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Abstract. We survey some recent regularity results for fractional p-Laplacian elliptic

equations, especially focusing on pure and weighted boundary Hölder continuity of the

solutions of related Dirichlet problems. Then, we present some applications of such results

to general nonlinear elliptic equations of fractional order, treated via either variational or

topological methods.

Sunto. Esaminiamo alcuni recenti risultati di regolarità per equazioni ellittiche con

p-laplaciano frazionario, concentrandoci specialmente sulla continuità hölderiana alla

frontiera delle soluzioni dei relativi problemi di Dirichlet. Quindi presentiamo alcune

applicazioni di tali risultati a equazioni ellittiche non lineari di ordine frazionario più

generali, trattate con metodi sia variazionali che topologici.
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1. Introduction and preliminaries

The purpose of the present note is to survey some recent results concerning regularity of

the solutions of elliptic partial differential equations belonging to the following class:

(1) Lsp,Ku = f(x) in Ω.

Here Ω ⊂ RN (N > 2) is an open set, f ∈ L∞(Ω), and the leading operator is a nonlinear

one with fractional order 2s, admitting the following representation for u : RN → R
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smooth enough and x ∈ RN :

Lsp,Ku(x) = lim
ε→0+

∫
Bε(x)c

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy,

where s ∈ (0, 1), p > 1, and the kernel K : RN ×RN → R is a measurable function s.t. for

a.e. x, y ∈ RN

(K1) K(x, y) = K(y, x);

(K2) Λ1 6 K(x, y)|x− y|N+ps 6 Λ2 (0 < Λ1 6 Λ2).

If Λ1 = Λ2 = CN,p,s > 0 (a normalization constant which varies from one reference to

another), Lsp,K becomes the s-fractional p-Laplacian, namely,

(−∆)spu(x) = CN,p,s lim
ε→0+

∫
Bε(x)c

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy.

If, in addition, p = 2, then we retrieve the classical fractional Laplacian (−∆)s. In the

linear case, p = 2, elliptic equations of the type (1) and their evolutive counterparts

have countless applications to quantum mechanics, flame propagation, dislocation of

crystals, and above all models based on stable Lévy-type stochastic processes, see [8] for

an elementary introduction to this vast subject.

In the nonlinear framework, the main motivation arises from game theory, which may

lead to either fully nonlinear equations of fractional order, or problems driven by the

fractional ∞-Laplacian (the latter is also related to the problem of Hölder continuous

extensions), see [2, 9]. Equation (1), however, does not fall in this class, being rather a

general divergence-form nonlinear nonlocal equation, of degenerate (p > 2) or singular

(p < 2) type. The model operator (−∆)sp can be seen as both an approximation of the

p-Laplacian for p fixed and s→ 1 (see [42], and [4] for a functional-analytic approach), and

an approximation of the fractional infinity Laplacian for s fixed and p→∞ (see [13, 52]).

Anyway, also due to its independent mathematical interest, the fractional p-Laplacian

has become a major subject of research in the last decade. Several results on existence,

multiplicity, and qualitative properties have appeared, beginning with the very simple

Morse-theoretic approach of [35], while the regularity theory for such operator has under-

gone a slower development and is growing fast in the last years. The reason for such a gap

is easily understood.
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Indeed, the functional analytic properties of (−∆)sp like continuity, monotonicity, spectral

properties, and weak minimum/comparison principles do not differ too much from those of

the local p-Laplacian, and the same holds for the more general operator Lsp,K , see [35, 52].

On the other hand, regularity theory for fractional order operators requires new ideas

with respect to the classical framework, mainly due to two distinctive features: first, the

operator does not involve derivatives, but rather a fractional order difference quotient of

singular nature; second, the operator has a nonlocal nature, meaning that perturbing the

solution outside the domain Ω does affect the equation in Ω. The latter, in particular, will

be a crucial element in the forthcoming discussion. Some years ago, the state of the art

on nonlinear nonlocal equations was portrayed in [55,57]. We now aim at providing new

details, including some very recent results, in a smooth exposition. Here we do not cover

the field of evolutive fractional p-Laplacian equation, referring the reader to [49] and the

references therein.

Therefore, in the present note we will focus on some regularity results for solutions of

equations of the class (1), especially on the issue of global (or boundary) regularity for the

solutions of the Dirichlet problem

(2)

L
s
p,Ku = f(x) in Ω

u = 0 in Ωc.

For the model case K(x, y) = |x − y|−N−ps, optimal boundary regularity of u, which

amounts to s-Hölder continuity in Ω, was recently proved in [36], along with Hölder

continuity of the quotient u/dists(·,Ωc). Such study is motivated by some applications to

more general nonlinear equations, which we will discuss at the end of the paper.

First, we need more precise definitions of the involved operators and equations. The

pointwise representation given above for Lsp,K is a bit näıve, since in general (especially for

p < 2) the integral may fail to converge. So, we need to define our operator more precisely

in the natural framework of fractional Sobolev spaces, see [21,48].
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For any open set Ω ⊆ RN , p > 1, s ∈ (0, 1) we define the Gagliardo seminorm of a

measurable function u : Ω→ R as

[u]s,p,Ω =
[ ∫∫

Ω×Ω

|u(x)− u(y)|p

|x− y|N+ps
dx dy

] 1
p
.

