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Abstract

In this note we present mean value characterizations of subharmonic functions re-
lated to linear second order partial differential operators with nonnegative charac-
teristic form, possessing a well-behaved fundamental solution Γ. These characteri-
zations are based on suitable average operators on the level sets of Γ. Asymptotic
characterizations are also considered, extending classical results of Blaschke, Priva-
loff, Radó, Beckenbach and Reade. The results presented here generalize and carry
forward former results of the authors in [6, 8].

1 L-subharmonic functions

Let

L :=
N∑

i,j=1

∂xi
(ai,j(x) ∂xj

) = div(A(x)∇) (1.1)

be a linear second order PDO in RN , in divergence form, with C2 coefficients and such
that the matrix A(x) := (ai,j(x))i,j≤N is symmetric and nonnegative definite at any point
x = (x1, . . . , xN) ∈ RN . In (1.1), ∇ denotes the usual Euclidean gradient operator ∇ =

(∂x1 , . . . , ∂xN
)T .

The operator L is (possibly) degenerate elliptic. However, in addition to some general
hypotheses that will be fixed in the sequel, throughout the paper we always assume with-
out further comments that L is not totally degenerate at every point. Precisely, we assume
that the following condition holds:

(ND) there exists i ≤ N such that ai,i > 0 on RN .
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This condition, together with A(x) ≥ 0, implies Picone’s Maximum Principle for L: If
V ⊂ RN is open and bounded and u ∈ C2(V,R) satisfies

Lu ≥ 0 in V and lim sup
x→y

u(x) ≤ 0 for every y ∈ ∂V ,

then u ≤ 0 in V . (See [20, Corollary 1.3].)
A function h will be said L-harmonic in an open set Ω ⊆ RN if h ∈ C2(Ω,R) and

Lh = 0 in Ω. An upper semicontinuous function (u.s.c. function, for short) u : Ω →
[−∞,∞) will be called L-subharmonic in Ω if

(i) the set Ω(u) := {x ∈ Ω |u(x) > −∞} is dense in Ω, and

(ii) for every bounded open set V ⊂ V ⊂ Ω and for every L-harmonic function h ∈
C2(V,R) ∩ C(V ,R) such that u ≤ h on ∂V , one has u ≤ h in V .

We shall denote by SL(Ω), or simply by S(Ω), the family (actually, the cone) of the
L-subharmonic functions in Ω.

It is well known that the subharmonic functions play crucial rôles in Potential Theory
of linear second order PDE’s (just think about Perron’s method for the Dirichlet problem)
as well as in studying the notion of convexity in Euclidean and non-Euclidean settings.
(See the Bibliographical Notes at the end of the Introduction for some related references.)

When L is the classical Laplace operator ∆, several characterizations of the ∆-sub-
harmonicity, involving surface and solid average operators on Euclidean balls, are given
in literature. Some of them are quite well known, others are less so. If Hα is the α-
dimensional Hausdorff measure, and if we denote by

Sr(u)(x) :=
1

HN−1(∂B(x, r))

∫

∂B(x,r)

u(y) dHN−1(y) and

Br(u)(x) :=
1

HN(B(x, r))

∫

B(x,r)

u(y) dHN(y),

(1.2)

respectively, the mean value operator on the Euclidean sphere of center x and radius r,
and on the corresponding solid ball B(x, r), we can list the previously mentioned charac-
terizations as follows.

Theorem A. Let Ω ⊆ RN be an open set and let u : Ω → [−∞,∞) be an u.s.c. function
with Ω(u) dense in Ω. Given x ∈ Ω, we set R(x) := sup{r > 0 : B(x, r) ⊂ Ω}.

Then, the following statements are equivalent:

(i) u ∈ S∆(Ω).

(ii) For every x ∈ Ω and 0 < r < R(x), it holds that u(x) ≤ Sr(u)(x).

(iii) For every x ∈ Ω and 0 < r < R(x), it holds that u(x) ≤ Br(u)(x).
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(iv) (Blaschke) For every x ∈ Ω(u), it holds that lim sup
r→0

Sr(u)(x)− u(x)

r2
≥ 0.

(v) (Privaloff) For every x ∈ Ω(u), it holds that lim sup
r→0

Br(u)(x)− u(x)

r2
≥ 0.

