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Abstract

Let G be a k-step Carnot group of homogeneous dimension Q. Later on we shall present
some of the results recently obtained in [32] and, in particular, an intrinsic isoperimetric
inequality for a C2-smooth compact hypersurface S with boundary ∂S. We stress that S
and ∂S are endowed with the homogeneous measures σn−1

H and σn−2
H , respectively, which

are actually equivalent to the intrinsic (Q − 1)-dimensional and (Q − 2)-dimensional
Hausdorff measures with respect to a given homogeneous metric % on G. This result
generalizes a classical inequality, involving the mean curvature of the hypersurface, proven
by Michael and Simon [29] and Allard [1], independently. One may also deduce some
related Sobolev-type inequalities. The strategy of the proof is inspired by the classical one
and will be discussed at the first section. After reminding some preliminary notions about
Carnot groups, we shall begin by proving a linear isoperimetric inequality. The second step
is a local monotonicity formula. Then we may achieve the proof by a covering argument.
We stress however that there are many differences, due to our non-Euclidean setting.
Some of the tools developed ad hoc are, in order, a “blow-up” theorem, which holds true
also for characteristic points, and a smooth Coarea Formula for the HS-gradient. Other
tools are the horizontal integration by parts formula and the 1st variation formula for
the H -perimeter σn−1

H already developed in [30, 31] and then generalized to hypersurfaces
having non-empty characteristic set in [32]. These results can be useful in the study of
minimal and constant horizontal mean curvature hypersurfaces in Carnot groups.
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1. Introduction: Euclidean case S ⊂ Rn (n > 2)

Theorem 1 (Isoperimetric Inequality; see [29], [1]). Let S ⊂ Rn be a C2-smooth compact
hypersurface with piecewise C1-smooth boundary. Then

{σn−1
R (S)}

n−2
n−1 ≤ C1

{∫
S

|HR |σn−1
R + σn−2

R (∂S)
}

where C1 > 0 is a dimensional constant and HR denotes the Riemannian mean curvature.

For a complete proof, see also [5].

Sketch of Proof. The first step is a linear isoperimetric inequality which follows from the
classical integration by parts formula by making a “suitable” choice of a vector field. More
precisely, if X ∈ X(Rn) we remind that∫

S

{divTSX +HR 〈X, ν〉} σn−1
R =

∫
∂S

〈X, η〉σn−2
R ,

where ν is the unit normal vector along S and η is the unit normal vector along ∂S.
Fix x ∈ Rn and choose X(y) = y − x. Then, by Cauchy-Swartz, we get the next linear

isoperimetric inequality:

(n− 1)σn−1
R (S) ≤ R

{∫
S

|HR |σn−1
R + σn−2

R (∂S)

}
,

where R denotes the radius of a Euclidean ball B(x,R) which contains S.
This inequality and the Coarea Formula allow to prove the monotonicity inequality.

Proposition 2 (Monotonicity). At every “density-point”1 x ∈ Int(S), one has

(1) − d

dt

σn−1
R (St)

tn−1
≤ 1

tn−1
{A(t) + B(t)}

for L1-a.e. t > 0, where St = S ∩B(x, t) and

A(t) :=

∫
St

|HR |σn−1
R

B(t) := σn−2
R (∂S ∩B(x, t)).

Proof of (1). By Sard’s Theorem we get that St is a C2-smooth manifold with boundary
for L1-a.e. t > 0. Using the above linear isoperimetric inequality yields

(n− 1)σn−1
R (St) ≤ t

{
A(t) + σn−2

R (∂St)
}

for L1-a.e. t > 0. Since

∂St = {∂S ∩B(x, t)} ∪ {∂B(x, t) ∩ S}

1By definition, x ∈ Int(S) is a density-point if

lim
t↘0+

σn−1
R (St)R

tn−1
= ωn−1,

where ωn−1 denotes the Lebesgue measure of the unit ball in Rn−1.
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we get that

(n− 1)σn−1
R (St) ≤ t

{
A(t) + B(t) + B̃(t)

}
where we have set

B̃(t) := σn−2
R (∂B(x, t) ∩ S).