We define the Sobolev space

W s,p(Ω) =
{
u ∈ Lp(Ω) : [u]s,p,Ω <∞

}
,

a uniformly convex, separable Banach space endowed with the norm

‖u‖W s,p(Ω) =
(
‖u‖pLp(Ω) + [u]ps,p,Ω

) 1
p .

If Ω is bounded, we define the localized space

W̃ s,p(Ω) =
{
u ∈ Lploc(R

N) : u ∈ W s,p(Ω′) for some Ω′ c Ω,

∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

}
,

while for unbounded Ω we set

W̃ s,p
loc (Ω) =

{
u ∈ Lploc(R

N) : u ∈ W s,p(Ω′) for all Ω′ b Ω
}
.

We say that u ∈ W̃ s,p
loc (Ω) is a (local weak) solution of (1) if for all ϕ ∈ C∞c (Ω)

(3)

∫∫
RN×RN

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))K(x, y) dx dy =

∫
Ω

f(x)ϕ(x) dx.

Alternatively, weak solutions can be defined by means of the tail spaces introduced in [45],

namely

Lp−1
ps (RN) =

{
u ∈ Lp−1

loc (RN) :

∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

}
.

We note that W s,p(RN) ⊂ Lp−1
ps (RN), while for a general domain Ω such inclusion is not

granted. Tail spaces, introduced to deal with obstacle problems, provide a more general

framework but at the price of a slightly more complex definition of solutions, so for the

purposes of the present survey we will keep the definition based on W̃ s,p(Ω). If Ω is

bounded with a C1,1-boundary, then the subspace

W s,p
0 (Ω) =

{
u ∈ W s,p(RN) : u = 0 in Ωc

}
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can be endowed with the norm ‖u‖W s,p
0 (Ω) = [u]s,p,RN and is compactly embedded into

Lq(Ω), for all q ∈ [1, p∗s), where

p∗s =


Np

N − ps
if ps < N

∞ if ps > N .

In such case, C∞c (Ω) is a dense subspace of W s,p
0 (Ω). We say that u ∈ W s,p

0 (Ω) is a

(weak) solution of (2) if u satisfies (3) for all ϕ ∈ C∞c (Ω). We are going to investigate the

regularity of such solutions.

2. Interior regularity

In the linear case p = 2, interior regularity of the solutions to (1)-type equations is a well

established subject. For the model operator (−∆)s, we have the following:

Theorem 2.1. (Interior regularity, linear case) Let Ω ⊂ RN be an open set, s ∈ (0, 1)

f ∈ L∞(Ω), and u be a solution of (−∆)su = f in Ω. Then:

(i) (Hölder continuity) if s 6= 1/2 then u ∈ C2s
loc(Ω), and if s = 1/2 then u ∈ Cα

loc(Ω)

for all α ∈ (0, 2s);

(ii) (Schauder estimates) if f ∈ Cα(Ω) and 2s+ α /∈ N then u ∈ C2s+α
loc (Ω).

In (ii) it is understood that, if 2s + α > 1, then u ∈ C1
loc(Ω) and ∇u ∈ C2s+α−1

loc (Ω).

Theorem 2.1 follows from [26, Theorem 2.4.1, Proposition 2.4.4], see also [1, 22, 25,61] for

more general linear nonlocal operators invariant by translation, [14,24] for measure-type

kernels, and [54] for a discussion on optimal Hölder exponent in (i). Most regularity

results come with a uniform estimate on the Hölder norm of solutions. A valuable tool for

linear nonlocal equations is the extension result of [10], which also allows to prove Harnack

inequalities.

In the nonlinear framework, such tools are not fully developed yet. Recently, in [17]

an extension operator relating the fractional p-Laplacian to a local elliptic equation in

dimension N + 1 was introduced, under the condition p(2 − s) < 2 and restricted to

C2-functions. Such result, though interesting as a nonlinear counterpart of [10], does not

provide an equally general and useful tool for regularity theory.
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The first regularity results for nonlinear, nonlocal operators of the form Lsp,K are found

in [18, 19], where the authors use a nonlocal adaptation of the De Giorgi-Nash-Moser

method to prove that, if f = 0, weak solutions to the equation (1) are locally bounded,

locally Hölder continuous with an undetermined small exponent, and satisfy a Harnack

inequality. A similar result is proved with a different method in the recent paper [12],

based on the clustering and expansion of positivity (see also [23]). Both approaches involve

careful estimates of the nonlocal tail, a special quantity depending on the behavior of the

solution u outside a ball BR(x), defined by

Tail(u, x,R) =
[
Rps

∫
BcR(x)

|u(x)|p−1

|x− y|N+ps
dy
] 1
p−1
.

The control of tail terms is one of the most delicate issues in nonlocal regularity theory.

