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Abstract

In questo seminario sono illustrati alcuni recenti sviluppi della teoria dei moltiplicatori

di Fourier negli spazi Lp a valori in spazi di Banach. Seguono alcune applicazioni a

problemi al contorno di tipo ellittico e a problemi misti di tipo parabolico.
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In this seminar I shall illustrate some fairly new developments of the theory of Fourier

multipliers in Banach spaces. Only the Lp case will be treated. Concerning vector valued

Fourier multipliers in spaces of Hölder continuous functions,or, more generally, in Besov

spaces, we refer to [1], and also to [8]. These results have supplied new proofs of known

facts, in particular in the field of maximal regularity for parabolic problems, and have also

been the source of new discoveries. In a joint paper with A. Favini and Y. Yakubov ([6]),

these techniques are employed to study some elliptic and parabolic systems in cylindrical

spaces domains. These applications will be illustrated in the last part of the seminar.

To start with, I recall one version of the classical Mikhlin’s multiplier theorem (see [12],

Theorem IV.3):

Theorem 1. Let m ∈ C [ n
2

]+1(Rn \{0}), be such that for every α ∈ Nn
0 , with |α| ≤ [n

2
] + 1,

(1) |ξ||α||∂αm(ξ)| ≤ C, ξ ∈ Rn \ {0},

for some C ∈ R+. Then m is a Fourier multiplier for Lp(Rn), for every p ∈ (1,∞).

This means that the linear operator f → F−1(mFf), defined, for example, for f ∈

S(Rn), can be extended to a linear bounded operator in Lp(Rn).

A variation of Theorem 1 is the following result, which can be obtained as a particular

case of Theorem IV.6’ in [12]:

Theorem 2. Let m ∈ Cn(Rn \ {0}) be such that, for every α ∈ Nn
0 , with α ≤ (1, ..., 1),

for some C ∈ R+, for every ξ ∈ Rn \ {0},

(2) |ξαDαm(ξ)| ≤ C.

Then m is a Fourier multiplier for Lp(Rn), for every p ∈ (1,∞).

It is clear that, on one side, Theorem 1 requires less regularity, on the other hand,

condition (2) is weaker than condition (1). An example of Fourier multiplier which is

covered by Theorem 2, but not by Theorem 1, is (for n = 2)

m(ξ1, ξ2) =
ξ1

ξ1 + iξ2
2

,

which is connected with parabolic equations.
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The most basic example of Fourier multiplier, which is covered by both Theorems 1

and 2, is (in dimension one) the function m(ξ) = sgn(ξ). The corresponding operator is

called Hilbert transform. It turns out that the Hilbert transform can be used as a starting

point to extend Theorems 1 and 2 to the vector valued case, where the space of complex

valued functions Lp(Rn) is replaced by spaces Lp(Rn;E), with E Banach space. In this

vector valued case, integration will be always intended in the sense of Bochner. So we

shall consider the class of Banach spaces E, such that the Hilbert transform is a bounded

operator in Lp(R;E), for p ∈ (1,∞).

Definition 1. Let E be a complex Banach space. We shall say that E is UMD if the

Hilbert transform f → F−1(sgn(ξ)Ff) is a bounded operator in L2(R;E).

Owing to a well known result (see [7], Theorem 3.4), if E is UMD, the Hilbert transform

is a bounded operator in Lp(R;E), for every p ∈ (1,∞). The prototype of UMD space is

given by Lp spaces: one can show that, if µ is a positive measure and q ∈ (1,∞), Lq(µ) is

UMD. Moreover, closed subspaces of UMD spaces are UMD spaces. This implies, for

example, that standard Sobolev spaces Wm,q(Ω), with 1 < q <∞ are UMD.

The second key notion to extend Theorems 1 and 2 is the notion of R−boundedness.

To define it, we introduce a probability space Ω, with probability measure P , and a class

of random variables {rn : n ∈ N}, such that

(A1) for every n ∈ N, P (rn = 1) = P (rn = −1) = 1
2
;

(A2) the random variables rn are independent.

For example, we can consider the Rademacher sequence: in this case, Ω = [0, 1), P is

the Lebesgue measure, if n ∈ N,

rn(t) = (−1)k if k−1
2n ≤ t < k

2n , 1 ≤ k ≤ 2n.

