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SISTEMI ELLITTICI CON SOLUZIONI LIMITATE E FUNZIONALI

DOPPIA FASE

FRANCESCO LEONETTI

Abstract. We study boundedness of weak solutions to elliptic systems of partial differ-

ential equations in divergence form, under the so-called p, q growth conditions. Examples

are obtained by writing the Euler system of some double phase functionals.

Sunto. Studiamo la limitatezza delle soluzioni deboli di sistemi di equazioni differenziali

di tipo ellittico in forma di divergenza, sotte le cosiddette condizioni di crescita p, q.

Esempi sono ottenuti scrivendo l’equazione di Eulero di alcuni funzionali doppia fase.

2010 MSC. Primary 35J47; Secondary 35B65.

Keywords. Elliptic, system, bounded, weak, solution, double, phase, p q growth.

1. Elliptic systems with bounded solutions

We consider the system of partial differential equations in divergence form

(1)



−
∑n

i=1Di

[
Ai

1(x,Du(x))
]

= 0,

−
∑n

i=1 Di

[
Ai

2(x,Du(x))
]

= 0,

............................................

−
∑n

i=1 Di [Ai
m(x,Du(x))] = 0,
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where x ∈ Ω ⊂ Rn, Ω is bounded and open, u : Ω ⊂ Rn → Rm and u1, u2, ..., um are the

components of u, so that, u = (u1, u2, ..., um). We assume that u is a weak solution of the

previous system, A(x, z) is measurable with respect to x and continuous with respect to

z. We ask what are sufficient conditions on A(x, z) that force u to be bounded. We first

consider the scalar case m = 1, that is, the case in which the system consists of only one

equation

(2) −
n∑
i=1

Di

[
Ai

1(x,Du(x))
]

= 0,

where u : Ω ⊂ Rn → R and, for some constants p ∈ (1,+∞), c1, ν ∈ (0,+∞), c2 ∈

[0,+∞),

(3)
∣∣Ai1(x, z)

∣∣ ≤ c1(|z|p−1 + 1),

(4) ν|z|p − c2 ≤
n∑
i=1

Ai
1(x, z)zi.

Let us assume that u ∈ W 1,p(Ω;R) is a weak solution of equation (2); then

u ∈ C0,α
loc (Ω;R).

This is the celebrated regularity result obtained by De Giorgi, Nash, Moser, at the end

of ’50, see [55], [108], [107].

In the vectorial case m ≥ 2, singular solutions to elliptic systems may appear, as De

Giorgi (1968) shows in [56]; see also [101], [75], [67], [110], [72], [85], [113], [74], [84], [88],

[78], [77], [115], [68], [105]. See also the reviews [102], [103], [87].

Let us come back to the scalar case m = 1 and let us note that the exponent p of the

growth condition from above (3) is the same exponent in the growth condition from below

(4) and it is the same exponent of the Sobolev space W 1,p(Ω) to which the weak solution
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u is assumed to belong. If we allow a bigger exponent q in the growth condition from

above, namely

(5)
∣∣Ai1(x, z)

∣∣ ≤ c1(|z|q−1 + 1),

(6) ν|z|p − c2 ≤
n∑
i=1

Ai
1(x, z)zi,

p < q,

then, singular solutions may appear: Giaquinta, Marcellini, Hong, end of ’80, see [73],

[96], [82].

Some regularity can be obtained if q is close to p: [97], [98], [106], [69], [116], [14], [70],

[94], [29], [30], [1], [114], [82], [11], [28], [43] [62], [63], [71], [25], [12], [92], [32], [38], [15],

[26], [7], [36], [16], [23], [34], [57], [27], [39], [60], [21], [2], [3], [8], [9], [81], [46], [22], [20],

[109], [17], [5], [99], [58], [59], [100], [48], [49], [52], [83] [54], [40]. See also the reviews [90],

[102], [104],

Let us come back to the vectorial case m ≥ 1, that is, we consider the system (1), where

u : Ω ⊂ Rn → Rm and, for constants q, p ∈ (1,+∞), c1, ν ∈ (0,+∞), c2 ∈ [0,+∞),

(7) |Aiα(x, z)| ≤ c1(|z|q−1 + 1),

(8) ν|zα|p − c2 ≤
n∑
i=1

Ai
α(x, z)zi

α,

(9) 1 < p < q <
p∗

p

n

n+ 1
, p < n.

Assume that

(10) u ∈ W 1,q(Ω;Rm)
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is a weak solution to system (1), then

(11) u ∈ L∞loc(Ω;Rm),

see Cupini-Leonetti-Mascolo (2022): [37].

In order to get bounded solutions, we need to keep away De Giorgi’s counterexample, [56].

So, we must assume some structure condition that excludes De Giorgi’s system. In the

previous result, such a structure condition is (8): let us call it ”componentwise coercivity”.