During the last decade, such theory has widely developed. For instance, we mention

the Hölder regularity for solutions of non-homogenous equations with measure-type data

from [47] and a very general result for fractional De Giorgi classes from [15]. For the case

of the fractional p-Laplacian, a basic reference result is the following:

Theorem 2.2. (Interior regularity, nonlinear case) Let Ω be a bounded open set, p > 1,

s ∈ (0, 1), f ∈ L∞(Ω), and u ∈ W̃ s,p(Ω) be a solution of (−∆)spu = f in Ω. Then, for all

α satisfying

0 < α < min
{

1,
ps

p− 1

}
we have u ∈ Cα

loc(Ω). In addition, there exists C = C(N, p, s, α) > 0 s.t. for all B4R(x) ⊂ Ω

we have

[u]Cα(BR/8(x)) 6
C

Rα

[
‖u‖L∞(BR(x)) +R

ps
p−1‖f‖

1
p−1

L∞(Ω) + Tail(u, x,R)
]
.

Theorem 2.2 was proved in [6] for the degenerate case p > 2 and in [29] for the singular

case p < 2, respectively. We remark that the results stated above are in fact more general,

as they hold for f ∈ Lq(Ω), with

q > max
{

1,
N

ps

}
and a suitably adapted Hölder exponent α depending on q. The Hölder exponent α is

sharp in many situations, depending on the summability of the reaction f . Very recently,
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the range of attainable Hölder exponents has been widened in [3] for the homogeneous

degenerate equation (p > 2, f = 0):

(i) if s 6 (p− 2)/p, then u ∈ Cα
loc(Ω) for all 0 < α < ps/(p− 2);

(ii) if s > (p− 2)/p, then u ∈ Cα
loc(Ω) for all 0 < α < 1 (almost-Lipschitz continuity).

In most results of this type, higher Hölder continuity is obtained through higher Sobolev

regularity, see [5] for the degenerate case and [20] for the singular case. Being based on

discrete differentiation of u and integrability of ∇u, such results are not immediately

extended to operators with more general kernels (we will come back to this at the end

of Section 3). The picture presented above is introductory and far from being complete,

for instance see [11, 60] for fully nonlinear nonlocal equations and [51] for the viscosity

approach to the fractional p-Laplacian.

3. Boundary regularity

Following more closely the line of the present study, we want to examine the regularity

of the solution up to the boundary ∂Ω, which is assumed to be smooth. Already in

the linear case, simple examples show that the regularity of the solution of fractional

equations lowers dramatically as it approaches the boundary. To fix ideas, first consider

the fractional Laplace equation on the half-line, coupled with a homogeneous nonlocal

Dirichlet condition: (−∆)su = 0 in (0,∞)

u = 0 in (−∞, 0].

The positive solution u(x) = xs+ is of class C∞ in (0,∞), but at best Cs at x = 0. Another

well-known example is the torsion equation in a ball:(−∆)su = 1 in B1(0)

u = 0 in Bc
1(0).

The solution u(x) = CN,s(1− |x|2)s+ (see [59] for the precise value of CN,s > 0) again is no

more than s-Hölder continuous in B̄1(0). So, the interior estimates of Theorem 2.1 are

not stable at the boundary. In fact, it can be proved that s-Hölder in Ω (and hence in

RN ) is the optimal regularity for the solutions of Dirichlet problems as soon as Ω satisfies
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the exterior ball condition, see [59] for the fractional Laplacian and [58, 61] for general

translation-invariant linear operators. In the proofs of boundary regularity results, a

fractional Kelvin transform is often used.

Turning to the nonlinear framework, no explicit solutions are known. Nevertheless, let

us look at the estimate of Theorem 2.2, taking for simplicity α = ps/(p− 1). As soon as

x approaches ∂Ω, we have R→ 0. The second term of the right-hand side then reduces

to ‖f‖L∞(Ω), but the first and third term may blow up, depending on the behavior of u.

Note that the nonlinear nature of the operator prevents use of transforms.

The first global regularity result for the fractional p-Laplacian goes back to [39], and it

ensures that the (unique) solution of the Dirichlet problem

(4)

(−∆)spu = f(x) in Ω

u = 0 in Ωc,

with Ω bounded and C1,1-smooth and f ∈ L∞(Ω), satisfies u ∈ Cα(Ω) for some indeter-

mined α ∈ (0, 1) depending on N, p, s,Ω, and f . Despite this result has been overcome by

the following literature, one intermediate lemma [39, Theorem 4.4] has proved to be useful:

Lemma 3.1. Let Ω be bounded and C1,1-smooth, f ∈ L∞(Ω), u ∈ W s,p
0 (Ω) be the solution

of (4), and set for all x ∈ RN

dΩ(x) = dist(x,Ωc).

Then, there exists C = C(N, p, s,Ω) > 0 s.t. for a.e. x ∈ Ω

|u(x)| 6 C‖f‖
1
p−1

L∞(Ω)d
s
Ω(x).