If E and F are complex Banach spaces, we shall indicate with L(E,F ) the Banach space

of linear, bounded operators from E to F . Now we are able to define R−boundedness:

Definition 2. Let E and F be complex Banach spaces and τ ⊆ L(X, Y ) . We shall

say that τ is R−bounded if there exists C > 0 such that, ∀n ∈ N, ∀T1, ..., Tn ∈ τ ,
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∀x1, ..., xn ∈ X,

(3) ‖
n∑
k=1

rkTkxk‖L2(Ω;F ) ≤ C‖
n∑
k=1

rkxk‖L2(Ω;E),

with (rn)n∈N fulfilling (A1)-(A2).

Clearly (3) is equivalent to

(4)
∑

ε1∈{−1,1}

...
∑

εn∈{−1,1}

‖ε1T1x1 + ...εnTnxn‖2
F ≤ C

∑
ε1∈{−1,1}

...
∑

εn∈{−1,1}

‖ε1x1 + ...εnxn‖2
E,

with C independent of n, T1, ..., Tn ∈ τ , x1, ..., xn ∈ E. It is easily seen that, if τ is

R−bounded, it is also bounded in L(E,F ) and the converse holds if E and F are Hilbert

spaces. The class of translation operators {T (t) : t ∈ R}

[T (t)f ](x) := f(x+ t)

in Lp(R), with p 6= 2, provides an example of a bounded family which is not R−bounded.

A very important example of R−bounded family is given by the following theorem, which

is usualy called Kahane’s contraction principle:

Theorem 3. (Kahane’s contraction principle) Let E be a Banach space. Then, for ever

Λ ∈ R+, {x→ λx : |λ| ≤ Λ} is R−bounded in L(E).

It is worth mentioning some well known facts concerning a family of random variables

(rn)n∈N satisfying (A1) − (A2). The first important fact is Khinchine’s inequality: if

p ∈ [1,∞), there exists Cp ≥ 1, such that, ∀n ∈ N, ∀a1, ..., an in C,

(5) C−1
p (

n∑
k=1

|ak|2)1/2 ≤ ‖
n∑
k=1

rkak‖Lp(Ω) ≤ Cp(
n∑
k=1

|ak|2)1/2.

An inequality of the form (5) does not hold in a general Banach space E (unless E

is a Hilbert space). However, the following fact (which in the case of E = C follows

immediately from Khinchine’s inequality) holds:

Theorem 4. (Kahane’s inequality) Let E be a Banach space, let p ∈ [1,∞) and let (rn)n∈N

be a sequence of random variables satisfying (α1)− (α2). Then, there exists C(E, p) ≥ 1,
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such that, ∀n ∈ N, ∀x1, ..., xn ∈ E,

(6) C(E, p)−1‖
n∑
k=1

rkxk‖L2(Ω;E) ≤ ‖
n∑
k=1

rkxk‖Lp(Ω;E) ≤ C(E, p)‖
n∑
k=1

rkxk‖L2(Ω;E).

Kahane’s inequality implies that in (3) and (4) we can replace the exponent 2 with any

p ∈ [1,∞).

Now, we are able to state the following partial generalization of Theorem 1, essentially

due to L. Weis (see [9], Theorem 4.6):

Theorem 5. Let E and F be UMD spaces, n ∈ N, and let m ∈ Cn(Rn \ {0};L(E,F )).

We assume that

(7) {|ξ||α|Dαm(ξ) : ξ ∈ Rn \ {0}, α ∈ Nn
0 , α ≤ (1, ..., 1)} is R-bounded in L(E,F ).

Then, for every p ∈ (1,∞), m is a Fourier multiplier between Lp(Rn;E) and Lp(Rn;F ).

Of course, the meaning of the conclusion is the following: that the linear operator

f → F−1(mFf), defined, for example, for f ∈ S(Rn;E), can be extended to a linear

bounded operator between Lp(Rn;E) and Lp(Rn;F ).

The extension of Theorem 2 requires a further assumptions concerning the spaces E

and F .