At this point we have to use the Coarea Formula (see [15]): for all φ ∈ C1(S) one has∫
S

|gradTSφ|σn−1
R =

∫
R
σn−2

R (φ−1[s] ∩ S) ds.

Choosing φ(y) := |y − x| into this formula yields

σn−1
R (St+h)− σn−1

R (St) ≥
∫
St+h\St

|gradTSφ|σn−1
R

=

∫ t+h

t

σn−2
R (φ−1[s] ∩ S) ds

=

∫ t+h

t

B̃(s) ds

for all (small enough) h > 0. From the last inequality we infer that

B̃(t) ≤ d

dt
σn−1

R (St)

for L1-a.e. t > 0. Hence

(n− 1)σn−1
R (St) ≤ t

(
A(t) + B(t) +

d

dt
σn−1

R (St)

)
which is equivalent to the monotonicity inequality (1). �

We now remind the following well-known:

Lemma 3 (Vitali-type Covering Lemma). Let (X, %) be a compact metric space and
A ⊂ X. Further, let C be a covering of A by closed %-balls with centers in A. We also
assume that each point x ∈ A is the center of at least one closed %-ball belonging to C and
that the radii of the balls of the covering are uniformly bounded by some positive constant.
Then, for every λ > 2 there exists a no more than countable subset C ′ ⊂ C of pairwise
non-intersecting closed %-balls B%(xk, Rk) such that

A ⊂
∞⋃
k=1

B%(xk, λRk).

By using the monotonicity inequality one proves, by contradiction, an estimate modelled
on the previous covering lemma.

Lemma 4 (Calculus Lemma). Let x ∈ Int(S) and set R0 = 2
{
σn−1
R (S)

ωn−1

}1/n−1

. Then, for

every λ ≥ 2 there exists R ∈]0, R0[ such that

σn−1
R (SλR) ≤ λQ−1R0 {A(R) + B(R)} .

Putting all together, the proof of the Isoperimetric Inequality easily follows. �
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1.1. Applications. The monotonicity inequality is actually equivalent to an asymptotic
estimate of exponential-type. More precisely one proves the following:

Corollary 5 (Asymptotic of σn−1
R (St).). For every x ∈ Int(S) one has

σn−1
R (St) ≥ ωn−1 t

n−1e−H0t (t→ 0+)

where H0 is a positive constant satisfying |HR | ≤ H0. In particular, if HR = 0, i.e. S is
a minimal hypersurface, one gets that

σn−1
R (St) ≥ ωn−1 t

n−1 (t→ 0+).

Finally, by using a well-known argument due to Federer-Fleming and Maz’ya, one can
show the following (see [16], [28]):

Corollary 6 (Sobolev-type Inequality). Let S ⊂ Rn be a C2-smooth closed hypersurface.
Then there exists a dimensional constant C2 > 0 such that{∫

S

|ψ|
n−1
n−2σn−1

R

}n−2
n−1

≤ C2

∫
S

{|HR ||ψ|+ |gradTSψ|}σn−1
R .

for every ψ ∈ C1
0(S).

2. Carnot groups, Hypersurfaces and measures

Over the last years Sub-Riemannian or Carnot-Carathéodory geometries have become a
subject of great interest because of their connections with many areas of Mathematics and
Physics, such as PDE’s, Calculus of Variations, Control Theory, Mechanics, Theoretical
Computer Science. As an introduction to this subject we refer the reader to Montgomery’s
book [33] and to the surveys by Gromov [22] and Vershik and Gershkovich [39]. See also
the works by Cheeger, Kleiner and Naor [9, 10] for some new perspectives.

Very recently, the so-called Visual Geometry has also received new impulses from this
field; see for example [12] and references therein.

Furthermore, Carnot groups constitute a wide class of examples of sub-Riemannian
geometries. Indeed, by a well-know result due to Mitchell (see Montgomery’s book [33]),
the Gromov-Hausdorff tangent cone at the regular points of a sub-Riemannian manifold
is a suitable Carnot group. Thus, in a sense, Carnot groups play for sub-Riemannian
geometries an analogous role to that of Euclidean spaces in Riemannian geometry.

The beginning of Geometric Measure Theory in this setting was perhaps an intrinsic
isoperimetric inequality proven by Pansu in his Thesis [34], for the case of the Heisenberg
group H1. For what concerns isoperimetric inequalities on Lie groups and C-C spaces, see
also [6], [22], [36], [17], [38].