The proof of Lemma 3.1 divides in two steps: first, starting from the solution of a torsion

problem on a ball we produce a barrier w near a boundary point x ∈ ∂Ω, s.t. w ∼ dsΩ near x;

then, we apply a weak comparison principle to (a normalized) u and such w. The estimate

of Lemma 3.1 becomes meaningful near ∂Ω, where it can be used along with Theorem 2.2

to prove the following global regularity result for the fractional p-Laplacian [36, Theorem

2.7]:
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Theorem 3.1. (Global regularity) Let Ω be bounded and C1,1-smooth, f ∈ L∞(Ω),

u ∈ W s,p
0 (Ω) be the solution of (4). Then, u ∈ Cs(Ω) and there exists C = C(N, p, s,Ω) > 0

s.t.

‖u‖Cs(Ω) 6 C‖f‖
1
p−1

L∞(Ω).

The proof of Theorem 3.1 exploits Theorem 2.2 and Lemma 3.1 above: assuming for

simplicity ‖f‖L∞(Ω) = 1, by Lemma 3.1 we have ‖u‖L∞(Ω) 6 Cdiam(Ω)s. Also, given

x ∈ ∂Ω and R > 0 the same estimate can be used to see that

osc
BR(x)∩Ω

u 6 CRs.

Now we invoke Theorem 2.2 with α = s, so for all B4R(x) ⊂ Ω we get u ∈ Cs(BR/8(x))

and, using the estimates above, we find

[u]Cs(BR/8(x)) 6
C

Rs

[
‖u‖L∞(BR(x)) +R

ps
p−1 + Tail(u, x,R)

]
6 C + CR

s
p−1 + diam(Ω)

s
p−1

[ ∫
Ω∩BcR(x)

|u(y)|p−1

|x− y|N+ps
dy
] 1
p−1

6 C.

So, the Cs-estimate is stable as x approaches ∂Ω. These conditions, via a technical

lemma on Hölder continuous functions [36, Lemma 2.6], imply u ∈ Cs(Ω) and the uniform

estimate.

Theorem 3.1 is optimal, even for the linear case p = 2, due to the previous examples.

Nevertheless, global Cs-regularity is not satisfactory, and in the absence of a general

gradient bound, we are led to the study of a form or fine (or weighted) boundary regularity,

which amounts at
u

dsΩ
∈ Cα(Ω) for some α ∈ (0, 1),

meaning of course that u/dsΩ admits a α-Hölder continuous extension to Ω. Such type

of estimate comes from fully nonlinear regularity theory, and was first introduced in [46]

(with s = 1) to prove C2-regularity of solutions of second order elliptic equations. In the

nonlocal framework, it was first proved in [59] for (−∆)s, in [61] for translation invariant

linear operators, in [44] for linear operators with Hölder continuous kernels, and in [60] for

fully nonlinear fractional equations. See also [31] for nearly-optimal boundary smoothness

for linear stable operators.
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For the fractional p-Laplacian, the path to fine boundary regularity is a long one. This

result was achieved in [40] for the degenerate case p > 2, and in [36] for the singular case

p < 2:

Theorem 3.2. (Fine boundary regularity) Let Ω be bounded and C1,1-smooth, f ∈ L∞(Ω),

u ∈ W s,p
0 (Ω) be the solution of (4). Then, there exist α ∈ (0, s) and C > 0 depending on

N, p, s,Ω, s.t. u/dsΩ ∈ Cα(Ω) and∥∥∥ u
dsΩ

∥∥∥
Cα(Ω)

6 C‖f‖
1
p−1

L∞(Ω).

Considering the lack of boundary regularity inherent to nonlocal problems, Theorem 3.2

represent the proper analogue to the celebrated C1,α-regularity result for the p-Laplacian

from [50]. The proof is quite technical, but we will try to summarize it. We only consider

the singular case p < 2, which is more involved, essentially because the map t 7→ |t|p−2t is

non-differentiable at 0. First we recall a typically nonlocal superposition principle:

Lemma 3.2. Let u ∈ W̃ s,p(Ω), v ∈ L1
loc(RN) s.t. Ω b V = supp(u− v) and∫

V

|v(y)|p−1

(1 + |y|)N+ps
dy <∞.

Set for all x ∈ RN

w(x) =

u(x) if x ∈ V c

v(x) if x ∈ V .

Then, w ∈ W̃ s,p(Ω) and weakly for x ∈ Ω

(−∆)spw(x) = (−∆)spu(x) + 2

∫
V

(u(x)− v(y))p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dx1.

The main idea is to perturb (super, sub) solutions at a distance from the domain, and

obtain through Lemma 3.2 a control on the fractional p-Laplacians of the perturbed

functions inside the domain. More precisely, assume for simplicity that 0 ∈ ∂Ω and set

DR = BR(0) ∩ Ω, while B̃R denotes a ball of radius R/4 inside Ω, centered along the

normal direction to ∂Ω, s.t. dΩ is controlled by multiples of R in B̃R. We aim at an

1For brevity we set ap−1 = |a|p−2a.
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oscillation estimate for the quotient v = u/dsΩ in DR. We define the nonlocal excess with

respect to a constant m ∈ R as

L(u,m,R) =
[
−
∫
B̃R

|v(x)−m|p−1 dx
] 1
p−1
.