Definition 3. Let E be a Banach space and let (rn)n∈N be a family of random variables

satisfying (A1)− (A2). We shall say that E has property (α) if there exists C ∈ R+, such

that, ∀N ∈ N, ∀αij ∈ C with |αij| ≤ 1, ∀xij ∈ E (1 ≤ i, j ≤ N),∫
Ω×Ω

‖
N∑
i=1

N∑
j=1

ri(u)rj(v)αijxij‖d(P ⊗ P ) ≤ C

∫
Ω×Ω

‖
N∑
i=1

N∑
j=1

ri(u)rj(v)xij‖d(P ⊗ P ).

One can prove that, if q ∈ (1,∞) and µ is an arbitrary measure (in some set), Lq(µ)

has property (α). There exist UMD spaces without property (α) (see [10]).

Now we are in position to state the following generalization of Theorem 2:

Theorem 6. Let E and F be UMD Banach spaces with property (α), and let m ∈

Cn(Rn \ {0};L(E,F )). We assume that

(8) {ξαDαm(ξ) : ξ ∈ Rn \ {0}, α ∈ Nn
0 , α ≤ (1, ..., 1)} is R-bounded in L(E,F ).
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Then, for every p ∈ (1,∞), m is a Fourier multiplier between Lp(Rn;E) and Lp(Rn;F ).

For a proof, see [9], Theorem 4.13.

Now we want to give some idea of the proof of Theorem 5. For the sake of simplicity,

we shall limit ourselves to consider the case n = 1. The first step is the following

Theorem 7. (Stekhlin’s theorem) Let E be a UMD space, let F be a complex Banach

space, and m ∈ C1(R;L(E,F )), be such that:

(a) lim
ξ→−∞

m(ξ) = 0 (in L(E,F ));

(b) m′ ∈ L1(R;L(E,F )).

Then:

(I) for every p ∈ (1,∞), m is a Fourier multiplier between Lp(R;E) and Lp(R;F );

(II) let {mi : i ∈ I} be a subset of C1(R;L(E,F )), such that, for every i, mi satisfies

(a), and m′i(ξ) = gi(ξ)νi(ξ), with ‖gi‖L1(R) ≤ 1 and {νi(ξ) : i ∈ I, ξ ∈ R} R−bounded

in L(E;F ). Then, the set of operators {f → F−1(miFf) : i ∈ I} is R−bounded in

L(Lp(R;E);Lp(R;F )) for every p ∈ (1,∞).

Sketch of the proof. Using the fact that E is UMD, one can easily show that, for

every s ∈ R, the characteristic function of [s,∞) χs is a Fourier multiplier in Lp(R;E).

Moreover,

‖F−1(χsFf)‖Lp(R;E) ≤ C‖f‖Lp(R;E),

for some C ∈ R+, independent of s ∈ R and f ∈ Lp(R;E) (in fact, one could show that

the family of operators {f → F−1(χsFf) : s ∈ R} is R−bounded in L(Lp(R;E))). Now

we observe that, ∀ξ ∈ R,

m(ξ) =

∫ ξ

−∞
m′(s)ds =

∫
R
m′(s)χs(ξ)ds,

so that

F−1(mFf) =

∫
R
m′(s)F−1[χsFf ]ds,

and, by Minkowski inequality,

‖F−1(mFf)‖Lp(R;F ) ≤
∫

R ‖m
′(s)F−1[χsFf ]‖Lp(R;F )ds

≤
∫

R ‖m
′(s)‖L(E,F )‖F−1[χsFf ]‖Lp(R;E)ds ≤ C

∫
R ‖m

′(s)‖L(E,F )ds‖f‖Lp(R;E).
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We omit the proof of (II).

Another crucial tool is the Littlewood-Paley decomposition. For any k ∈ Z, we set

Ik := (−2k,−21−k] ∪ [2k−1, 2k).

Using the fact that the Hilbert transform is a bounded operator, it is easily seen that, if

E is UMD, for every k the characteristic funzione χIk is a Fourier multiplier for Lp(R;E),

for every p ∈ (1,∞), if E is a UMD Banach space. Firstly, we consider the case E = C.

Given f ∈ Lp(R), we observe that, at least in the sense of distributions,

f =
∞∑

k=−∞

F−1[χIkFf ].

