Rn, ·), where
· is a (non-commutative) multiplication such that its Lie algebra g is nilpo-
tent and admits a step κ stratification. This means that there exist linear
subspaces V1, ..., Vκ (the layers of the stratification) such that

g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ]
with X ∈ V1 and Y ∈ Vi. We refer to the first layer V1 as to the horizontal
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layer, which plays a key role in our theory, since it generates the all of g by
commutation.

The stratification of the Lie algebra induces a family of anisotropic dila-
tions δλ (λ > 0) on g and therefore, through exponential map, on G.

It is well known that the Lie algebra g of G can be identified with the
tangent space at the origin e of G, and hence the horizontal layer of g can be
identified with a subspace HGe of TGe. By left translation, HGe generates a
subbundle HG of the tangent bundle TG and eventually a sub-Riemannian
structure on Rn.

From now on, we use the word “intrinsic” when we want to stress a
privileged role played by the horizontal layer and by group translations and
dilations.

Starting from de Rham complex (Ω∗, d) of differential forms in Rn, it is
possible to define a complex of differential forms that has to be “intrinsic”
for G in our sense. Such a complex, denoted by (E∗0 , dc) , with E∗0 ⊂
Ω∗, has been defined and studied by M. Rumin in [21] and [19] ([18] for
contact structures). Rumin’s theory needs a quite technical introduction
that is sketched in Section 3 to make this note self-consistent. For a more
exhaustive presentation, we refer to original Rumin’s papers, as well as to
the presentation in [4]. The main properties of (E∗0 , dc) can be summarized
in the following points:

i) Intrinsic 1-forms are horizontal 1–forms, i.e. forms that are dual of
horizontal vector fields, where by duality we mean that, if v is a
vector field in Rn, then its dual form v\ acts as v\(w) = 〈v, w〉, for
all w ∈ Rn.

ii) The “intrinsic” exterior differential dc on a smooth function is its
horizontal differential (that is dual operator of the gradient along a
basis of the horizontal bundle).

iii) The complex (E∗0 , dc) is exact and self-dual under Hodge ∗-duality.

We want to show the intimate connection between the complex and the
Carnot group. More precisely, we want to show that the intrinsic differential
dc is a limit of suitably weighted usual first order de Rham differentials dε.

For this purpose, we need to introduce the notion of weight of vectors in
g and, by duality, of covectors. Elements of the j-th layer of g are said to
have (pure) weight w = j; by duality, a 1-covector that is dual of a vector
of (pure) weight w = j will be said to have (pure) weight w = j.

This procedure can be extended to h-forms.
Then, the usual exterior differential d acting on a form α of pure weight

splits as

dα = d0α+ d1α+ · · ·+ dκα,

where d0α does not increase the weight, d1α increases the weight by 1, and,
more generally, diα increases the weight by i when i = 0, 1, . . . , κ. Then,
we define a ε-differential that weights the different terms of d according to
their different actions with respect to the stratification of the Lie algebra g.
Therefore we set

dε = d0 + εd1 + ·+ εκdκ.
3



The issue now is to specify in what sense the dε (that is a first order operator)
converges to d, that is, in general, a higher order differential operator (see
Theorem 3.7-vii) below).

The natural approach relies in the use of De Giorgi’s Γ-convergence ([8],
[7], and see also Section 4 below for precise definitions in our setting) for
variational functionals. Indeed, we are able to prove that the L2-energies
associated with ε−κdε on 1-forms Γ-converge, as ε→ 0, to the energy asso-
ciated with dc.

The main theorem of this note reads as follows. If we denote byW κ,2(G,
∧1 g)

the space of differential 1-forms on G with coefficients belonging to the
Folland-Stein space W κ,2(G) (see Definition 2.2), we have:

Theorem 1.2. Let G be a free Carnot group of step κ. If ω ∈W κ,2(G,
∧1 g),

we set
Fε(ω) =

1
ε2κ

∫
G
|dεω|2 dV,

where
dε = d0 + εd1 + ·+ εκdκ.

Then Fε sequentially Γ-coverges to F in the weak topology W κ,2(G,
∧1 g),

as ε→ 0, where

F (ω) =


∫

G
|dcω|2 dV if ω ∈W κ,2(G, E1

0)

+∞ otherwise.

We remind that the group G is said to be free if its Lie algebra is free, i.e.
the commutators satisfy no linear relationships other than antisymmetry
and the Jacobi identity. This is a large and relevant class of Carnot groups.
We remind also that Carnot groups can always be “lifted” to free groups
(see [17] and [5], Chapter 17). For our purposes, the main property of free
Carnot groups relies on the fact that intrinsic 1-forms and 2-forms on free
groups have all the same weight (see Theorem 3.9). This helps at several
steps of the proofs (unfortunately, the same assertion fails to hold for higher
order forms (see Remark 3.11 in [2])).

As is proved in Section 5, the previous result can be applied to functionals
of the type of the equation (2) to derive a Γ-convergence result to the L2-
energy associated with intrinsic Maxwell’s equations.