For an introduction to Analysis and GMT in this setting we shall refer the reader to
[2], [3], [4], [6], [8], [13], [18, 19, 20, 21], [23, 24], [25, 26, 27], [31, 32], [35, 36].

We also refer to [7], [11], [14], [37], for recent results concerning minimal hypersurfaces
in the Heisenberg group.
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2.1. Carnot groups. A k-step Carnot group (G, •) is a connected, simply connected,
nilpotent and stratified Lie group (with respect to the group law •). Its Lie algebra
g ∼= Rn satisfies:

g = H1 ⊕ ...⊕ Hk

[H1,Hi−1] = Hi (i = 2, ..., k), Hk+1 = {0}.
Let 0 be the identity of G and g ∼= T0G. Let hi := dimHi for i = 1, ..., k and h1 := h.
Moreover set H := H1 and

V := H2 ⊕ ...⊕ Hk.

H and V are smooth subbundles of TG called horizontal and vertical, respectively. The
horizontal bundle H is generated by a frame XH := {X1, ..., Xh} of left-invariant vector
fields. The horizontal frame can be completed to a global graded, left-invariant frame
X := {X1, ..., Xn} for TG. We stress that the standard basis {ei : i = 1, ..., n} of Rn

can be relabelled to be graded or adapted to the stratification. Any left-invariant vector
field of X is given by Xi(x) = Lx∗ei (i = 1, ..., n), where Lx∗ denotes the differential
of the left-translation at x ∈ G. We fix a Euclidean metric on g = T0G which makes
{ei : i = 1, ..., n} an orthonormal basis; this metric extends to the whole tangent bundle
by left-translations and makes X an orthonormal left-invariant frame. We shall denote
by g = 〈·, ·〉 this metric. Note that (G, g) is a Riemannian manifold.

We shall use the so-called exponential coordinates of 1st kind and so G will be identified
with its Lie algebra g, via the (Lie group) exponential map exp : g −→ G.

A sub-Riemannian metric gH is a symmetric positive bilinear form on the horizontal
bundle H . The CC-distance dcc(x, y) between x, y ∈ G is given by

dcc(x, y) := inf

∫ √
gH (γ̇, γ̇) dt,

where the infimum is taken over all piecewise-smooth horizontal paths γ joining x to y.
From now on we choose gH := g|H .

Carnot groups are homogeneous groups, i.e. they admit a 1-parameter group of auto-
morphisms δt : G −→ G (t ≥ 0). By definition

δtx := exp

∑
j,ij

tj xijeij

 ,

where x = exp
(∑

j,ij
xijeij

)
∈ G. The homogeneous dimension of G is the integer

Q :=
k∑
i=1

i hi

coinciding with the Hausdorff dimension of (G, dcc) as a metric space.
The structural constants of g associated with X are defined by

Cr
ij := 〈[Xi, Xj], Xr〉 (i, j, r = 1, ..., n).

They are skew-symmetric and satisfy Jacobi’s identity.
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The stratification hypothesis on g implies that

Xi ∈ Hl, Xj ∈ Hm =⇒ [Xi, Xj] ∈ Hl+m.

The last condition can be rephrased in terms of (vanishing of) structural constants.
Henceforth, we shall set

• Cα
H := [Cα

ij]i,j=1,...,h ∈Mh×h(R) (α = h + 1, ..., h + h2);
• Cα := [Cα

ij]i,j=1,...,n ∈Mn×n(R) (α = h + 1, ..., n).

We introduce the left-invariant co-frame

ω := {ωi : i = 1, ..., n}
dual to X, i.e. ωi = X∗i for every i = 1, ..., n. In particular, the left-invariant 1-forms ωi
are uniquely determined by

ωi(Xj) = 〈Xi, Xj〉 = δji (i, j = 1, ..., n)

where δji denotes the Kronecker delta.
Let ∇ denote the unique left-invariant Levi-Civita connection on G associated with the

left-invariant metric g = 〈·, ·〉. For every i, j = 1, ..., n, it turns out that

∇XiXj =
1

2

n∑
r=1

(Cr
ij − Ci

jr + Cj
ri)Xr.