The quantity above controls v in DR/2 by means of two weak Harnack inequalities. Namely,

let u ∈ W̃ s,p(DR) satisfy for some m,K,H > 0(−∆)spu > −min{K,H} in DR

u > mdsΩ in RN

(note the global lower bound requested for u). Then, there exist σ ∈ (0, 1), C > 0 only

depending on N, p, s,Ω s.t.

inf
DR/2

(v −m) > σL(u,m,R)− C(KRs)
1
p−1 − C(m+Hm2−p)Rs.

This lower bound is obtained by superposition between u and convenient barrier functions,

respectively, a torsion solution when the excess is small, and a diffeomorphic equivalent

to the distance from ∂Ω (this is where the C1,1-smoothness assumptions on ∂Ω is mainly

required).

An apparently equivalent upper bound holds for subsolutions. If u satisfies(−∆)spu 6 min{K,H} in DR

u 6MdsΩ in RN ,

then for some universal constants we have

inf
DR/4

(M − v) > σL(u,M,R)− C(KRs)
1
p−1 − C(M +HM2−p)Rs.

The main difference is that the bound u 6MdsΩ leaves the sign of u undetermined. We

use the fact that, if the excess is big enough, then u 6 0 in DR/2. We are now able to

prove the desired oscillation estimate on v, in the following form: define a sequence of

radii (Rn) tending to 0, then there exist two more sequences, (mn) nondecreasing and

(Mn) nonincreasing, s.t. for all n ∈ N

mn 6 inf
DRn

v 6 sup
DRn

v 6Mn, Mn −mn = µRα
n,



BOUNDARY REGULARITY FOR FRACTIONAL p-LAPLACIAN 175

with α ∈ (0, 1), µ > 1 only depending on the data. The above estimates are proved by

strong induction. For n = 0, it is simply Lemma 3.1 above. Assuming that the relation

above holds for all integers between 0 and n, we apply the lower bound to (u∨mndsΩ) and

the upper bound to (u ∧MndsΩ) (which satisfy global bounds), and, via delicate estimates

on excess and tail terms, we find mn+1, Mn+1. After that, it is standard to find C > 0 s.t.

for all r > 0 small enough

osc
Dr

v 6 C‖f‖
1
p−1

L∞(Ω)r
α,

which in turn implies v ∈ Cα(Ω) as in Theorem 3.1, thus concluding the proof of Theorem

3.2.

In [55], a stimulating list of open problems in fractional regularity theory was proposed.

Since then, much has been achieved, but some limit cases still lack a solution, so we would

like to provide the reader with an updated report. Problem (1) from [55] deals with higher

interior Hölder regularity for the solution of

(−∆)spu = f(x) in Ω,

with f ∈ L∞(Ω), proposing the conjecture that u ∈ Cα
loc(Ω) for some α > s. We know

from Theorem 2.2 that this is true. Further, the supremum of attainable Hölder exponents

ps/(p− 1) is optimal for s < (p− 1)/p, see [6, 29]. On the contrary, for s > (p− 1)/p no

more than Lipschitz regularity is known so far.

Problem (2) is about higher differentiability (or Sobolev regularity) of the solutions. The

result of [5] has been extended and improved in several ways. The most general results we

are aware of are in [20], covering both the singular and the degenerate cases and general

reactions, proving the following implications for any p > 1, f ∈ Lp′(Ω):

(i) if p > 2 or p < 2 and s < (p− 1)/p, then u ∈ W σ,p(Ω) for all σ ∈ (0, ps/(p− 1));

(ii) if p < 2 and s > (p − 1)/p, then u is differentiable with ∇u ∈ W σ,p(Ω) for

σ ∈ (0, ps− p+ 1).

Even better regularity is obtained if f ∈ W τ,p′(Ω) for convenient τ , see [20, Theorems 1.5,

1.7]. Nevertheless, optimal conditions on f are still missing.
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Problem (3) tackles the boundary regularity of the solution of the Dirichlet problem (4)

under the following general assumption on the smoothness of ∂Ω: there exists R > 0 s.t.

inf
x∈∂Ω

inf
r∈(0,R)

|Br(x) ∩ Ωc|
rN

> 0.

The condition above was introduced in [45], where Hölder continuity up to the boundary

is proved for the solution of an obstacle problem for the homogeneous fractional p-Laplace

equation. To the best of our knowledge, it is still an open problem whether the obstacle

can be replaced with a non-zero reaction f ∈ L∞(Ω).

Finally, problem (4) deals with fine boundary regularity and it has found a complete

answer in Theorem 3.2 above.

Inspired by [55], we would like to leave the reader with a new short list of open problems

related to the main subject of this note, i.e., boundary regularity:

Problem 3.3. Find the optimal α in Theorem 3.2. For p = 2, we know from [59] that

u/dsΩ ∈ Cα(Ω) for all α ∈ (0, s). We may reasonably conjecture that s is the supremum of

Hölder exponents in the nonlinear case as well, but a careful reading of the proofs in [36,40]

will show that the exponent α found there is far from being explicit.