(vi) For every x ∈ Ω, the function r 7→ Sr(u)(x) is monotone increasing on (0, R(x))

and lim
r→0

Sr(u)(x) = u(x).

(vii) For every x ∈ Ω, the function r 7→ Br(u)(x) is monotone increasing on (0, R(x))

and lim
r→0

Br(u)(x) = u(x).

(viii) (Beckenbach-Radó) For every x ∈ Ω and r ∈ (0, R(x)), it holds that Br(u)(x) ≤
Sr(u)(x) and lim

r→0
Sr(u)(x) = u(x).

(ix) (Reade) For every x ∈ Ω(u), it holds that lim inf
r→0

Sr(u)(x)−Br(u)(x)

r2
≥ 0 and

lim
r→0

Sr(u)(x) = u(x).

Sharp versions of Blaschke and Privaloff conditions were proved by Saks.
If u is ∆-subharmonic in Ω then, by Riesz’s Representation Theorem, there exists a Radon
measure µu (called the Riesz measure of u) such that ∆u = µu in D′(Ω). On the other
hand, from the Lebesgue Differentiation Theorem of a measure, the symmetric derivative
of µu, say

Dsµu(x) := lim
r→0

µu(B(x, r))

HN(B(x, r))
,

exists HN -almost everywhere in Ω. The following result holds.

Theorem B (Saks). Let u be a ∆-subharmonic function in Ω ⊆ RN and let µu be its
Riesz measure. Then, at every point x ∈ Ω where Dsµu(x) exists, one has:

(i) lim
r→0

Sr(u)(x)− u(x)

r2
=

1

2N
Dsµu(x),

(ii) lim
r→0

Br(u)(x)− u(x)

r2
=

1

2(N + 2)
Dsµu(x),

(iii) lim
r→0

Sr(u)(x)−Br(u)(x)

r2
=

1

N(N + 2)
Dsµu(x).

The goals of our work is to recast Theorems A and B above in more general settings,
today usually called of sub-Riemannian type.

To be more specific, we have extended Theorem A to every operator L endowing RN

with the structure of a S∗-harmonic space, and having a nonnegative global fundamental
solution

RN × RN \ {x = y} 3 (x, y) 7→ Γ(x, y) ∈ R,
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with pole at any point of the diagonal {x = y} of RN (For the notion of S∗-harmonic
space, see [8, Section 6.10]).

In our version of Theorem A the classical mean value operators Sr and Br are replaced
by suitable average operators on the level sets of Γ,

∂Ωr(x) =
{
y ∈ RN : Γ(x, y) = 1/r

}
,

and on their solid counterpart

Ωr(x) :=
{
y ∈ RN : Γ(x, y) > 1/r

}
.

We explicitly remark that study of the average operators related to the general PDO’s
considered in this paper is complicated by the presence of non-trivial kernels. For in-
stance, when L in (1.1) is a sub-Laplacian on a stratified Lie group G, the kernels appear-
ing in the relevant mean-integrals cannot be identically 1, unlessG is the usual Euclidean
group (RN , +), as it is proved in [7].

A crucial tool for our extension of Theorem A is a Lemma providing a unifying ap-
proach to several characterizations of L-subharmonicity. This result traces back to a 1933
theorem by W. Kozakiewicz [19] related to the case of the ordinary Laplace operator.

For our versions of Theorems B, we impose a further restriction. Indeed, our approach
to this last extension exploits Poisson-Jensen Formulas for L-subharmonic functions, to-
gether with a homogeneity property for the measure of the level sets of Γ. Therefore,
Theorem B can be conveniently extended to the sub-Laplacians on stratified Lie groups,
which naturally satisfy these requirements.

We close this Section with the following bibliographical notes.

Bibliographical Notes

Gauss Theorem on mean value properties for classical harmonic functions has been gen-
eralized in countless directions. The historical development of the problems related to this
property, both for harmonic and caloric functions, is presented in the survey paper [22]
by Netuka and Veselý.

A mean value theorem for solutions to Lu = 0, when L is a general operator as in (1.1)
of “elliptic-type”, has been proved by Hoh and Jacob [17]. Citti, Garofalo and Lanconelli
[10] proved some representation formulas for smooth solutions to Lu = f , for operators
L which are sum of squares of vector fields satisfying the Hörmander rank condition.