If X, Y ∈ X(H ), we set ∇H
XY := PH (∇XY ). ∇H is called H -connection and it is flat,

compatible with the metric gH and torsion-free.
Horizontal gradient and horizontal divergence operators are denoted, respectively, by

gradH and divH .
A continuous distance % : G×G −→ R+ ∪ {0} is called homogenous if one has

%(x, y) = %(z • x, z • y) ∀x, y, z ∈ G;

%(δtx, δty) = t%(x, y) ∀t ≥ 0.

Remark 7 (Assumptions on %). Let %(x) = %(0, x) = ‖x‖%. We shall assume that:

• % is piecewise C1-smooth;
• |gradH %| ≤ 1 at each regular point of %;
• |xH | ≤ %(x);
• there exist constants ci > 0 such that

|xHi | ≤ ci%
i(x) for every i = 2, ..., k.

Example 8. CC-distance dcc and Korany distance on the Heisenberg group Hn satisfy
all the assumptions of Remark 7.

2.2. Hypersurfaces and measures. The Riemannian left-invariant volume form on G
is defined as σnR :=

∧n
i=1 ωi ∈

∧n(T ∗G).
The measure σnR is the Haar measure of G and equals the push-forward of the usual

n-dimensional Lebesgue measure Ln on g ∼= Rn.
Let S ⊂ G be a C1-smooth hypersurface. Then x ∈ S is a characteristic point if

dim Hx = dim(Hx ∩ TxS).
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The characteristic set of S is given by

CS := {x ∈ S : dim Hx = dim(Hx ∩ TxS)}.
Note that x ∈ S is non-characteristic if, and only if, H is transversal to S at x. Moreover
the (Q− 1)-dimensional CC Hausdorff measure of the characteristic set CS vanishes, i.e.

HQ−1
cc (CS) = 0.

Let ν denote the unit normal vector along S. The (n − 1)-dimensional Riemannian
measure along S is defined by

σn−1
R S := (ν σnR )|S,

where denotes the “contraction” operator on differential forms. Remind that

:
∧k

(T ∗G)→
∧k−1

(T ∗G)

is defined, for X ∈ TG and α ∈
∧k(T ∗G), by

(X α)(Y1, ..., Yk−1) := α(X, Y1, ..., Yk−1).

If S is non-characteristic the unit H -normal along S is the normalized projection of ν
onto H , i.e.

ν
H

:=
PH ν

|PH ν|
.

We define the (n− 1)-dimensional homogeneous measure σn−1
H ∈

∧n−1(T ∗S) by

σn−1
H S := (ν

H
σnR )|S.

If CS 6= ∅ we extend σn−1
H to the whole of S by setting σn−1

H CS = 0. Note that

σn−1
H S = |PH ν|σn−1

R S.

It follows that CS = {x ∈ S||PH ν| = 0}. Since σn−1
H coincides on smooth hypersurfaces

with the H -perimeter measure, σn−1
H is also called H -perimeter form.

Let SQ−1
cc denote the (Q− 1)-dimensional spherical Hausdorff measure associated with

the CC-distance dcc. Then we have

σn−1
H (S ∩B) = k(ν

H
)SQ−1

cc (S ∩B),

for all B ∈ Bor(G), where the density k(ν
H

), called metric factor, depends on ν
H

; see
below. The horizontal tangent bundle HS ⊂ TS and the horizontal normal bundle ν

H
S

split the horizontal bundle H into an orthogonal direct sum, i.e.

H = ν
H
⊕ HS.

We also remind that the stratification of g induces a stratification of TS := ⊕ki=1HiS,
where HS := H1S; see [22].

Let S ⊂ G be a C2-smooth hypersurface and let ∇TS be the induced connection on S
from ∇. The tangential connection ∇TS induces a partial connection on HS defined by

∇HS
X Y := PHS (∇TS

X Y ) (X, Y ∈ HS).

It turns out that ∇HS
X Y = ∇H

XY − 〈∇H
XY, νH 〉νH . The HS-gradient and the HS-divergence

are denoted by gradHS and divHS , respectively.
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The horizontal 2nd fundamental form of S is the C∞(S)-bilinear map given by

BH (X, Y ) := 〈∇H
XY, νH 〉

for every X, Y ∈ X(HS). The horizontal mean curvature HH is, by definition, the trace
of BH , i.e.