2. Carnot groups

Let (G, ·) be a Carnot group of step κ identified to Rn through exponential
coordinates (see [5] for details). By definition, the Lie algebra g has dimen-
sion n, and admits a step κ stratification, i.e. there exist linear subspaces
V1, ..., Vκ (the layers of the stratification) such that

(3) g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with
X ∈ V1 and Y ∈ Vi. Set mi = dim(Vi), for i = 1, . . . , κ and hi = m1+· · ·+mi

with h0 = 0. Clearly, hκ = n. Choose now a basis e1, . . . , en of g adapted
to the stratification, i.e. such that

ehj−1+1, . . . , ehj
is a basis of Vj for each j = 1, . . . , κ.
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We refer to the first layer V1 as to the horizontal layer. It plays a key role
in our theory, since it generates the all of g by commutation.

Let X = {X1, . . . , Xn} be the family of left invariant vector fields such
that Xi(0) = ei. Given (3), the subset X1, . . . , Xm1 generates by commu-
tations all the other vector fields; we will refer to X1, . . . , Xm1 as to the
generating vector fields of the algebra, or as to the horizontal derivatives of
the group.

The Lie algebra g can be endowed with a scalar product 〈·, ·〉, making
{X1, . . . , Xn} be an orthonormal basis.

We can write the elements of G in exponential coordinates, identifying p
with the n-tuple (p1, . . . , pn) ∈ Rn and we identify G with (Rn, ·), where the
explicit expression of the group operation · is determined by the Campbell-
Hausdorff formula.

For any x ∈ G, the (left) translation τx : G→ G is defined as

z 7→ τxz := x · z.
For any λ > 0, the dilation δλ : G→ G, is defined as

(4) δλ(x1, ..., xn) = (λd1x1, ..., λ
dnxn),

where di ∈ N is called homogeneity of the variable xi in G (see [11] Chapter
1) and is defined as

(5) dj = i whenever hi−1 + 1 ≤ j ≤ hi,
hence 1 = d1 = ... = dm1 < dm1+1 = 2 ≤ ... ≤ dn = κ.

The Haar measure of G = (Rn, ·) is the Lebesgue measure Ln in Rn.
We denote also by Q the homogeneous dimension of G, i.e. we set

Q :=
κ∑
i=1

i dim(Vi).

The Euclidean space Rn endowed with the usual (commutative) sum of
vectors provides the simplest example of Carnot group. It is a trivial exam-
ple, since in this case the stratification of the algebra consists of only one
layer, i.e. the Lie algebra reduces to the horizontal layer.

Definition 2.1. Let m ≥ 2 and κ ≥ 1 be fixed integers. We say that fm,κ
is the free Lie algebra with m generators x1, . . . , xm and nilpotent of step κ
if:

i) fm,κ is a Lie algebra generated by its elements x1, . . . , xm, i.e. fm,κ =
Lie(x1, . . . , xm);

ii) fm,κ is nilpotent of step κ;
iii) for every Lie algebra n nilpotent of step κ and for every map φ from

the set {x1, . . . , xm} to n, there exists a (unique) homomorphism of
Lie algebras Φ from fm,κ to n which extends φ.

The Carnot group G is said free if its Lie algebra g is isomorphic to a free
Lie algebra.

When G is a free group, we can assume {X1, . . . , Xn} a Grayson-Grossman-
Hall basis of g (see [14], [5], Theorem 14.1.10). This makes several compu-
tations much simpler. In particular, {[Xi, Xj ], Xi, Xj ∈ V1, i < j} provides
an orthonormal basis of V2.
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From now on, following [11], we also adopt the following multi-index no-
tation for higher-order derivatives. If I = (i1, . . . , in) is a multi–index, we
set XI = Xi1

1 · · ·Xin
n . By the Poincaré–Birkhoff–Witt theorem (see, e.g.

[6], I.2.7), the differential operators XI form a basis for the algebra of left
invariant differential operators in G. Furthermore, we set |I| := i1 + · · ·+ in
the order of the differential operator XI , and d(I) := d1i1 + · · · + dnin its
degree of homogeneity with respect to group dilations. From the Poincaré–
Birkhoff–Witt theorem, it follows, in particular, that any homogeneous lin-
ear differential operator in the horizontal derivatives can be expressed as a
linear combination of the operators XI of the special form above.

Since here we are dealing only with integer order Folland-Stein function
spaces, we can give this simpler definition (for a general presentation, see
e.g. [10]).

Definition 2.2. If 1 < s < ∞ and m ∈ N, then the space Wm,s(G) is the
space of all u ∈ Ls(G) such that

XIu ∈ Ls(G) for all multi-index I with d(I) = m,

endowed with the natural norm.

We remind that

Proposition 2.3 ([10], Corollary 4.14). If 1 < s <∞ and m ≥ 0, then the
space Wm,s(G) is independent of the choice of X1, . . . , Xm1.

Proposition 2.4. If 1 < s <∞ and m ≥ 0, then S(G) and D(G) are dense
subspaces of Wm,s(G).

The dual space of g is denoted by
∧1 g. The basis of

∧1 g, dual of the basis
X1, · · · , Xn, is the family of covectors {θ1, · · · , θn}. We indicate by 〈·, ·〉 also
the inner product in

∧1 g that makes θ1, · · · , θn an orthonormal basis. We
point out that, except for the trivial case of the commutative group Rn, the
forms θ1, · · · , θn may have polynomial (hence variable) coefficients.