Later on, these formulas were used in [6] to derive representation formulas for smooth
solutions to ∆Gu = f , where ∆G denotes a sub-Laplacian on a Carnot group G. When
f = 0 and ∆G is the Kohn Laplacian on the Heisenberg group, the formulas in [6], as well
as those in [10] and [17], give back a mean value property first proved by Gaveau [15].
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The use of asymptotic average operators in the characterization of classical subhar-
monic functions has a long history, starting with the papers [3] and [23] by Blaschke
and Privaloff, respectively. Beckenbach and Radó [2] characterized the ∆-subharmonic
functions in terms of the inequality “solid average ≤ surface average”. [The original
Beckenbach-Radó condition was stated and proved for continuous functions in R2. An
extension to any dimension, still for continuous functions, is contained in the very recent
paper [13] by Freitas and Matos.]

It was Saks [26] who proved, in 1941, Theorem B. Two years later, Reade [24] intro-
duced his asymptotic version of the Beckenbach-Radó condition. [We call Reade condi-
tion the one contained in number (ix) of Theorem A. Actually, Reade stated in [24], but
without any proof, that a continuous function u is ∆-subharmonic in an open set Ω ⊆ R2

iff lim supr→0(Sr(u)(x)−Br(u)(x))/r2 ≥ 0 for every x ∈ Ω. We have not been able to
find any proof of this statement in literature. Instead, number (ix) of Theorem A follows
from our Theorem 4.2 applied to ∆.]

A modern reference for some asymptotic-mean characterizations of ∆-subharmonicity
is the monograph [1] by Armitage and Gardiner (see [1, Section 3.2]). This monograph,
which mainly deals with classical Potential Theory, also contains some applications of
subharmonicity to the usual convexity (a systematic subharmonic approach to convexity
in the Euclidean setting can also be found in Hörmander’s monograph [18]).

Mean value characterizations of subharmonic functions in Carnot groups are contained
in [6], see also the monograph [8], Chapter 8. We directly refer to this chapter for some
applications, and a list of references, about convexity in the stratified Lie group setting.
Furthermore, [6] and [8] also deal with the problem of the smooth approximation of sub-
harmonic functions in Carnot groups. The results proved therein use a version of the
Friedrichs’s mollifiers, resting on the homogeneous Lie group structure of G. This ap-
proach does not work in absence of such an algebraic structure underlying the operator
L. For our approximation theorem in the present paper we exploit an idea used in [14] by
Garofalo and one of us, for classical parabolic operators with variable coefficients.

2 Assumptions on the operator L. The L-harmonic space

We assume that the operator L in (1.1) is equipped with a global fundamental solution Γ,
that is, there exists a function Γ : D = {(x, y) ∈ RN × RN : x 6= y} −→ R with the
following properties:

(G.1) Γ ∈ L1
loc(RN × RN) ∩ C2(D,R), Γ(x, y) > 0 for every (x, y) ∈ D;

(G.2) for every fixed x ∈ RN , we have limy→x Γ(x, y) = ∞ and limy→∞ Γ(x, y) = 0;
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(G.3) for any ϕ ∈ C∞
0 (RN ,R),
∫

RN

Γ(x, y)Lϕ(y) dy = −ϕ(x), for every x ∈ RN . (2.1)

This last property, since L∗ = L, can be restated as follows: −LΓ(x, ·) equals the Dirac
measure at {x}, in the sense of distributions. It in particular implies that y 7→ Γ(x, y)

is L-harmonic in RN \ {x}. As a consequence, since Γ(x, y) → ∞ as y → x, an easy
application of Picone’s Maximum Principle shows that−Γ(x, ·) is L-subharmonic in RN .

Our second general assumption is that L endows RN with the structure of S∗-harmo-
nic space, in the sense of [8, Definition 6.10.1]. Due to (G.1) and (G.2), this amounts to
make the following extra hypotheses on L:

(D) Doob convergence property: If {un}n is a monotone increasing sequence of L-har-
monic functions on an open set Ω ⊆ RN , then u := supn un is L-harmonic in Ω,
provided that u is finite in a dense subset of Ω.

(R) Regularity axiom: The L-regular open sets form a basis of the Euclidean topology.