HH := TrBH = −divH νH .

The torsion THS of the HS-connection ∇HS is defined by

THS (X, Y ) := ∇HS
X Y −∇HS

Y X − PH [X, Y ]

for everyX, Y ∈ HS. We have a non-zero torsion because, in general, BH is not symmetric.
Finally, we define some important geometric objects:

• $α := να
|PH ν| (α = h + 1, ..., n);

• $ := PV ν
|PH ν| =

∑n
α=h+1$αXα;

• CH :=
∑

α$αC
α
H (α = h + 1, ..., h + h2).

3. Preliminary tools

We begin by recalling a horizontal integration by parts formula and the 1st variation
formula of the H -perimeter σn−1

H already developed in [30, 31] and then generalized in
[32] to hypersurfaces having non-empty characteristic set. Then we will state a smooth
Coarea Formula for the HS-gradient and a “Blow-up” procedure (see also [3], [18, 19],
[25, 26]), which can also applied to characteristic points. Finally, we shall discuss a linear
inequality which is the key ingredient in the proof of the Isoperimetric Inequality.

3.1. Integration by parts and 1st variation. Let assume that ∂S be a C1-smooth
(n− 2)-dimensional manifold, oriented by its unit normal vector η ∈ TS ∩ Nor(∂S). We
shall denote by σn−2

R the Riemannian measure on ∂S, which can be defined as follows:

σn−2
R ∂S = (η σn−1

R )|∂S.

We stress that from the previous definitions it follows that for every X ∈ X(S), one has

(X σn−1
H )|∂S = 〈X, η〉|PH ν|σn−2

R ∂S.

The characteristic set of ∂S is defined by

C∂S := {p ∈ ∂S : |PHS η| = 0}.

Moreover, the unit HS-normal along ∂S is given by

ηHS :=
PHS η

|PHS η|
.

We may define the (n− 2)-dimensional homogeneous measure σn−2
H ∈

∧n−2(T ∗∂S) by

σn−2
H ∂S :=

(
ηHS σn−1

H

) ∣∣
∂S
.

Equivalently, one may set

σn−2
H ∂S = |PH ν| |PHS η|σn−2

R ∂S.
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It turns out that

(X σn−1
H )|∂S = 〈X, ηHS 〉σn−2

H ∂S for every X ∈ X(HS).

Let S ⊂ G be a C2-smooth compact hypersurface. Then, for every X ∈ X1(H ) the
following horizontal integration by parts formula holds up to the characteristic set CS:∫

S

{
divHSX + 〈CH νH , X〉

}
σn−1

H = −
∫
S

HH 〈X, νH 〉σn−1
H +

∫
∂S

〈X, ηHS 〉σn−2
H .(2)

The horizontal matrix CH is a key object in this setting and it is connected with the
skew-symmetric part of the horizontal 2nd fundamental form BH .

We may therefore prove a horizontal linear isoperimetric inequality. More precisely, one
may show that

(h− 1)σn−1
H (S) ≤ R

{∫
S

{
|HH |+ |CH νH |

}
σn−1

H + σn−2
H (∂S)

}
,

where R is the radius of a %-ball circumscribed about S. This formula can be proved by
using the horizontal position vector xH ≡ (x1, ..., xh) and (2). However, this inequality is
not sufficient in order to get the “right” monotonicity formula. To this end we will use in
the sequel a more general vector field; see Section 3.4.

Let us state the 1st variation formula of σn−1
H for a C2-smooth compact hypersurface

S with piecewise C1-smooth boundary ∂S. For every X ∈ X(G) one has

IS(X, σn−1
H ) :=

d

ds

(∫
S

ϑ∗sσ
n−1
H

) ∣∣∣∣
s=0

= −
∫
S

HH 〈X, (νH +$)〉 σn−1
H +

∫
∂S

〈X, η〉 |PH ν|σn−2
R ,

where ϑ∗sσ
n−1
H denotes the push-forward of σn−1

H by the flows ϑs related to X. The formula
holds true even if CS 6= ∅.