Following Federer (see [9] 1.3), the exterior algebras of g and of
∧1 g are

the graded algebras indicated as
∧
∗
g =

n⊕
h=0

∧
h
g and

∧∗
g =

n⊕
h=0

∧h
g

where
∧

0 g =
∧0 g = R and, for 1 ≤ h ≤ n,∧
h
g := span{Xi1 ∧ · · · ∧Xih : 1 ≤ i1 < · · · < ih ≤ n},∧h
g := span{θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n}.

The elements of
∧
h g and

∧h g are called h-vectors and h-covectors.
We denote by Θh the basis {θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n} of∧h g. We remind that dim

∧h g = dim
∧
h g =

(
n
h

)
.

The dual space
∧1(

∧
h g) of

∧
h g can be naturally identified with

∧h g.
The action of a h-covector ϕ on a h-vector v is denoted as 〈ϕ|v〉.

The inner product 〈·, ·〉 extends canonically to
∧
h g and to

∧h g making
the bases Xi1 ∧ · · · ∧Xih and θi1 ∧ · · · ∧ θih orthonormal.

We set also X{1,··· ,n} := X1 ∧ · · · ∧Xn and θ{1,··· ,n} := θ1 ∧ · · · ∧ θn.
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Starting from
∧
∗ g and

∧∗ g, by left translation, we can define now two
families of vector bundles (still denoted by

∧
∗ g and

∧∗ g) over G (see [4] for
details). Sections of these vector bundles are said respectively vector fields
and differential forms.

Definition 2.5. If 0 ≤ h ≤ n, 1 ≤ s ≤ ∞ and m ≥ 0, we denote by
Wm,s(G,

∧h g) the space of all sections of
∧h g such that their components

with respect to the basis Θh belong to Wm,s(G), endowed with its natural
norm. Clearly, this definition is independent of the choice of the basis itself.

Sobolev spaces of vector fields are defined in the same way.

We conclude this section recalling the classical definition of Hodge duality:
see [9] 1.7.8.

Definition 2.6. We define linear isomorphisms

∗ :
∧

h
g←→

∧
n−h

g and ∗ :
∧h

g←→
∧n−h

g,

for 1 ≤ h ≤ n, putting, for v =
∑

I vIXI and ϕ =
∑

I ϕIθI ,

∗v :=
∑

I
vI(∗XI) and ∗ ϕ :=

∑
I
ϕI(∗θI)

where
∗XI := (−1)σ(I)XI∗ and ∗ θI := (−1)σ(I)θI∗

with I = {i1, · · · , ih}, 1 ≤ i1 < · · · < ih ≤ n, XI = Xi1 ∧ · · · ∧ Xih ,
θI = θi1 ∧ · · · ∧ θih , I∗ = {i∗1 < · · · < i∗n−h} = {1, · · · , n} \ I and σ(I) is the
number of couples (ih, i∗` ) with ih > i∗` .

We refer to dV := θ{1,··· ,n} as to the canonical volume form of G.
If v ∈

∧
h g we define v\ ∈

∧h g by the identity 〈v\|w〉 := 〈v, w〉, for all
w ∈

∧
h g, and analogously we define ϕ\ ∈

∧
h g for ϕ ∈

∧h g.

3. Differential forms in Carnot groups

The notion of intrinsic form in Carnot groups is due to M. Rumin ([21],
[19]). A more extended presentation of the results of this section can be
found in [4], [12].

The notion of weight of a differential form plays a key role.

Definition 3.1. If α ∈
∧1 g, α 6= 0, we say that α has pure weight p, and

we write w(α) = p, if α\ ∈ Vp. More generally, if α ∈
∧h g, we say that α

has pure weight p if α is a linear combination of covectors θi1 ∧· · ·∧θih with
w(θi1) + · · ·+ w(θih) = p.

In particular, the canonical volume form dV has weight Q (the homoge-
neous dimension of the group).

Remark 3.2. If α, β ∈
∧h g and w(α) 6= w(β), then 〈α, β〉 = 0.

If we denote by Ωh,p the vector space of all smooth h–forms in G of pure
weight p, i.e. the space of all smooth sections of

∧h,p g, by prevoius remark
it follows that

(6) Ωh =
Mmax

h⊕
p=Mmin

h

Ωh,p.
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Definition 3.3. Let now α =
∑

θh
i ∈Θh,p αi θ

h
i ∈ Ωh,p be a (say) smooth form

of pure weight p. Then we can write

dα = d0α+ d1α+ · · ·+ dκα,

where
d0α =

∑
θh
i ∈Θh,p

αidθ
h
i

does not increase the weight,

d1α =
∑

θh
i ∈Θh,p

m1∑
j=1

(Xjαi)θj ∧ θhi

increases the weight of 1, and, more generally,

diα =
∑

θh
i ∈Θh,p

∑
Xj∈Vi

(Xjαi)θj ∧ θhi ,

when i = 0, 1, . . . , κ. In particular, d0 is an algebraic operator.