Problem 3.4. Prove boundary regularity for the fractional p-Laplacian with a reaction

f ∈ Lq(Ω), q > max{1, N/ps}. Note that, as soon as f is unbounded, Lemma 3.1 fails.

Clearly, the problem of fine boundary regularity for unbounded reactions would come next.

Problem 3.5. Find conditions on the kernel K s.t. fine boundary regularity holds for the

general operator Lsp,K . In general, hypotheses (K1), (K2) are not enough even in the linear

case, but in [58] it is proved that u/dsΩ ∈ Cα(Ω) for all α ∈ (0, s), provided the kernel is of

the form

K(x, y) =
1

|x− y|N+2s
µ
( x− y
|x− y|

)
,

where µ is a measure on the sphere SN−1 (better regularity is achieved if µ is smoother).

We do not know if this type of kernels have been treated also in the nonlinear framework.
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4. Applications

Just like the result of [50], Theorem 3.2 is especially suitable for applications in nonlinear

analysis, meaning the variety of variational and topological methods to prove existence,

multiplicity, and qualitative properties of the solutions of general problems of the form:

(5)

(−∆)spu = f(x, u) in Ω

u = 0 in Ωc,

where f : Ω × R → R is a Carathéodory mapping subject to certain growth and/or

monotonicity assumptions (see [56] for a comprehensive introduction to such methods for

nonlinear elliptic equations). For simplicity, we assume that f(x, ·) has subcritical growth,

i.e., for a.e. x ∈ Ω and all t ∈ R

(6) |f(x, t)| 6 C0(1 + |t|r−1) (C0 > 0, r ∈ (1, p∗s)).

We derive from [37, Proposition 2.3] a uniform a priori bound for the solutions of problem

(5) (which are defined as in Section 1):

Proposition 4.1. (A priori bound) Let f satisfy (6), u ∈ W s,p
0 (Ω) be a solution of

(5). Then, u ∈ L∞(Ω) and there exists C = C(N, p, s,Ω, r, C0, ‖u‖W s,p
0 (Ω)) > 0 s.t.

‖u‖L∞(Ω) 6 C.

By (6) and Proposition 4.1 above, it is easily seen that f(·, u) ∈ L∞(Ω). Therefore, by

Theorem 3.2 we have u/dsΩ ∈ Cα(Ω), with α ∈ (0, 1) depending on the data and a uniform

bound on the Cα(Ω)-norm of the quotient. We may conveniently rephrase such result by

saying that u ∈ Cα
s (Ω), where we have set

Cα
s (Ω) =

{
u ∈ C0(Ω) :

u

dsΩ
∈ Cα(Ω)

}
,

endowed with the norm ‖u‖Cαs (Ω) = ‖u/dsΩ‖Cα(Ω). This weighted Hölder space plays, in

fractional elliptic boundary value problems, the same role as C1,α(Ω) in local p-Laplacian

problems. Note that for all α ∈ (0, 1) Cα
s (Ω) is compactly embedded into C0

s (Ω), and the

latter has a positive order cone with nonempty interior

int(C0
s (Ω)+) =

{
u ∈ C0

s (Ω) : inf
Ω

u

dsΩ
> 0
}
.



178 ANTONIO IANNIZZOTTO

This functional framework bears several applications in the study of problems of the class

(5). First, we recall from [38, Theorems 2.6, 2.7] the following strong mimimum/comparison

principles (where inequalities are meant in the weak sense):

Theorem 4.1. Let f ∈ C0(R) ∩BVloc(R). Then we have:

(i) (Strong minimum principle) if u ∈ W̃ s,p(Ω) ∩ C0(Ω), u 6= 0 satisfies(−∆)spu+ f(u) > f(0) in Ω

u > 0 in Ωc,

then

inf
Ω

u

dsΩ
> 0;

(ii) (Strong comparison principle) if u, v ∈ W̃ s,p(Ω) ∩ C0(Ω), u 6= v, C > 0 satisfy(−∆)spv + f(v) 6 (−∆)spu+ f(u) 6 C in Ω

0 = v 6 u in Ωc,

then

inf
Ω

u− v
dsΩ

> 0.

The proof of Theorem 4.1 relies on the superposition principle of Lemma 3.2. As a

consequence of nonlocal diffusion of positivity, the minimum/comparison principles above

yield a more detailed information about the behavior of (super) solutions, with respect to

previous results for fractional operators, see for instance [16,43]. Incidentally we note that

the strong minimum principle (i) even holds for equations like

(−∆)spu = uq−1 (1 < q < p),

preventing the appearance of dead cores without requiring additional integrability condi-

tions, unlike in the case of the p-Laplacian (see [62]). Similarly, the strong comparison

principle (ii) gives a global information unavailable in the local case (see [32]).

When referred to solutions, Theorem 4.1 (i) rephrases in the words of the functional

framework introduced above, ensuring under suitable conditions that any non-negative,
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non-zero solution u ∈ W s,p
0 (Ω) of (5) satisfies u ∈ int(C0

s (Ω)+). This can be seen as a

fractional version of Hopf’s boundary point lemma, i.e., for all x ∈ ∂Ω

∂u

∂νs
(x) ∼ lim

y→x

u(y)

dsΩ(y)
> 0.