This is the classical Littlewood-Paley decomposition of f in the one dimensional case.

The following classical fact holds (see [12], chapter IV): there exists Cp ≥ 1, such that,

for every f ∈ Lp(R),

(9) C−1
p ‖f‖

p
Lp(R) ≤

∫
R
(
∞∑

k=−∞

|F−1[χIkFf ](x)|2)p/2)dx ≤ Cp‖f‖pLp(R),

or, in short notation,

(10) ‖f‖pLp(R) ∼
∫

R
(
∞∑

k=−∞

|F−1[χIkFf ](x)|2)p/2)dx.

By Khinchine’s inequality, if (rk)k∈Z satisfies (A1)− (A2),

(11)

∫
R(

∑∞
k=−∞ |F−1[χIkFf ](x)|2)p/2)dx ∼

∫
R ‖

∑∞
k=−∞ rkF−1[χIkFf ](x)‖pLp(Ω)dx

= ‖
∑∞

k=−∞ rkF−1[χIkFf ]‖pLp(Ω;Lp(R)).

In conclusion,

(12) ‖f‖Lp(R) ∼ ‖
∞∑

k=−∞

rkF−1[χIkFf ]‖Lp(Ω;Lp(R)).

In this form, Littlewood-Paley decomposition has been extended to the vector valued case

by J. Bourgain (see [2]). The following theorem holds:
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Theorem 8. Let E be a UMD space, p ∈ (1,∞) and let (rk)k∈Z be a class of random

variables satisfying (A1)− (A2). Then

(13) ‖f‖Lp(R;E) ∼ ‖
∞∑

k=−∞

rkF−1[χIkFf ]‖Lp(Ω;Lp(R;E)).

Now we are able to prove Theorem 5 in case n = 1:

Proof of Teorem 5 in case n = 1. In this case, we have m ∈ C1(R;L(E,F )), with

{m(ξ) : ξ ∈ R \ {0}}∪ {ξm′(ξ) : ξ ∈ R \ {0}} R−bounded in L(E;F ). Take f ∈ S(R;E).

We want to prove an estimate of the form

(14) ‖|F−1[mFf ]‖Lp(R;F ) ≤ C‖f‖Lp(R;E),

with C ∈ R+ independent of f . As F is UMD, by Theorem 8, we can try to estimate

‖
∞∑

k=−∞

rkF−1[χIkmFf ]‖Lp(Ω;Lp(R;F )).

We fix g ∈ D(R), such that g(ξ) = 1 if 1/2 ≤ |ξ| ≤ 1, g(ξ) = 0 if |ξ| ≤ 1/4 or |ξ| ≥ 2. For

k ∈ Z, we set

gk(ξ) := g(2−kξ),

in such a way that gk(ξ) = 1 if ξ ∈ Ik. So, as χIk = gkχIk ,

‖
∞∑

k=−∞

rkF−1[χIkmFf ]‖Lp(Ω;Lp(R;F )) = ‖
∞∑

k=−∞

rkF−1[mgkFF−1(χIkFf)]‖Lp(Ω;Lp(R;F )).

Now, for each k ∈ Z, we set

mk(ξ) := gk(ξ)m(ξ).

It is clear that, for each k ∈ Z, mk satisfies the assumptions of Stekhlin’s theorem.

Moreover,

m′k(ξ) = g′k(ξ)m(ξ) + gk(ξ)m
′(ξ) = g′k(ξ)m(ξ) + ξ−1gk(ξ)ξm

′(ξ)

We observe that∫
R
|g′k(ξ)|dξ =

∫
R
|g′(ξ)|dξ,

∫
R
|ξ−1gk(ξ)|dξ =

∫
R
|ξ−1|g(ξ)|dξ.

So, by Stekhlin’s theorem,

(I) for each k ∈ Z, mk is a Fourier multiplier between Lp(R;E) and Lp(R;F );
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(II) the set of operators {f → F−1[mkFf ] : k ∈ Z} isR−bounded in L(Lp(R;E);Lp(R;F )).