Definition 3.4 (M. Rumin). If 0 ≤ h ≤ n we set

Eh0 := ker d0 ∩ ker δ0 = ker d0 ∩ (Im d0)⊥ ⊂ Ωh

In the sequel, we refer to the elements of Eh0 as to intrinsic h-forms on
G. Since the construction of Eh0 is left invariant, this space of forms can be
seen as the space of sections of a fiber subbundle of

∧h g, generated by left
translation and still denoted by Eh0 . In particular Eh0 inherits from

∧h g the
scalar product on the fibers.

Moreover, there exists a left invariant orthonormal basis Ξh0 = {ξj} of Eh0
that is adapted to the filtration (??).

Since it is easy to see that E1
0 = span {θ1, . . . , θm}, where the θi’s are dual

of the elements of the basis of V1, without loss of generality, we can take
ξj = θj for j = 1, . . . ,m.

Finally, we denote by Nmin
h and Nmax

h respectively the lowest and highest
weight of forms in Eh0 .

Definition 3.5. If 0 ≤ h ≤ n, 1 ≤ s ≤ ∞ and m ≥ 0, we denote by
Wm,s(G, Eh0 ) the space of all sections of Eh0 such that their components
with respect to the basis Ξh0 belong to Wm,s(G), endowed with its natural
norm. Clearly, this definition is independent of the choice of the basis itself.

Moreover, as in Proposition 2.4, D(G, Eh0 ) and S(G, Eh0 ) are dense in
Wm,s(G).

Lemma 3.6 ([4], Lemma 2.11). If β ∈
∧h+1 g, then there exists a unique

α ∈
∧h g ∩ (ker d0)⊥ such that

d∗0d0α = d∗0β. We set α := d−1
0 β.

Here d∗0 :
∧h+1 g→

∧h g is the adjoint of d0 with respect to our fixed scalar
product. In particular

α = d−1
0 β if and only if d0α− β ∈ R(d0)⊥.

Moreover
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i) (ker d0)⊥ = R(d−1
0 );

ii) d−1
0 d0 = Id on (ker d0)⊥;

iii) d0d
−1
0 − Id :

∧h+1 g→ R(d0)⊥.

The following theorem summarizes the construction of the intrinsic dif-
ferential dc (for details, see [21] and [4], Section 2) .

Theorem 3.7. The de Rham complex (Ω∗, d) splits in the direct sum of two
sub-complexes (E∗, d) and (F ∗, d), with

E := ker d−1
0 ∩ ker(d−1

0 d) and F := R(d−1
0 ) +R(dd−1

0 ).

We have:
i) Let ΠE be the projection on E along F (that is not an orthogonal

projection). Then for any α ∈ Eh,p0 , if we denote by (ΠEα)j the
component of ΠEα of weight j, then

(ΠEα)p = α

(ΠEα)p+k+1 = −d−1
0

( ∑
1≤`≤k+1

d`(ΠEα)p+k+1−`
)
.(7)

Notice that α→ (ΠEα)p+k+1 is an homogeneous differential operator
of order k + 1 in the horizontal derivatives.

ii) ΠE is a chain map, i.e.

dΠE = ΠEd.

iii) Let ΠE0 be the orthogonal projection from Ω∗ on E∗0 , then

(8) ΠE0 = Id− d−1
0 d0 − d0d

−1
0 , ΠE⊥0

= d−1
0 d0 + d0d

−1
0 .

Notice that, since d0 and d−1
0 are algebraic, then formulas (8) hold

also for covectors.
iv) ΠE0ΠEΠE0 = ΠE0 and ΠEΠE0ΠE = ΠE.

Set now

dc = ΠE0 dΠE : Eh0 → Eh+1
0 , h = 0, . . . , n− 1.

We have:
v) d2

c = 0;
vi) the complex E0 := (E∗0 , dc) is exact;
vii) with respect to the bases Ξ∗0 the intrinsic differential dc can be seen

as a matrix-valued operator such that, if α has weight p, then the
component of weight q of dcα is given by an homogeneous differential
operator in the horizontal derivatives of order q − p ≥ 1, acting on
the components of α.

Remark 3.8. Let us give a gist of the construction of E. The map d−1
0 d

induces an isomorphism from R(d−1
0 ) to itself. Thus, since d−1

0 d0 = Id on
R(d−1

0 ), we can write d−1
0 d = Id+D, where D is a differential operator that

increases the weight. Clearly, D : R(d−1
0 ) → R(d−1

0 ). As a consequence
of the nilpotency of G, Dk = 0 for k large enough, and therefore the Neu-
mann series of d−1

0 d reduces to a finite sum on R(d−1
0 ). Hence there exist a
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differential operator

P =
N∑
k=1

(−1)kDk, N ∈ N suitable,

such that
Pd−1

0 d = d−1
0 dP = IdR(d−1

0 ).

We set Q := Pd−1
0 . Then ΠE is given by

ΠE = Id−Qd− dQ.

From now on, we restrict ourselves to assume G is a free group of step κ
(see Definition 2.1 above). The technical reason for this choice relies in the
following property.

Theorem 3.9 ([12], Theorem 5.9). Let G be a free group of step κ. Then
all forms in E1

0 have weight 1 and all forms in E2
0 have weight κ+ 1.