Problem (5) can be studied following essentially two approaches. In the variational

approach, we seek solutions as critical points of an energy functional (for semilinear

fractional equations, we refer to [53]). Set for all (x, t) ∈ Ω× R

F (x, t) =

∫ t

0

f(x, τ) dτ,

and for all u ∈ W s,p
0 (Ω)

Φ(u) =
‖u‖p

W s,p
0 (Ω)

p
−
∫

Ω

F (x, u) dx.

Then, Φ ∈ C1(W s,p
0 (Ω)) and the solutions of (5) coincide with the critical points of Φ, in

particular its local minimizers.

In many situations, one is lead to deal with truncations of f(x, ·) and the corresponding

truncated functionals, which coincide with Φ only on certain order-related subsets of

W s,p
0 (Ω) (a typical example is the positive order cone). Due to the nature of the W s,p

0 (Ω)-

topology, such sets usually have empty interior. Thus, it is useful to swap to some Hölder

type space in order to minimize truncated functionals on nonempty open sets (this method

was introduced in [7] to deal with problems at critical growth), preserving the local

minimizers.

Such change of topology is made possible by the coincidence of local minimizers in W s,p
0 (Ω)

and in C0
s (Ω), respectively, which was proved in general in [37]:

Theorem 4.2. (Sobolev vs. Hölder minima) Let f satisfy (6), u ∈ W s,p
0 (Ω). Then, the

following are equivalent:

(i) there exists ρ > 0 s.t. Φ(u+ v) > Φ(u) for all v ∈ W s,p
0 (Ω), ‖v‖W s,p

0 (Ω) 6 ρ;

(ii) there exists σ > 0 s.t. Φ(u+ v) > Φ(u) for all v ∈ W s,p
0 (Ω)∩C0

s (Ω), ‖v‖C0
s (Ω) 6 σ.

The proof of Theorem 4.2 relies on the Cα
s (Ω)-bound of Theorem 3.2 and some uniform a

priori bounds on perturbed problems, and it even holds for reactions at critical growth.
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Exploiting Theorems 4.1 and 4.2, we can prove existence and multiplicity of solutions

under a variety of assumptions, see for instance [35, Theorem 5.3] (where fine boundary

regularity was assumed in a slightly more general form, while at present it is ensured by

Theorem 3.2). A more recent example is the following, dealing with (p− 1)-superlinear

reactions at infinity, see [41, Theorem 1.1]:

Theorem 4.3. Let f satisfy (6), and in addition uniformly for a.e. x ∈ Ω

(i) lim
|t|→∞

F (x, t)

|t|p
=∞;

(ii) lim inf
|t|→∞

f(x, t)t− pF (x, t)

|t|q
> 0 for some q ∈

(N(r − p)
ps

, p∗s

)
;

(iii) lim
t→0

f(x, t)

|t|p−2t
= 0.

Then, problem (5) has at least three nontrivial solutions u+ > 0, u− < 0, and ũ 6= 0.

To prove Theorem 4.3, we truncate the reaction at the origin, thus introducing

f±(x, t) = f(x,±t±),

which still satisfies (6) and one-sided versions of the hypotheses (i)-(iii). The corresponding

energy functionals are denoted Φ±. Each has a strict local minimizer at 0 and a mountain

pass critical point u± ∈ ±int(C0
s (Ω)+) (Theorem 4.1), and by Theorem 4.2 the same

situation reflects on Φ. Finally, a Morse-theoretic argument reveals the existence of a

fourth critical point ũ.

The topological approach to problem (5) is essentially based on the degree theory for

(S)+-operators, see [56]. We define a nonlinear operator A : W s,p
0 (Ω) → W−s,p′(Ω) by

setting for all u, ϕ ∈ W s,p
0 (Ω)

〈A(u), ϕ〉 =

∫∫
RN×RN

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy −

∫
Ω

f(x, u)ϕdx,

and we seek zeros of A in W s,p
0 (Ω) (the two approaches are in principle equivalent, as

A = Φ′). Degree theory is used, for instance, in [34], where several existence results are

presented under conditions relating the asymptotic behavior of f(x, ·) to the principal

eigenvalue λ1 of the fractional p-Laplacian in W s,p
0 (Ω) (see for instance [27,33,52] on the

variational spectrum of (−∆)sp). The following is a slightly simplified version of [34, Theorem

5.2] for asymptotically (p− 1)-linear reactions:
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Theorem 4.4. Let f satisfy (6), and in addition uniformly for a.e. x ∈ Ω

(i) lim
t→∞

f(x, t)

tp−1
∈ (λ1,∞);

(ii) lim
t→0+

f(x, t)

tp−1
∈ (λ1,∞);

(iii) lim sup
t→c−

f(x, t)

(c− t)p−1
6 K for some c,K > 0.

Then, problem (5) has at least two positive solutions u1, u2 > 0.