3.2. Coarea formula for the HS-gradient. Let S ⊂ G be a C2-smooth hypersurface
and let φ ∈ C1(S). Then∫

S

|gradHSφ(x)|σn−1
H (x) =

∫
R
σn−2

H (φ−1[s] ∩ S)ds.

3.3. Blow-up of σn−1
H . Let S ⊂ G be a smooth hypersurface and let us study the density

of σn−1
H at x ∈ S, i.e.

lim
R→0+

σn−1
H (S ∩B%(x,R))

RQ−1
,

where B%(x,R) is the %-ball of center x ∈ S and radius R. We remind that % is a fixed
smooth homogeneous distance on G as in Remark 7.
Case (a). Let S be a C1-smooth hypersurface and let x ∈ S \CS; then it turns out that

σn−1
H (S ∩B%(x,R)) ∼ κ%(νH )RQ−1

for R→ 0+, where the constant κ%(νH ) is explicitly given by

κ%(νH ) = σn−1
H (I(ν

H
(x)) ∩B%(x, 1)).

Here I(ν
H

(x)) denotes the vertical hyperplane orthogonal to ν
H

at x; see also [25, 26].
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Case (b). Assume that, locally around x ∈ CS, there exists α = h + 1, .., n, ord(α) = i,
such that S is the image of a Ci-smooth Xα-graph. With no loss of generality, let us fix
x = 0 ∈ G. In such a case one has

S ∩B%(x, r) ⊂ exp
{(
ζ1, ..., ζα−1, ψ(ζ), ζα+1, ..., ζn

) ∣∣ ζ := (ζ1, ..., ζα−1, 0, ζα+1, ..., ζn) ∈ e⊥α
}
,

where ψ : e⊥α
∼= Rn−1 → R is a function of class Ci. If ψ satisfies

∂(l)ψ

∂ζj1 ...∂ζjl
(0) = 0

whenever ord(j1) + ... + ord(jl) < i for every l = 1, ..., i, then it follows that there exists
a positive constant κ%(CS) such that

σn−1
H (S ∩B%(0, R)) ∼ κ%(CS)RQ−1

for R→ 0+. The constant κ%(CS) can be computed by integrating the H -perimeter σn−1
H

along a homogeneous polynomial hypersurface of order i = ord(α) only depending on the
Taylor’s expansion up to order j ≤ i of ψ at 0 ∈ Rn−1; see [32].

Example 9. Consider the case of the Heisenberg group (Hn, %) where

%(x) = 4
√
|xH |4 + 16t2

denotes the Korany distance. Let

S = {x ≡ exp (xH , t) ∈ Hn : t = 0}.
Then it turns out that CS = {0 ∈ Hn} and that

κ%(CS) =
O2n−1

4n
,

where O2n−1 denotes the surface measure of the unit sphere S2n−1 of H ∼= R2n.

3.4. Another linear isoperimetric inequality. Fix x ∈ G and consider the Carnot
homothety centered at x, i.e. ϑx(t, y) := x • δt(x−1 • y). With no loss of generality, let
x = 0 ∈ G. Then

ϑ0(t, y) := exp (tyH , t2yH2 , ..., t
iyHi , ..., t

kyHk )

for t ≥ 0, where yHi =
∑

ji
yjieji . The variational vector field of ϑ0

t is defined as

Z0 :=
∂ϑ0

t

∂t

∣∣∣
t=1

=
∂δt
∂t

∣∣∣
t=1

= yH + 2yH2 + ...+ kyHk .

Analogously, we shall denote by Zx the variational vector field of ϑxt . By invariance of
σn−1

H under Carnot dilations, one gets

IS(Z0, σ
n−1
H ) = (Q− 1)σn−1

H (S).

By applying the 1st variation formula of σn−1
H we get

(Q− 1)σn−1
H (S) = −

∫
S

HH 〈Z0, (νH +$)〉σn−1
H +

∫
∂S

〈
Z0,

η

|PHS η|

〉
|PH νH | |PHS η|σn−2

R︸ ︷︷ ︸
=σn−2

H

.
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From now on, we shall set

ηHS + χ :=
η

|PHS η|
, χ :=

PV η

|PHS η|
=

k∑
i=2

χHiS .