Here, we agree to call L-regular any bounded open set V ⊂ RN such that: for every f ∈
C(∂V,R), there exists a (unique) L-harmonic function in V , denoted by HV

f , satisfying
limy→x HV

f (y) = f(x), for every x ∈ ∂V .
Under the previous assumptions, the map

Ω 7→ H(Ω) = {u ∈ C2(Ω,R) | u is L-harmonic in Ω} (2.2)

is a harmonic sheaf and (RN ,H) is a S∗-harmonic space, which we call the L-harmonic
space. Indeed, the functions of the type max{−Γ(x, ·),−k} (with k ∈ N) provide non-
positive continuous L-subharmonic functions separating points of RN .

Remark 2.1. Conditions (D) and (R) are satisfied if L is hypoelliptic (see [8], Chapter
7, Exercise 7). In particular, this holds true if L =

∑m
j=1 X2

j , where the Xj’s are smooth
vector fields in RN satisfying the Hörmander rank condition

dim
(
Lie{X1, . . . , Xm}(x)

)
= N, ∀ x ∈ RN .

The hypoellipticity ofL, together with its homogeneity with respect to a group of dilations
in RN (in the sense of Folland, Stein [12]), is a sufficient condition for the existence of a
function Γ satisfying (G.1)–(G.3). This follows by arguing as in [8, Section 5.3]. Indeed,
from the hypoellipticity of L, we infer the existence of a “local” fundamental solution (see
Trèves [28, Theorems 52.1, 52.2]); by the homogeneity ofL, a “local-to-global” argument
can be performed (see Folland [11, Theorem 2.1]). Then one argues as in [8, Section 5.3]
to obtain the requested properties of Γ.

Particular examples of hypoelliptic homogenous operators are the sub-Laplacians on
Carnot groups,
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If V is any L-regular open set and x ∈ V , the map C(∂V,R) 3 f 7→ HV
f (x) ∈ R

is linear and it is nonnegative on nonnegative f ’s. Hence, there exists a unique Radon
measure µV

x on ∂V such that

HV
f (x) =

∫

∂V

f(y) dµV
x (y), for every f ∈ C(∂V,R).

One says that µV
x is the L-harmonic measure related to V and x.

In the sequel, we write u ∈ USC(Ω) if u : Ω → [−∞,∞) is upper semicontinuous in
Ω. We explicitly remark that a function u is subharmonic in terms of theL-harmonic space
(RN ,L) if and only if it is L-subharmonic according to the definition given in Section 1
above (see [8, Definition 6.5.1 and Theorem 6.5.2]).

Without any further comment, throughout the note we assume that the operator L in
(1.1) satisfies assumptions (ND), (G.1), (G.2), (G.3), (D) and (R) introduced above.

3 Level sets of Γ. Average operators, representation for-
mulas

We introduce a family of sets which will play a central rôle in the sequel. For every given
pair of x ∈ RN and r > 0, we set

Ωr(x) :=
{
y ∈ RN \ {0} : Γ(x, y) > 1/r

} ∪ {x}. (3.1)

For the sake of simplicity, we assume that, for every x ∈ RN and r > 0, ∇(Γ(x, ·)) 6= 0

on ∂Ωr(x), whence ∂Ωr(x) is a smooth-manifold of class C2. Thanks to Sard’s Theorem,
this hypothesis could be easily removed (in this case, all the following results will hold
for almost every r). We also have

∂Ωr(x) =
{
y ∈ RN : Γ(x, y) = 1/r

}
.

Note that any Ωr(x) is a bounded open neighborhood of x and
⋂

r>0 Ωr(x) = {x}, ⋃
r>0 Ωr(x) = RN . (3.2)

Here and in the sequel, if E is any (Lebesgue-)measurable subset of RN , we denote
by |E| its Lebesgue measure. Moreover, dy and dσ(y) will respectively denote, without
possibility of ambiguity, the Lebesgue measure and the surface measure in RN , the latter
being the Hausdorff (N − 1)-dimensional measure.

By the Bouligand regularity theorem holding true in any S∗-harmonic space (see [8,
Theorem 6.10.4]), the set Ωr(x) is L-regular, for every r > 0 and every x ∈ RN . Indeed,
the function y 7→ Γ(x0, y) − 1/r is an H-barrier function (in the sense of [8, Definition
6.10.3]) at any point x0 of ∂Ωr(x).
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To state our main theorem, we need the following notation and definitions about some
distinguished average operators related to L.