In the proof of Theorem 4.4, the use of the constant c as a supersolution plays a crucial

role, as well as the strong comparison principle of Theorem 4.1 (ii). The first solution

u1 is found by minimizing a conveniently truncated energy functional, then the second

solution is achieved via a topological argument by contradiction, by computing the degree

of the operator A in a large ball BR(0) and in two small balls Br(0), Br(u1), respectively.

Another interesting application of our regularity results is connected with the study of

extremal solutions of problem (5) in a sub-supersolution interval. First, let u, u ∈ W̃ s,p(Ω)

be a sub- and a supersolution of (5), respectively, s.t. u 6 u in Ω. The solution set

S(u, u) =
{
u ∈ W s,p

0 (Ω) : u solution of (5), u 6 u 6 u in Ω
}

is nonempty, due to classical results in operator theory (see [56]). In [28], the topological

properties of such set are investigated:

Theorem 4.5. (Solutions in a sub-supersolution interval) Let f satisfy (6), u, u ∈ W̃ s,p(Ω)

be a sub- and a supersolution of (5) s.t. u 6 u in Ω. Then, S(u, u) has the following

properties:

(i) S(u, u) is both upward and downward directed;

(ii) S(u, u) is compact in both W s,p(Ω) and C0
s (Ω);

(iii) there exist u1, u2 ∈ S(u, u) s.t. u1 6 u 6 u2 in Ω for all u ∈ S(u, u).

The proof of Theorem 4.5 is long but straightforward. First, we endow W s,p
0 (Ω) with

a lattice structure, see [30], and we prove that whenever u, v are subsolutions (resp.,

supersolutions) of (5), then u ∨ v is as well a subsolution (resp., u ∧ v is a supersolution).

This implies (i). To prove (ii), we use the uniform bound in Cα
s (Ω) from Theorem 3.2 and

the compact embedding of Cα
s (Ω) into C0

s (Ω) to prove compactness in the latter space,
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then the (S)+-property of the fractional p-Laplacian to achieve compactness in W s,p
0 (Ω)

as well. Finally, there are several possible arguments, based on either Cantor’s diagonal

ordering or Zorn’s lemma, to prove the existence of extremal elements (iii).

Theorem 4.5 can be employed in many ways to prove the existence of extremal solutions of

fractional p-Laplacian equations in a given sub-supersolution interval, see [37, 38] for some

applications to logistic equations. In particular, we want to recall here a result ensuring

existence of the smallest positive solution (this is a one-sided version of [28, Theorem 4.1]):

Theorem 4.6. Let f satisfy (6), and in addition uniformly for a.e. x ∈ Ω

(i) lim sup
t→∞

F (x, t)

tp
<
λ1

p
;

(ii) lim
t→0+

f(x, t)

tp−1
∈ (λ1,∞).

Then, problem (5) has a smallest positive solution u+ > 0.

To prove Theorem 4.6, once again we begin by minimizing a truncation of the energy

functional Φ, which via Theorems 4.1 and 4.2 leads to the existence of a positive solution

u1 ∈ int(C0
s (Ω)+). Combining such u1 with the positive principal eigenfunction of (−∆)sp

we find a sequence of positive subsolutions and hence, by Theorem 4.5, a decreasing

sequence of minimal solutions (un). A compactness argument then allows to make a

subsequence of (un) converge to u+, which turns out to be the smallest positive solution

of (5).

Under symmetric hypotheses, it is possible to prove in a similar way the existence of the

biggest negative solution u− < 0, and then via the mountain pass theorem, of a nodal

solution ũ 6= 0 s.t. u− 6 ũ 6 u+ in Ω (see [28, Theorem 5.1]).

Remark 4.1. We note that, in the cited references, Theorems 4.4, 4.5, and 4.6 were

only stated for p > 2. This is due to regularity issues only, since fine boundary regularity

was only available for the degenerate fractional p-Laplacian at that time. Now, the use of

Theorem 3.2 allows to prove such results in the singular case p < 2 as well.
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[1] G. Barles, E. Chasseigne, C. Imbert, Hölder continuity of solutions of second-order elliptic

integro-differential equations, J. Eur. Math. Soc. 13 (2011) 1–26.

[2] C. Bjorland, L. Caffarelli, A. Figalli, Nonlocal tug-of-war and the infinity fractional

Laplacian, Comm. Pure Appl. Math. 65 (2012) 337–380.
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Poincaré C Anal. Non Linéaire 33 (2016) 1279–1299.

[20] L. Diening, K. Kim, H.S. Lee, S. Nowak, Higher differentiability for the fractional p-Laplacian,

preprint (arXiv:2406.16727).

[21] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces,

Bull. Sci. Math. 136 (2012) 521–573.

[22] S. Dipierro, X. Ros-Oton, J. Serra, E. Valdinoci, Non-symmetric stable operators: regularity

theory and integration by parts, Adv. Math. 401 (2022) art. 108321.
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[29] P. Garain, E. Lindgren, Higher Hölder regularity for the fractional p-Laplace equation in the

subquadratic case, Math. Ann. 390 (2024) 5753–5792.
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Ospedale 72, 09124 Cagliari, Italy

Email address: antonio.iannizzotto@unica.it