By Cauchy-Schwartz inequality it follows that

(Q− 1)σn−1
H (S) ≤ R

{∫
S

|HH |

(
1 +

k∑
i=2

i ci%
i−1|$Hi |

)
σn−1

H +

∫
∂S

(
1 +

k∑
i=2

i ci%
i−1|χHiS |

)
σn−2

H

}
,

where %(y) = %(y, 0) and R is the radius of a %-ball centered at 0 ∈ G and circumscribed
about S. Notice that the constants ci (i = 2, ..., k) have been defined at Remark 7. By
invariance under left translations, this formula holds true even for an arbitrary choice of
x ∈ G. In this case %(y) = %(y, x) is the %-distance from the center of a %-ball B%(x,R)
containing S. The last inequality is the key tool in the proof of the local monotonicity.

4. Main results

Throughout this section we shall present some of the results obtained in [32] and, more
precisely, an isoperimetric inequality for the case of a C2-smooth compact hypersurface
with boundary. The hypersurface and its boundary are endowed with the homogeneous
measures σn−1

H and σn−2
H , respectively. These measures are actually equivalent to the

intrinsic (Q − 1)-dimensional and (Q − 2)-dimensional Hausdorff measures associated
with some given homogeneous metric % on G. As already said, this generalizes a classical
inequality proved by Michael and Simon, [29], and Allard, [1]. We shall also deduce some
related Sobolev-type inequalities. The strategy of the proof is inspired by the Euclidean
one but there are many differences, due to the different geometric setting.

We remark that a monotonicity estimate for the H -perimeter has been recently proved
by Danielli, Garofalo and Nhieu in [14] for graphical strips in the Heisenberg group H1.

Let S ⊂ G be a C2-smooth hypersurface and set St := S ∩B%(x, t), t > 0. Further set

A∞(t) :=

∫
St

|HH |
(

1 +
k∑
i=2

i ci%
i−1|$Hi |

)
σn−1

H ,

B∞(t) :=

∫
∂S∩B%(x,t)

(
1 +

k∑
i=2

i ci%
i−1|χHiS |

)
σn−2

H ,

where %(y) = %(x, y) denotes the %-distance from the (fixed) point x ∈ S and the constants
ci (i = 2, ..., k) have been defined at Remark 7.

Theorem 10 (Local monotonicity of σn−1
H ). For any x ∈ Int(S\CS) there exists R(x) > 0

such that

− d

dt

σn−1
H (St)

tQ−1
≤ 1

tQ−1
{A∞(t) + B∞(t)}

for L1-a.e. t ∈]0, R(x)[.
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The monotonicity inequality could be proved, following a classical pattern, by assuming
that there exists a smooth homogeneous norm % satisfying:

1

%
|〈Zx, gradTS %〉| ≤ 1

for every x, y ∈ S; see [32]. This would be “natural” in the Riemannian case and trivially
true in the Euclidean one, where

Zx(y) = y − x, grad %(y) =
y − x
|y − x|

.

In our case, the above assumption could be too strong and we have to replaced it by a
weaker one. More precisely, one may use a “local” integral estimate.

Lemma 11. For every x ∈ Int(S \ CS), there exists R(x) > 0 such that∫
SR

1

%
|〈Zx, gradTS%〉|σn−1

H ≤ σn−1
H (SR)

for every R ≤ R(x), where %(y) = %(x, y).

At this point we may state our main results. To this aim, set

A∞(S) :=

∫
S

|HH |

(
1 +

k∑
i=2

i ci%
i−1
S |$Hi |

)
σn−1

H ,

B∞(S) :=

∫
∂S

(
1 +

k∑
i=2

i ci%
i−1
S |χHiS |

)
σn−2

H ,

where %S := diam%(S)

2
.

Theorem 12 (Isoperimetric inequality). Let S ⊂ G be a compact C2-smooth hypersurface
with C1-smooth boundary. Then there exists a dimensional constant C1 such that

{σn−1
H (S)}

Q−2
Q−1 ≤ C1 {A∞(S) + B∞(S)} .