In particular, the differential dc : E1
0 → E2

0 can be identified, with re-
spect to the adapted bases Ξ1

0 and Ξ2
0, with a homogeneous matrix-valued

differential operator of degree κ in the horizontal derivatives.
Moreover, if ξ ∈

∧2,p g with p 6= κ+ 1, then ΠE0ξ = 0. Indeed, ΠE0ξ has
weight p, and therefore has to be zero, since ΠE0ξ ∈

∧2,κ+1 g.

Lemma 3.10. If G is a free group of step κ ≥ 2, then∧2,2
g ⊂ d0(

∧1,2
g) ⊂ R(d0),

or, equivalently,
Ω2,2 ⊂ d0(Ω1,2) ⊂ d0(Ω1).

Proof. See Lemma 3.12 in [2].
�

4. Intrinsic differential as a Γ-limit

Definition 4.1. Let X be a separated topological space, and let

Fε, F : X −→ [−∞,+∞]

with ε > 0 be functionals on X. We say that {Fε}ε>0 sequentially Γ-
converges to F on X as ε goes to zero if the following two conditions hold:

1) for every u ∈ X and for every sequence {uεk
}k∈N with εk → 0 as

k →∞, which converges to u in X, there holds

(9) lim inf
k→∞

Fεk
(uεk

) ≥ F (u);

2) for every u ∈ X and for every sequence {εk}k∈N with εk → 0 as
k → ∞ there exists a subsequence (still denoted by {εk}k∈N) such
that {uεk

}k∈N converges to u in X and

(10) lim sup
k→∞

Fεk
(uεk

) ≤ F (u)

10



For a deep and detailed survey on Γ-convergence, we refer to the mono-
graph [7].

We recall the following reduction Lemma. The proof is only a minor
variant of the one given in [16], Lemma IV (see also [1]), hence we shall
omit such a proof.

Lemma 4.2. Let X be a separated topological space, let Fh, F : M −→
[−∞,+∞] with h ∈ N; consider D ⊂M and x ∈M . Let us suppose that

1) for every y ∈ D there exists a sequence (yh)h∈N ⊂ M such that
yh → y in M and lim sup

h→∞
Fh(yh) ≤ F (y);

2) there exists a sequence (xh)h∈N ⊂ D such that xh → x and lim sup
h→∞

F (xh) ≤

F (x);

then there exists a sequence (xh)h∈N ⊂M such that lim sup
h→∞

Fh(xh) ≤ F (x).

To avoid cumbersome notations, from now on we write systematically
limε→ 0 to mean a limit with ε = εk, where {εk}k∈N is any sequence with
εk → 0 as k →∞.

Let ε > 0 be given. If ω ∈W κ,2(G,
∧1 g), we set

Fε(ω) =
1
ε2κ

∫
G
|dεω|2 dV,

where

dε = d0 + εd1 + ·+ εκdκ.

We stress that Fε(ω) is always finite, since the coefficients of diω contain
horizontal derivatives of order i ≤ κ of the coefficients of ω.

Theorem 4.3. Let G be a free Carnot group of step κ. Then

Fε sequentially Γ-coverges to F in the weak topology W κ,2(G,
∧1 g),

as ε→ 0, where

F (ω) =


∫

G
|dcω|2 dV if ω ∈W κ,2(G, E1

0)

+∞ otherwise.

Proof. A detailed proof of this theorem can be found in [2]. Here we repeat
only the main steps of that proof.

Let ωε → ω as ε→ 0 weakly in W κ,2(G,
∧1 g). We want to show that

(11) F (ω) ≤ lim inf
ε→0

Fε(ωε).

In particular, it follows that ω ∈ W κ,2(G, E1
0) provided lim infε→0 Fε(ωε) <

∞.
Keeping in mind (6), we write

ωε = ωε1 + · · ·+ ωεκ,
11



with ωεi ∈ Ω1,i, i = 1, . . . , κ. Reordering the terms of dεωε according to their
weights, as in (6), we have the following orthogonal decomposition:

dεω
ε =

∑
2≤p≤κ

p−1∑
i=0

εidiω
ε
p−i

+
(
εd1ω

ε
κ + · · ·+ εκdκω

ε
1)

+
∑

κ+2≤p≤2κ

κ∑
i=p−κ

εidiω
ε
p−i.

(12)

Therefore we can write

Fε(ωε) = ε−2κ
∑

2≤p≤κ

∫
G

∥∥ p−1∑
i=0

εidiω
ε
p−i
∥∥2
dV

+ ε2(1−κ)

∫
G

∥∥d1ω
ε
κ + · · ·+ εκ−1dκω

ε
1

∥∥2
dV

+
∑

κ+2≤p≤2κ

ε2(p−2κ)

∫
G

∥∥ κ∑
i=p−κ

εi−p+κdiω
ε
p−i
∥∥2
dV.

(13)

Without loss of generality, we may assume lim infε→0 Fε(ωε) < ∞. This
implies that, if 2 ≤ p ≤ κ, then, if ε ∈ (0, 1),

(14) ε−κ
p−1∑
i=0

εidiω
ε
p−i is uniformly bounded in L2(G,

∧2 g)).