We deduce that

‖
∞∑

k=−∞

rkF−1[mgkFF−1(χIkFf)]‖Lp(Ω;Lp(R;F )) ≤ C‖
∞∑

k=−∞

rkF−1(χIkFf)]‖Lp(Ω;Lp(R;E)),

and another application of Theorem 8 gives

‖
∞∑

k=−∞

rkF−1(χIkFf)]‖Lp(Ω;Lp(R;E)) ≤ C‖f‖Lp(R;E).

At first sight, one gets the impression that R−boundedness is just a useful technical

tool to obtain some version of Mikhlin’s multiplier in Banach spaces. In fact, one can

show that it is almost necessary, as the following result, due to P. Clement and J. Prüss

([3]), shows:

Theorem 9. Let E and F be Banach spaces, m ∈ L∞(R;L(E,F )), and let L(m) be the

set of continuity points of m. Then, if m is a Fourier multiplier between Lp(R;E) and

Lp(R;F ) for some p ∈ (1,∞), {m(ξ) : ξ ∈ L(m)} is R−bounded in L(E,F ).

Now we want to show a relevant application of these techniques. We shall prove a result

of maximal regularity for the mixed Cauchy-Dirichlet problem for the heat equation. The

problem is the following:

(15)



Dtu(t, x) = ∆xu(t, x) + f(t, x), t > 0, x ∈ O,

u(t, x′) = 0, t > 0, x′ ∈ ∂O,

u(0, x) = 0, x ∈ O.

O is an open bounded subset of Rm, lying on one side of its boundary ∂O, which is a

submanifold of Rm of class C2. We consider the Banach space E = Lq(O), with q ∈ (1,∞),

which is UMD, and introduce the following operator A:

(16)

 D(A) = W 2,q(O) ∩W 1,q
0 (O),

Au = ∆u.
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It is well known that A is the infinitesimal generator of an analytic semigroup {T (t) : t ≥

0} in E, exponentially decreasing at ∞. So, if, for some p ∈ (1,∞), f ∈ Lp(R+;E), (15)

has a unique mild solution, given by the variation of parameter formula:

(17) u(t) =

∫ t

0

T (t− s)f(s)ds.

We want to show that u, given by (17), belongs, in fact, toW 1,p(R+;Lq(O))∩Lp(R+;W 2,q(O)).

Employing the first equation in (15), it clearly suffices to show that u ∈ Lp(R+;D(A)).

We observe that (17) can be written in the form

u = K ∗ f̃ ,

with

(18) f̃(t) =


f(t) if t ≥ 0,

0 otherwise,

so that

u = K ∗ f̃ = F−1(K̂Ff).

It is easily seen that

(19) K̂(ξ) = (iξ − A)−1, ξ ∈ R,

so that, at least formally,

Au = F−1(A(iξ − A)−1Ff),

and we can try to show that m(ξ) = A(iξ − A)−1 is a Fourier multiplier in Lp(R;E),

applying Theorem 5. It is known (see, for example, [4]), that, for every θ ∈ [0, π), the set

of operators {λ(λ − A)−1 : λ ∈ C \ {0}, |Arg(λ)| ≤ θ} is R−bounded in L(E) (similar

results hold for a large class of elliptic boundary value problems). As

A(iξ − A)−1 = iξ(iξ − A)−1 − 1,

{m(ξ) : ξ ∈ R} is R−bounded in L(E). Moreover,

ξm′(ξ) = ξ2(iξ − A)−2 + iξ(iξ − A)−1,
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so that even {ξm′(ξ) : ξ ∈ R \ {0}} is R−bounded in L(E). We conclude that m is a

Fourier multiplier and

u ∈ W 1,p(R+;E) ∩ Lp(R+;D(A)),

so that

u ∈ W 1,p(R+;Lq(O)) ∩ Lp(R+;W 2,q(O)).

We recall that the case p = q was proved by Solonnikov (see [11]). A different proof can

be obtained applying Dore-Venni’s theorem (see [5]).

Finally, I want to illustrate some recent results that I have obtained in collaboration

with A. Favini and Y. Yakubov (see [6]), where we employed some of the results and

techniques which I have described.

We have started by considering a general abstract system of the form

(20)


(λ+ λ0)u(x)− u′′(x) +B(x)u′(x) + A(x)u(x) = f(x), x ∈ [0, 1],

u(mr)(r) = 0, r ∈ {0, 1},

where λ ∈ C, λ0 ≥ 0, and mr ∈ {0, 1}, with B(x) and A(x) unbounded operators in the

Banach space E, f ∈ Lp(0, 1;E). The assumptions are the following:

(L1) E is a UMD Banach space, with norm ‖.‖ and property (α).