Remark 13 (Estimate of A∞(S)). Let S be a C1-smooth hypersurface. It is well-known
that dimCS < n − 1. Note that $ ∈ [L1

loc(σ
n−1
H )]n−h and that $ ∈ C(S \ CS). So let

Uε ⊂ S be a family of open neighborhoods of CS such that σn−1
R (Uε) −→ 0 for ε→ 0+. For

instance, take Uε = {|PH ν| < ε ≤ 1}. We also stress that |$| = O
(

1
|PH ν|

)
as ε → 0+.

Therefore ∫
Uε
|$Hi |σn−1

H ≤ σn−1
H (S) (i = 2, ..., k)

for all small enough ε > 0. Furthermore∫
S\Uε
|$Hi |σn−1

H ≤ ‖$‖L∞(S\Uε) σ
n−1
H (S) ≤ n− h

ε
σn−1

H (S)

for all small enough ε ∈]0, 1]. It follows that there exists K1 > 0 such that

A∞(S) ≤ K1

∫
S

|HH |σn−1
H .
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Remark 14 (Estimate of B∞(S)). First note that if dimC∂S < n−2, then σn−2
R (C∂S) = 0.

Let Vε ⊂ ∂S be a family of neighborhoods of C∂S such that σn−2
R (Vε) −→ 0 as ε→ 0+. For

instance, take Vε = {|PHS η| < ε ≤ 1}. Since

χ =
k∑
i=2

χHiS ∈ [L1(∂S, σn−2
H )]n−h,

one gets that ∫
Vε
|χHiS |σn−2

H ≤ σn−2
H (∂S) (i = 2, ..., k)

for all small enough ε > 0. Furthermore∫
∂S\Vε

|χHiS |σn−2
H ≤ ‖χ‖L∞(∂S\Vε) σ

n−2
H (∂S) ≤ n− h

ε
σn−2

H (∂S)

for all small enough ε ∈]0, 1]. It follows that there exists K2 > 0 such that

B∞(S) ≤ K2 σ
n−2
H (∂S).

By applying the previous remarks we may prove the following:

Corollary 15 (Michael-Simon-type Isoperimetric Inequality). Let S ⊂ G be a compact
C2-smooth hypersurface with piecewise C1-smooth boundary ∂S. Furthermore, let assume
that dimC∂S < n− 2. Then there exists C2 > 0 such that

{σn−1
H (S)}

Q−2
Q−1 ≤ C2

{∫
S

|HH |σn−1
H + σn−2

H (∂S)

}
.

In particular, if HH = 0, one has

{σn−1
H (S)}

Q−2
Q−1 ≤ C2

{
σn−2

H (∂S)
}
.

5. Applications

Corollary 16 (Asymptotic of σn−1
H for x ∈ Int(S \ CS)). Let S ⊂ G be a C2-smooth

hypersurface and assume that ∂S ∩ B%(x, t) = ∅. Furthermore, let H0
H be a positive

constant such that |HH | ≤ H0
H < +∞. Then for every x ∈ Int(S \ CS) one has

σn−1
H (St) ≥ κ%(νH ) tQ−1e−t{H

0
H (1+O(t))}

for t→ 0+, where κ%(νH ) is the “density” of σn−1
H at the point x, also called metric factor;

see Section 3.3.

We may also tract the case where S is immersed in Hn and x ∈ CS.

Corollary 17 (Asymptotic of σn−1
H for x ∈ CS). Let S ⊂ Hn be a C2-smooth hypersurface.

Let ∂S ∩B%(x, t) = ∅ and |HH | ≤ H0
H < +∞. Then for every x ∈ CS, there exists ε0 > 0

such that

σ2n
H (St) ≥ κ%(CS(x)) tQ−1e−tH

0
H ε0

for t→ 0+, where κ%(CS) is the “density” of σn−1
H at x ∈ CS; see Section 3.3.
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Finally we may state another useful consequence, that is a Sobolev-type inequality.

Corollary 18. Let S ⊂ G be a C2-smooth closed hypersurface and assume that for every
smooth (n − 2)-dimensional submanifold N ⊂ S one has dimCN < n − 2. Then there
exists C3 > 0 such that{∫

S

|ψ|
Q−1
Q−2σn−1

H

}Q−2
Q−1

≤ C3

∫
S

{|HH ||ψ|+ |gradHSψ|}σn−1
H

for all ψ ∈ C1
0(S).
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