In particular,

(15)
p−1∑
i=0

εidiω
ε
p−i −→ 0 in L2(G,

∧2 g))

as ε→ 0, since we can write (15) as

(16) d0ω
ε
p + ε

p−1∑
i=1

εi−1diω
ε
p−i −→ 0

as ε→ 0. On the other hand, we know that ωεp → ωp weakly in L2(G,
∧1 g)

for p ≥ 1, and therefore

(17) d0ω
ε
p → d0ωp in L2(G,

∧2 g),

since d0 is algebraic.
Combining (16) with the boundedness of {ωε} in W κ,2(G,

∧1 g) and with
(17), it follows that

(18) d0ωp = 0 for p = 2, . . . , κ

(obviously, (18) holds also for p = 1 since d0(
∧1,1 g) = {0}). Hence ω ∈

ker d0 = E1
0 , and therefore ω = ω1.

Moreover, again if ε ∈ (0, 1),

(19) ε1−κ(d1ω
ε
κ + · · ·+ εκ−1dκω

ε
1

)
is uniformly bounded in L2(G,

∧2 g)).
12



Recall now that, by definition, dcω = ΠE0dΠEω. But, by Theorem 3.9,
ΠE0 vanishes on all 2-forms of weight p 6= κ+1. Therefore, the full expression
of dcω reduces to

(20) dc(ω) = ΠE0

( κ∑
`=1

d`(ΠEω)κ+1−`

)
.

As is proved in [2], it holds that

(21) dj(ΠEω)κ+1−` = lim
ε→0

ε`−κdjω
ε
κ+1−`,

in the sense of distributions for ` = 1, . . . , κ, j = 0, . . . , `, i.e.

(22)
∫
〈ε`−κdjωεκ+1−`, ϕ〉 dV →

∫
〈dj(ΠEω)κ+1−`, ϕ〉 dV

for ` = 1, . . . , κ, j = 0, . . . , `, and for any ϕ ∈ D(G,
∧2 g).

So far, we have used the equiboundedness of the first sum in (13) for ε
close to zero. We proceed now to estimate the lim inf of the second term in
(13).

To this end, we take j = ` in (21) and we sum up for ` = 1, . . . , κ. We
obtain

(23)
1

εκ−1

(
d1ω

ε
κ + · · ·+ εκ−1dκω

ε
1

)
−→

κ∑
`=1

d`(ΠEω)κ+1−`

as ε → 0 in the sense of distributions. On the other hand, the limit∑κ
`=1 d`(ΠEω)κ+1−` belongs to L2(G,

∧2 g) (since d`(ΠEω)κ+1−` is an ho-
mogeneous differential operator in the horizontal derivatives of order κ, by
Theorem 3.7, i) and Definition 3.3), and

(24)
{ 1
εκ−1

(
d1ω

ε
κ + · · ·+ εκ−1dκω

ε
1

)}
ε>0

is equibounded in L2(G,
∧2 g),

as ε → 0, by (19). Combining (24) and (23) we obtain that the limit in
(23) is in fact a weak limit in L2(G,

∧2 g) (see, e.g., [22], Ch. V, Theorem
3). Thus, by (20), (13) and taking into account that ΠE0 is an orthogonal
projection, we obtain eventually

F (ω) =
∫

G
‖ΠE0

( κ∑
`=1

d`(ΠEω)κ+1−`
)
‖2 dV

≤
∫

G
‖

κ∑
`=1

d`(ΠEω)κ+1−`‖2 dV

≤ lim inf
ε→0

ε2(1−κ)

∫
G

∥∥d1ω
ε
κ + · · ·+ εκ−1dκω

ε
1

∥∥2
dV ≤ lim inf

ε→0
Fε(ωε).

This proves (11).
We prove now that, if ω ∈ W κ,2(G, E1

0), then there exists a sequence
(ωε)ε>0 in W κ,2(G,

∧1 g) such that

i) ωε → ω weakly in W κ,2(G,
∧1 g);

ii) Fε(ωε)→ F (ω) as ε→ 0.
13



By Lemma 4.2, without loss of generality we may assume ω ∈ D(G, E1
0).

We choose

ωε = ω + ε(ΠEω)2 + · · ·+ εκ−1(ΠEω)κ.(25)

If we write the identity d2 = 0 gathering all terms of the same weight, we
get

0 =
κ∑
p=0

p∑
j=0

dp−jdj .

and therefore

(26)
p∑
j=0

dp−jdj = 0 for p = 0, . . . , κ,

since these terms are mutually orthogonal when applied to a form of pure
weight. In particular,

(27) d2
0 = 0, d0d1 = −d1d0, d0d2 = −d2d0 − d2

1, · · ·
Thus,

Fε(ωε) =
1
ε2κ

∫
G
‖dε
( κ∑
i=1

εi−1(ΠEω)i
)
‖2 dV

=
1
ε2κ

(∫
G
‖ΠE0

(
dε
( κ∑
i=1

εi−1(ΠEω)i
))
‖2 dV

+
∫

G
‖ΠE⊥0

(
dε
( κ∑
i=1

εi−1(ΠEω)i
))
‖2 dV

)
.

(28)

Arguing as in (12), we can write

dε
( κ∑
i=1

εi−1(ΠEω)i
)

=
∑

2≤p≤κ
εp−1

p−1∑
i=0

di(ΠEω)p−i

+ εκ
(
d1(ΠEω)κ + · · ·+ dκ(ΠEω)1)

+
∑

κ+2≤p≤2κ

εp−1
κ∑

i=p−κ
di(ΠEω)p−i

:= I1 + I2 + I3.