(L2) For every x ∈ [0, 1] (−∞, 0] ⊆ ρ(A(x)) (the resolvent set) and

‖(λ+ A(x))−1‖L(E) ≤M(x)(1 + λ)−1, λ ≥ 0.

(L3) The domains D(A(x)) and D(A(x)1/2) are independent of x ∈ [0, 1]. We shall

indicate them with D(A) and D(A1/2).

(L4) ∀x ∈ [0, 1], B(x) ∈ L(D(A1/2), E)).

(L5) ∀λ ∈ C, with Re(λ) ≥ 0, ∀σ ∈ R, ∀x ∈ [0, 1], the operator λ+σ2 + iσB(x) +A(x)

is a bijection between D(A) and E, and (λ+ σ2 + iσB(x) +A(x))−1 ∈ L(E); the families

of operators {(λ+ σ2)(λ+ σ2 + iσB(x) + A(x))−1 : Re(λ) ≥ 0, σ ∈ R} and {A(x)(λ+

σ2 + iσB(x) + A(x))−1 : Re(λ) ≥ 0, σ ∈ R} are R−bounded in L(E).
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(L6) The maps x → A(x) and x → B(x) belong to, respectively, C([0, 1];L(D(A), E))

and C([0, 1]; L(D(A1/2), E)).

(L7) If x ∈ {0, 1}, for every ε ∈ R+ there exists C(ε) ∈ R+, such that, ∀u ∈ D(A1/2),

‖B(x)u‖ ≤ ε‖u‖D(A1/2) + C(ε)‖u‖.

Then, we can prove the following:

Theorem 10. Consider system (20), with the assumptions (L1)-(L7) and let p ∈ (1,∞).

We introduce the following operator A, in the space Lp(0, 1;E) (1 < p <∞).

(21)


D(A) = {u ∈ ∩2

i=0W
i,p(0, 1;D(A1−i/2)) : Dmr

x u(r) = 0, r ∈ {0, 1}},

Au(x) = −u′′(x) +B(x)u′(x) + A(x)u(x).

Then, there exists λ0 ∈ R, such that {λ : λ ∈ C, Re(λ) ≥ 0} ⊆ ρ(−A − λ0), and

{λ(λ+ λ0 +A)−1 : Re(λ) ≥ 0} is R−bounded in L(Lp(0, 1;E)).

As a consequence, with arguments resembling the ones we employed to study system

(15), one can show the following

Theorem 11. Assume that the conditions (L1)-(L7) hold and consider the system

(22)

Dtu(t, x) = D2
xu(t, x)−B(x)Dxu(t, x)− A(x)u(t, x) + f(t, x), t ∈ (0, T ), x ∈ (0, 1),

Dmr
x u(t, r) = 0, t ∈ (0, T ), r ∈ {0, 1},

u(0, x) = u0(x), x ∈ (0, 1).

Let p, q ∈ (1,∞). Then the following conditions are necessary and sufficient in order that

(22) have a unique solution u belonging to W 1,q(0, T ;Lp(0, 1;E)) ∩ Lq(0, T ;D(A)):

(I) f ∈ Lq(0, T ;Lp(0, 1;E));

(II) u0 ∈ (Lp(0, 1;E);D(A))1−1/q,q (the real interpolation space).
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(III) In case p = q, (II) is equivalent to u0 ∈ B2(1−1/p)
p,p (0, 1;E)∩Lp(0, 1; (E,D(A))1−1/p,p),

u
(mr)
0 (r) = 0 if p > 3

2−mr
(r ∈ {0, 1}), where B

2(1−1/p)
p,p (0, 1;E) indicates the abstract Besov

space.