Definition 3.1 (Mean-Integral Operators). Let x ∈ RN and let us consider the functions,
defined for y 6= x,

Γx(y) := Γ(x, y), Kx(y) :=

〈
A(y)∇Γx(y),∇Γx(y)

〉

|∇Γx(y)| .

Let Ω ⊆ RN be an open set and suppose u ∈ USC(Ω). For every fixed α > 0, and every
x ∈ RN and r > 0 such that Ωr(x) ⊂ Ω, we introduce the following integrals:

mr(u)(x) =

∫

∂Ωr(x)

u(y)Kx(y) dσ(y), Mr(u)(x) =
α + 1

rα+1

∫ r

0

ρα mρ(u)(x) dρ,

Furthermore, for every x ∈ RN and every r > 0, we set

qr(x) =

∫

Ωr(x)

(
Γx(y)− 1

r

)
dy, Qr(x) =

α + 1

rα+1

∫ r

0

ρα qρ(x) dρ,

ωr(x) =
1

α rα+1

∫

Ωr(x)

(
rα − Γ−α

x (y)
)
dy.

(3.3)

The notation M
(α)
r , Q

(α)
r , ω

(α)
r will also apply. An alternative representation for Mr(u)(x)

is given by the following formula

Mr(u)(x) =
α + 1

rα+1

∫

Ωr(x)

u(y) K(α)(x, y) dy, (3.4)

where we have set

K(α)(x, y) :=

〈
A(y)∇Γx(y),∇Γx(y)

〉

Γ2+α
x (y)

. (3.5)

There holds alternative formulas for qr(x), Qr(x), ωr(x) too (all proved in the Appendix),
having interest in their own: for every x ∈ RN and every α, r > 0, one has

qr(x) =

∫ r

0

|Ωs(x)|
s2

ds,

Qr(x) =

∫ r

0

|Ωs(x)|
s2

(
1−

(s

r

)α+1)
ds,

ωr(x) =
1

rα+1

∫ r

0

sα−1
∣∣Ωs(x)

∣∣ ds.

(3.6)

Remark 3.2. The above definitions are well-posed. Indeed, note that mr(u)(x) is well-
posed because ∂Ωr(x) is a compact subset of Ω (see also hypothesis (G.2) on the fun-
damental solution), and u is bounded from above on the compact sets (since it is upper
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semicontinuous). We also remark that qr(x), Qr(x), ωr(x) are strictly positive, for any
x ∈ RN and r > 0. Also, they are finite since Γ(x, ·) is locally summable.

Moreover, in the hypotheses of the above definition, we claim that the map r 7→
mr(u)(x) is upper semicontinuous, so that Mr(u)(x) is well posed too. The claim follows
from the following argument. Being u ∈ USC(Ω) and being ∂Ωr(x) compact, there exists
a decreasing sequence of continuous functions {uj}j on ∂Ωr(x) converging pointwise to
u in a compact neighborhood od any fixed r; it is easily seen that r 7→ mr(uj)(x) is con-
tinuous (for every j ∈ N) and that mr(u)(x) = limj→∞ mr(uj)(x). Hence r 7→ mr(u)(x)

is upper semicontinuous.

We shall prove in the Appendix that the above average operators do intervene, when u

is C2, in remarkable mean-value formulas generalizing the classical Gauss-Green formu-
las for Laplace’s operator. These are recalled, for later use, in the following theorem.

Theorem 3.3 (Mean-Value Formulas for L). Let mr,Mr be the average operators in
Definition 3.1. Let also x ∈ RN and r > 0.

Then, for every function u of class C2 on an open set containing Ωr(x), we have the
following L-representation formulas:

u(x) = mr(u)(x)−
∫

Ωr(x)

(
Γ(x, y)− 1

r

)
Lu(y) dy, (3.7)

u(x) = Mr(u)(x)− α + 1

rα+1

∫ r

0

ρα

( ∫

Ωρ(x)

(
Γ(x, y)− 1

ρ

)
Lu(y) dy

)
dρ, (3.8)

We shall refer to (3.7) as the Surface Mean-Value Formula for L, whereas (3.8) will be
called the Solid Mean-Value Formula for L.