Now, by Theorem 3.9,
ΠE0I1 = 0.

As it is proved in [2]

(29)
p−1∑
i=0

di(ΠEω)p−i ∈ E2
0 for 2 ≤ p ≤ κ+ 1.

and hence

(30) Π⊥E0
I1 = Π⊥E0

I2 = 0.
14



Recalling (28) we get,

Fε(ωε) =
1
ε2κ

∫
G
‖ΠE0I2‖2 dV +

1
ε2κ

∫
G
‖ I3‖2 dV

=
∫

G
‖ΠE0

(
d1(ΠEω)κ + · · ·+ dκ(ΠEω)1

)
‖2 dV

+
1
ε2κ

∫
G
‖

∑
κ+2≤p≤2κ

εp−1
κ∑

i=p−κ
di(ΠEω)p−i‖2 dV ;

observing that the second term in previous expression goes to zero as ε→ 0,
we get limε→0 Fε(ωε) = F (ω) in D(G, E1

0). This achieves the proof of the
theorem.

�

5. Maxwell’s equations

If L :
∧
h g→

∧
h g or L :

∧h g→
∧h g, we denote by [L] the matrix of L

with respect to the Euclidean canonical basis {eI} and {dxI}.
As pointed out in the introduction, classical Maxwell’s equations for time-

harmonic vector fields in R×R3

eiωt ~E, eiωt ~H, eiωt ~B, eiωt ~D ,

where we denote by s ∈ R the time variable and by x ∈ R3 the space
variable, read as follows:

curl ~H − iω

c
~D = 0,

curl ~E +
iω

c
~B = 0,

div ~D = 0, div ~B = 0,
together with the constitutive relations

~D = ε ~E, ~B = µ ~H,

where ε = ε(x), µ = µ(x) : R3 → R3 are linear maps depending (say)
smoothly on x.

Considering the 2-form D := −(∗ ~D)\ the previous equations can be stated
in terms of de Rham differential forms. As it is proved in [3] it holds the
following Lemma.

Lemma 5.1. If α ∈ Ωh, then

∗(ΛhL)α = (−1)h(n−h) · (detL) · (Λn−h(Lt)−1) ∗ α.

Hence

∗(Λ1(µt)−1)∗ = ∗ ∗ (detµ)−1(Λ2µ) = (detµ)−1(Λ2µ).

Thus, eventually, ∗D satisfies the differential equation

(31) δMdNα+
ω2 · detµ

c2
α = 0,

where M := Λ2µ, N := Λ1(εt)−1. Obviously (31) makes perfectly sense in
Rn for any n ∈ N.
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Hence ∗D is a stationary point of the functional

Jµ,ε(α) :=
∫

Rn

〈MdNα, dNα〉Euc dV +
ω2 · detµ

c

∫
Rn

〈Nα,α〉Euc dV,

where α ∈W 1,2
loc (Rn).

The identification of
∧h g and

∧h
e g yields a corresponding identification of

the basis Θh of
∧h g and Θh

e of
∧h
e g. Then Θh

x := Λh(dτx−1)Θh
e is a basis of∧h

x g. Analogously, if we replace the group translation τx−1 by the Euclidean
translation y → y−x := t−x(y), we obtain a new basis Θh,Euc

x := Λh(dt−x)Θh
e

of
∧h
x g.

In particular,
Θh
x := Λh(dτx−1)Λh(dtx)Θh,Euc

x .

i.e., the elements of Θh can be viewed as differential forms in the Euclidean
coordinates. Thus, the elements of Θh

x can be identified with the elements
of Θh evaluated at the point x. Through all this paper, we make systematic
use of these identifications, interchanging the roles of left invariant vector
fields and elements of

∧
1 g.

Denote by [T ]x = (Tij(x))ij the matrix of the identity map in Rn with
respect to the bases {e1, . . . , en} and {X1, . . . , Xn}, i.e.

Xi(x) =
∑
j

Tij(x)ej , j = 1, . . . , n.

Hence [T ]x coincides with [dτx−1 ], the matrix of dτx−1 with respect to the
canonical bases of

∧
1,x g and

∧
1,e g. More generally, if α ∈

∧h g, we denote
by [ΛhT ]x the matrix associated with the identity map from

∧h g to
∧h g.

We stress that [ΛhT ]x = [Λhdτx−1 ].

Remark 5.2. We keep in mind that the two bases {e1, . . . , en} and {X1, . . . , Xn}
(as well as the associated bases for vectors and covectors) coincide at x = e.
Therefore, there is no ambiguity if we identify, say, a h-covector at the origin
with a h-covector of the Euclidean space Rn.

Lemma 5.3. If α, β ∈
∧h
x g, then

〈α, β〉x = 〈[ΛhT−1]α, [ΛhT−1]β〉Vh Rn .

Proof. Keeping in mind Remark 5.2, we have

〈α, β〉x = 〈(Λhdτx)α, (Λhdτx)β〉e = 〈[Λhdτx]α, [Λhdτx]β〉Vh Rn

= 〈(Λhdτx)α, (Λhdτx)β〉Euc,e = 〈(Λhdτx)α, (Λhdτx)β〉Euc,x.