We show a ”concrete” system to which the previous results are applicable. The problem

is the following:

(23)

(λ+ λ0)u(x, y)−D2
xu(x, y) +B(x, y,Dy)Dxu(x, y) + A(x, y,Dy)u(x, y) = f(x, y),

(x, y) ∈ (0, 1)×O,

D
(mr)
x u(r, y) = 0, r ∈ {0, 1}, y ∈ O,

Bj(y
′, ∂y)u(x, y) = 0, j ∈ {1, ...,m}, x ∈ (0, 1), y′ ∈ ∂O,

with the following assumptions:

(N1) O is an open bounded subset of Rn lying on one side of ∂O, which is a submanifold

of Rn of class C2m, for certain m ∈ N, ε ∈ R+; for each r ∈ {0, 1}, mr ∈ {0, 1}.

(N2) A(x, y,Dy) =
∑
|α|≤2m aα(x, y)∂αy with aα (|α| ≤ 2m) belonging to C([0, 1] × O),

aα(x, .) ∈ Cε(O) ∀x ∈ [0, 1] in case |α| = 2m, for some ε ∈ R+.

(N3) B(x, y,Dy) =
∑
|α|≤m bα(x, y)∂αy , with bα (|α| ≤ m) belonging to C([0, 1] × O),

bα(x, .) ∈ Cε(O) ∀x ∈ [0, 1] in case |α| = m.

(N4) For j = 1, ...,m, Bj(y
′, ∂y) =

∑
|α|≤mj

bj,α(y)∂αy (y′ ∈ ∂O) is a linear differential

operator of order mj (0 ≤ mj ≤ 2m− 1), with coefficients of class C2m−mj (∂O).

In the following we shall indicate with A](x, y, ∂y), B
](x, y, ∂y), B

]
j(y
′, ∂y) (1 ≤ j ≤ m)

the parts of order (respectively) 2m, m, mj of A(x, y, ∂y), B(x, y, ∂y), Bj(y
′, ∂y) and we

shall consider also the characteristic polynomials A](x, y, ζ), B](x, y, ζ), B]
j(y
′, ζ) (ζ ∈ Cn).

(N5) bα(x, y) ≡ 0 if |α| = m, x ∈ {0, 1} and y ∈ O.
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(N6) ∀(x, y) ∈ [0, 1]×O,

(24) Re{σ2 + iσB](x, y, iξ) + A](x, y, iξ)} > 0, ∀(σ, ξ) ∈ (R× Rn) \ {(0, 0)}.

For every (x, y′) ∈ [0, 1]× ∂O we consider the o. d. e. system

(25)
(λ+ σ2)v(t) + iσB](x, y′, iη + ν(y′)Dt)v(t) + A](x, y′, iη + ν(y′)Dt)v(t) = 0, t ≥ 0,

B]
j(y
′, iη + ν(y′)Dt)v(0) = gj, j = 1, ...,m,

with λ ∈ C, Re(λ) ≥ 0, σ ∈ R, y′ ∈ ∂O, η ∈ Ty′(∂O) (the tangent space), ν(y′) unit

vector orthogonal to ∂O and pointing inside O . Then, if (λ, σ, η) 6= (0, 0, 0), for any

(g1, ..., gm) ∈ Cm, (25) has a unique solution tending to 0, as t→∞.

The following result holds:

Theorem 12. Assume that the assumptions (N1)-(N6) are satisfied and let p ∈ (1,+∞).

Then:

(I) there exists λ0 ≥ 0, such that, if λ ∈ C, Re(λ) ≥ 0, f ∈ Lp((0, 1)× O), the system

(23) has a unique solution u belonging to ∩2
i=0W

i,p(0, 1;W (2−i)m,p(O)).

(II) Define the following operator A:

(26)



D(A) := {u ∈ ∩2
j=0W

2−j,p(0, 1;W jm,p(O)) : Dmr
x u(r, ·) ≡ 0, r ∈ {0, 1},

Bj(y
′, Dy)u(·, y′) = 0, y′ ∈ ∂O},

Au(x, y) = −D2
xu(x, y) +B(x, y.Dy)Dxu(x, y) + A(x, y,Dy)u(x, y),

and think of A as an unbounded operator in Lp(0, 1;Lp(O)) = Lp((0, 1)×O). Then, there

exists λ0 ∈ R, such that {λ : λ ∈ C, Re(λ) ≥ 0} ⊆ ρ(−A − λ0), and {λ(λ + λ0 + A)−1 :

Re(λ) ≥ 0} is R−bounded in L(Lp(0, 1;Lp(O)).