For our main results (Theorem 4.2 in the next section), we need a representation for-
mula also for the difference of the mean-integral operators mr−Mr (involved in what we
shall call the ‘Reade-type Condition’). This formula seems to be new in many contexts
of interest (e.g., for sub-Laplacian operators). For instance, we shall prove the following
result.

Theorem 3.4. Let x ∈ RN , r > 0 and α > 0. Then, we have

mr(u)(x)−Mr(u)(x) =
1

α rα+1

∫

Ωr(x)

(
rα − Γ−α(x, y)

)Lu(y) dy, (3.9)

for every u ∈ C2(Ωr(x),R).

We also have
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Proposition 3.5. Following the notation in Definition 3.1, for every x ∈ RN , R > 0 and
for every u ∈ C2(ΩR(x),R) we have

lim
r→0

mr(u)(x)− u(x)

qr(x)
= lim

r→0

Mr(u)(x)− u(x)

Qr(x)
= lim

r→0

mr(u)(x)−Mr(u)(x)

ωr(x)
= Lu(x).

(3.10)
Furthermore, the functions (0,∞) 3 r 7→ qr(x), Qr(x) are monotone increasing and

lim
r→0

qr(x) = lim
r→0

Qr(x) = lim
r→0

ωr(x) = 0. (3.11)

Finally, if the function s 7→ |Ωs(x)|/s is monotone increasing, then r 7→ ωr(x) is mono-
tone increasing too.

We next make explicit the values of our average operators in the classical case of the
Laplacian in RN .

Remark 3.6 (The average operators forL = ∆). Let N ≥ 3 be fixed. In the classical case
A = identity matrix, i.e., L = ∆ is Laplace operator inRN , it holds that Γ(x, y) = cN |y−
x|2−N , for a suitable dimensional constant cN > 0. Actually, cN = (N(N − 2)ωN)−1,
where ωN = |B(0, 1)|.

A direct computation gives K(x, y) = cN(N − 2)|y − x|1−N , which is constant on
∂Ωr(x), so that (if B(x, ρ) denotes the usual Euclidean ball of center x and radius ρ) a
simple computation produces

mr(u)(x) = Sρ(u)(x), where ρ = (cN r)
1

N−2 .

Here, Sρ is the classical surface average operator which we introduced in (1.2). Note that
σ(∂B(x, ρ)) = σN ρN−1, where σN = σ(∂B(0, 1)) = N ωN , whence σNcN(N − 2) = 1.

With reference to (3.5), it holds that K(α)(x, y) = c−α
N (N − 2)2 |y − x|α(N−2)−2. This

is constant iff we choose α = 2
N−2

. With this choice of α, a simple computation gives

Mr(u)(x) = Bρ(u)(x), where ρ = (cN r)
1

N−2 ,

where Bρ is the classical solid average operator in (1.2). We next compute qr and Qr:
{

qr(x) = 1
2 N

ρ2,
Qr(x) = α+1

2 N
N−2

2+(α+1)(N−2)
ρ2 where ρ = (cN r)

1
N−2 .

The above choice α = 2
N−2

produces Qr(x) = 1
2 (N+2)

ρ2.

Finally, (cN s)
1

N−2 , formula (??) in the Appendix gives

ωr(x) =
1

N

1

α(N − 2) + N
ρ2, where ρ = (cN r)

1
N−2 .

and the normalizing choice α = 2
N−2

produces ωr(x) = 1
N (N+2)

ρ2.
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4 Mean value characterizations of L-subharmonic func-
tions: Main Theorem

Before stating our main theorem, we need a last definition.

Definition 4.1 (m,M -Continuity). A function u ∈ USC(Ω) defined on an open subset Ω

of RN will be called m-continuous in Ω if

lim
r→0

mr(u)(x) = u(x), for every x ∈ Ω.

Analogously, u is said M -continuous in Ω if lim
r→0

Mr(u)(x) = u(x), for every x ∈ Ω.

Notice that, from the very definition of Mr, it follows that m-continuity implies M -
continuity. Also, we shall prove that any u ∈ C(Ω,R) is m-continuous (whence M -
continuous). This is the reason why m- and M -continuity assumptions do not explicitly
appear in characterizations of continuous subharmonic functions (see e.g., [13]).

We are ready to state the main result of this section.