�

If I = (i1, . . . , ih), the I-component of α ∈
∧h
x g with respect to Θh

x

equal the I-component of (ΛhT )α with respect to Θh,Euc
x . Indeed 〈α, θI〉 =

〈α|XI〉 = 〈α|(ΛhT )XI〉 = 〈(ΛhT )α|eI〉 = 〈(ΛhT )α, dxI〉Euc.
Finally, if r > 0, we denote by Cr the linear map on g defined by

(32) Cr(X`) := rjX` if X` ∈ Vj .

Notice (Λ2Cr)θi ∧ θj = rw(i)+w(j)θi ∧ θj if w(i), w(j) are the weights of the
θi, θj ∈

∧1 g, respectively.
16



Lemma 5.4. If r > 0 and

dr = d0 + rd1 + ·+ rκdκ,

then
drα = (Λ2Cr)d(Λ1C−1

r )α
for any α ∈ Ω1.

Proof. Choose α = αiθi. Then

drα =
κ∑
j=0

rjdj(αiθi) =
κ∑
j=0

rj+w(i)dj(r−w(i)αiθi) = (Λ2Cr)d(Λ1C−1
r )α.

�

Proposition 5.5. Let r > 0 be given. If we choose

[µr] = r(1+κ−2Q)/(n−1)[(T−1CrT )tT−1CrT ]

and
[εr] = r(1+nκ−2Q)/(n−1)[T−1CrT ]t,

then, if α ∈W κ,2
G (G,

∧1 g)
(
⊂W 1,2

loc (G,
∧1 g)

)
,

(33) r−2κ|drα|2 = 〈MrdNrα, dNrα〉Euc

and

(34) r−(1+nκ−2Q)/(n−1)〈C−1
r α, α〉 = 〈Nrα, α〉Euc,

where Mr := Λ2µr, Nr := Λ1(εtr)
−1.

Proof. We have:

|drα|2x = 〈(Λ2Cr)d(Λ1C−1
r )α, (Λ2Cr)d(Λ1C−1

r )α〉x
= 〈(Λ2(dτxCr))d(Λ1C−1

r )α, (Λ2(dτxCr))d(Λ1C−1
r )α〉Euc,x

= 〈[Λ2((T−1CrT )t(T−1CrT ))]d[Λ1(T−1C−1
r T )]α, d[Λ1(T−1C−1

r T )]α〉V2 Rn .

Then the assertion follows since (Λ2σL) = σ2(Λ2L) for any linear map L
and for any σ ∈ R, and

r2(1+κ−2Q)/(n−1) · r(2Q−nκ−1)/(n−1) · r(2Q−nκ−1)/(n−1) = r−2κ.

This proves (33). Identity (34) follows analogously. �

Theorem 5.6. With the notations of Proposition 5.5, if r > 0, we denote by
Jr the functional Jµr,εr(α) in W κ,2

G (G,
∧1 g) Then Jr sequentially Γ-coverges

to J in the weak topology W κ,2(G,
∧1 g), as r → 0, where

J(α) =


∫

G
|dcα|2 dV +

ω2

c2

∫
G
|α|2 dV if α ∈W κ,2(G, E1

0)

+∞ otherwise.

Proof. A proof of this theorem is given in [3]. Here we sketch briefly only
the liminf part.

First of all, we notice that

det[µr] = r(n+nκ−2Q)/(n−1).
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Keeping also in mind Proposition 5.5, if α ∈W κ,2
G (G,

∧1 g) and Jr(α) <∞,
writing α with respect to the basis θ1, . . . , θn, we have

Jr(α) = r−2κ

∫
G
|drα|2 dV +

ω2 r

c2

∫
G
〈C−1

r α, α〉 dV.

Let now αr → α as r → 0 weakly in W κ,2(G,
∧1 g). We want to show that

(35) J(α) ≤ lim inf
r→0

Jr(αr).

As usual, without loss of generality, we may assume lim infr→0 Jr(αr) <
∞. Thus, by Theorem 4.3, α ∈W κ,2(G, E1

0) and

(36)
∫

G
|dcα|2 dV ≤ lim inf

r→0
r−2κ

∫
G
|drα|2 dV.

On the other hand, if we split αr gathering the terms by their weights (i.e.
αr = αr1 + · · ·+ ακ, with αrj ∈ Ω1,j), keeping in mind that αr1 → α1 weakly
in L2, we have

lim inf
r→0

∫
G
r〈C−1

r α, α〉 dV = lim inf
r→0

(∫
G
|αr1|2 dV +

∑
j>1

r1−j
∫

G
|αrj |2 dV

)
≥ lim inf

r→0

∫
G
|αr1|2 dV ≥

∫
G
|α1|2 dV =

∫
G
|α|2 dV,

since α ∈ E1
0 . Summing this inequality with inequality (36) we get the liminf

inequality (35) �
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Chapitre 1: Algèbres de Lie. Actualités Sci. Ind. No. 1285. Hermann, Paris, 1960.

[7] Gianni Dal Maso. An introduction to Γ-convergence. Progress in Nonlinear Differential
Equations and their Applications, 8. Birkhäuser Boston Inc., Boston, MA, 1993.
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