Sketch of the proof We set E = Lp(Ω). We already know that E is UMD with

property (α). Next, we introduce the following notation: let s ∈ N, s ≤ 2m. We set

(27) W s,p
B (O) := {u ∈ W s,p(O) : Bju = 0 if 1 ≤ j ≤ m, mj + 1/p < s}.
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Analogously, if 0 < s ≤ 2m, 1 ≤ p, q ≤ 2m, we set

(28) Bs
p,q,B(O) := {u ∈ Bs

p,q(O) : Bju = 0 if 1 ≤ j ≤ m, mj + 1/p < s}.

Then, we set

(29)


A0(x) : D(A)→ E,

A0(x)u := A(x, ·, ∂y)u, u ∈ D(A),

One can show, essentially applying the results of [4], that there exists µ0 ≥ 0, such

that, if we set

(30) A(x) := A0(x) + µ0,

A(x) satisfies (L2) for every x ∈ [0, 1], in such a way that the fractional power A(x)1/2 is

defined. One can see also that, for every x ∈ [0, 1],

(31) D(A(x)1/2) = Wm,p
B (O),

so that even (L3) is satisfied. Now, for every x ∈ [0, 1], we set

(32)


B(x) : D(A1/2)→ E,

B(x)u := B(x, ·, ∂y)u, u ∈ D(A1/2).

The assumptions of regularity of the coefficients imply that (L6) holds. We omit the

technical proof of (L5), which can be obtained increasing (if necessary) µ0. Finally (L7)

is a consequence of (N5). In fact, if x ∈ {0, 1}, it implies that B(x) can be extended to

Wm−1,p
B (O). From this, the estimate in (L7) follows.

We conclude that Theorem 10 is applicable.
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Now we consider the ”parabolic” problem

(33)

∂tu(t, x, y) = ∂2
xu(t, x, y)−B(x, y,Dy)∂xu(t, x, y)− A(x, y,Dy)u(t, x, y) + f(t, x, y),

(t, x, y) ∈ (0, T )× (0, 1)× Ω,

∂
(mr)
x u(t, r, y) = 0, t ∈ (0, T ), r ∈ {0, 1}, y ∈ Ω,

Bj(y
′, ∂y)u(t, x, y′) = 0, j ∈ {1, ...,m}, t ∈ (0, T ), x ∈ (0, 1), y′ ∈ ∂Ω

u(0, x, y) = u0(x, y), (x, y) ∈ (0, 1)× Ω.

For simplicity, we consider only the case q = p. Applying Theorems 12 and 11, one can

show the following

Theorem 13. We assume that the conditions (N1)-(N6) are fulfilled. Let p ∈ (1,∞),

with 2m[1 − 1/(2p) − mr/2] − mj 6= 1/p, for each r ∈ {0, 1}, j ∈ {1, ...,m}, and p 6=
3

2−mr
, for each r ∈ {0, 1}. Then the following conditions are necessary and sufficient,

in order that (33) have a unique solution u in the space W 1,p(0, T ;Lp((0, 1) × O)) ∩

∩2
i=0L

p(0, T ;W i,p(0, 1;W (1−i/2)2m,p(O)):

(I) f ∈ Lp(0, T ;Lp((0, 1)×O));

(II) u0 ∈ B
2(1−1/p)
p,p (0, 1;Lp(O)) ∩ Lp(0, 1;B

2m(1−1/p)
p,B (O)), ∂mr

x u0(r, ·) = 0, in case p >

3
2−mr

(r ∈ {0, 1}).

Sketch of the proof We can apply Theorem 11. We must characterize the space

B
2(1−1/p)
p,p (0, 1;E) ∩ Lp(0, 1; (E,D(A))1−1/p,p). One can show that, if 2m[1 − 1/(2p) −

mr/2]−mj 6= 1/p, for each r ∈ {0, 1}, j ∈ {1, ...,m}, and p 6= 3
2−mr

, for each r ∈ {0, 1},

it coincides with B
2(1−1/p)
p,p (0, 1;Lp(O)) ∩ Lp(0, 1;B

2m(1−1/p)
p,B (O)).
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