Theorem 4.2. Let Ω be an open subset of RN and let u : Ω → [−∞,∞) be an upper
semicontinuous function which is finite in a dense subset of Ω.

Let qr, Qr, ωr be as in Definition 3.1. Let also R(x) := sup{r > 0 : Ωr(x) ⊆ Ω}.
Then, the following conditions are equivalent:

(S) Subharmonicity: u ∈ S(Ω) with respect to L.

(1) m-Submean Condition: u(x) ≤ mr(u)(x), for every x ∈ Ω and r ∈ (0, R(x)).

(2) M -Submean Condition: u(x) ≤ Mr(u)(x), for every x ∈ Ω and r ∈ (0, R(x)).

(3) Blaschke-type Condition: It holds that

lim sup
r→0

mr(u)(x)− u(x)

qr(x)
≥ 0, for every x ∈ Ω(u). (4.1)

(4) Privaloff-type Condition: It holds that

lim sup
r→0

Mr(u)(x)− u(x)

Qr(x)
≥ 0, for every x ∈ Ω(u). (4.2)

(5) m-Monotonicity: u is m-continuous in Ω, and r 7→ mr(u)(x) is monotone increas-
ing on (0, R(x)), for every x ∈ Ω.

(6) M -Monotonicity: u is M -continuous in Ω, and r 7→ Mr(u)(x) is monotone in-
creasing on (0, R(x)), for every x ∈ Ω.
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(7) Beckenbach-Radó-type Condition: u is m-continuous in Ω, and

Mr(u)(x) ≤ mr(u)(x),

for every x ∈ Ω and every r ∈ (0, R(x)).

(8) Reade-type Condition: u is m-continuous in Ω, and

lim inf
r→0

mr(u)(x)−Mr(u)(x)

ωr(x)
≥ 0, for every x ∈ Ω(u). (4.3)

The proof of Theorem 4.2 is quite long, and it is basically founded on a general lemma,
which we present in the following Section.

5 A Kozakiewicz-type Theorem

In this Section we present a result that, for the ordinary Laplace operator, traces back to a
result due to W. Kozakiewicz [19].

We begin with some notation and definitions. Throughout this section, Ω will denote
a fixed open subset of RN . We denote by U(Ω) the set of functions v : V → [−∞,∞)

defined on some open subset V of Ω, such that v ∈ USC(V ) and v > −∞ on a dense
subset of V . We denote by D(v) (or by V (v), when the domain V is specified) the set
where v takes on finite values. Finally, we denote by F(Ω) the set of the real-extended
valued functions f : A → [−∞,∞], defined on some subset A of Ω.

Definition 5.1 (L-Kozakiewicz Operator). With all the above notation, we say that a map

G : U(Ω) −→ F(Ω)

is an L-Kozakiewicz operator in Ω if it satisfies the following four axioms:

(K.1) If v ∈ U(Ω) then G(v) is defined on D(v), that is D(G(v)) ⊇ D(v).

(K.2) For every h ∈ U(Ω) of class C2 it holds that G(h) = Lh.

(K.3) For every v, h ∈ U(Ω), with h of class C2, defined on the same open set V ⊆ Ω, it
holds that G(v + h) = G(v) + G(h).

(K.4) If v ∈ U(Ω) and if x0 is a local maximum point of v, then G(v)(x0) ≤ 0.

We stress that, in condition (K.4), we have x0 ∈ D(v), otherwise v(x) ≤ v(x0) = −∞
for every x in some neighborhood of x0, contradicting the assumption that v is finite in a
dense subset of V .
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Remark 5.2. We remark that, thanks to assumption (ND) on L, for every bounded open
set U ⊂ RN , there exists w ∈ C2(U,R) such that

w > 0 and Lw < 0 in U . (5.1)

It suffices to take, if i is as in hypothesis (ND), w(x) = M − exp(λxi), where

λ > −minU

∑N
j=1 ∂jaj,i

minU ai,i

and M > max
x∈U

exp(λxi).

We are ready to state the following result.

Theorem 5.3 (of Kozakiewicz-type. I). Let Ω ⊆ RN be an open set and let G be an
L-Kozakiewicz operator in Ω.

Let u : Ω → [−∞,∞) be an u.s.c. function, finite in a dense subset of Ω, such that

G(u) ≥ 0 in Ω(u). (5.2)

Then u is L-subharmonic in Ω.
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