It says that the α row of the system Ai
α(x,Du) contains the gradient of all the components

of u, but, when multiplied by the gradient of the α component of u, from below we can see

only the gradient of the α component of u. Componentwise coercivity allows us to arrive

at Caccioppoli inequality on superlevel sets for the scalar function uα, so that we can

use De Giorgi’s iteration for the scalar function uα. Such a componentwise coercivity has

been used by Bjorn (2001), Leonetti-Petricca (2011), Softova (2018), Palagacev-Softova

(2020), Cupini-Leonetti-Mascolo (2022): [13], [93], [112], [111], [37].

Let us also mention Zhou (2000), [119], where a componentwise sign condition was as-

sumed.

Examples of A(x, z) enjoying componentwise coercivity are the Euler systems of some

double phase functionals, see next section.

2. Double phase functionals

Example 1. Let us consider the variational integral

(12) F1(u) =

∫
Ω

(|Du(x)|p + a(x)|Du(x)|q) dx,

where

2 ≤ p < q, 0 ≤ a(x) ≤M.

When a(x) = 0 then |Du|p + a(x)|Du|q = |Du|p and we are in the p-phase. On the other

hand, if a(x) > 0 then, for large |Du|, we have that |Du|p +a(x)|Du|q ≈ |Du|q, so, we are
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in the q-phase. Functional F1 has been considered by Zhikov (1995), Esposito-Leonetti-

Mingione (2004), Fonseca-Maly-Mingione (2004): [118], [64], [65]. Since then, a lot of

people have been studying such a functional. Let us consider

f(x, z) = |z|p + a(x)|z|q

and

Ai
α(x, z) =

∂f

∂ziα
(x, z) = p|z|p−2zi

α + a(x)q|z|q−2zi
α.

Let us check componentwise coercivity:

n∑
i=1

Ai
α(x, z)zi

α = p|z|p−2|zα|2 + a(x)q|z|q−2|zα|2 ≥ p|zα|p−2|zα|2 = p|zα|p,

where we have lowered |z|p−2 with |zα|p−2 since p ≥ 2. The Euler system of functional F1

appears to be



−
∑n

i=1Di

[
p|Du|p−2Diu

1 + a(x)q|Du|q−2Diu
1
]

= 0,

−
∑n

i=1Di

[
p|Du|p−2Diu

2 + a(x)q|Du|q−2Diu
2
]

= 0,

............................................

−
∑n

i=1 Di [p|Du|p−2Diu
m + a(x)q|Du|q−2Diu

m] = 0.

It should be noted that f(x, z) = g(x, |z|) with g(x, t) = tp + a(x)tq. Let us remark that
∂g
∂t

(x,t)

t
≥ ptp−2.

The previous calculations, for checking componentwise coercivity, apply to general Uh-

lenbeck structure:

f(x, z) = g(x, |z|),

where
∂g
∂t

(x,t)

t
≥ νtp−2 with p ≥ 2 and ν > 0. Indeed,
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Ai
α(x, z) =

∂f

∂ziα
(x, z) =

∂g

∂t
(x, |z|)zi

α

|z|
,

so that

n∑
i=1

Ai
α(x, z)zi

α =
∂g

∂t
(x, |z|) |z

α|2

|z|
≥ ν|z|p−2|zα|2 ≥ ν|zα|p,

so that componentwise coercivity holds true also for this more general structure.

REMARK. What happens to f(x, z) = |z|p + a(x)|z|q when 1 < p < 2? Componentwise

coercivity fails in the vectorial case m ≥ 2 when 1 < p < 2. Let us consider this more

general density

f(x, z) = (µ+ |z|2)p/2 + a(x)|z|q,

where µ ≥ 0, a(x) = 0 at some point x, 1 < p < 2 and m ≥ 2. The most important

cases are µ = 0, that gives f(x, z) = |z|p + a(x)|z|q, and µ = 1, that gives f(x, z) =

(1 + |z|2)p/2 + a(x)|z|q. Then

Ai
α(x, z) =

∂f

∂ziα
(x, z) = p(µ+ |z|2)(p−2)/2zi

α + a(x)q|z|q−2zi
α.

We take x verifying a(x) = 0; then

Ai
α(x, z) = p(µ+ |z|2)(p−2)/2zi

α

and
n∑
i=1

Ai
α(x, z)zi

α = p(µ+ |z|2)(p−2)/2|ziα|2.

By contradiction, let us assume that

(13) ν|ziα|p̃ − c ≤
n∑
i=1

Ai
α(x, z)zi

α

for some positive constants ν, p̃, c. Since m ≥ 2, then, for α ∈ {1, ...,m}, there exists

β ∈ {1, ...,m} \ {α}. Let us take the matrix z as follows

z1
α = t > 0, zβ1 = ts, zγi = 0 otherwise,

where s > 1 has to be choosen later. Then,

|zα| = t, |z|2 = t2 + t2s (µ+ |z|2)(p−2)/2 = (µ+ t2 + t2s)(p−2)/2.



144 FRANCESCO LEONETTI

Now, (13) becomes

νtp̃ − c ≤ p(µ+ t2 + t2s)(p−2)/2t2 =
pt2

(µ+ t2 + t2s)(2−p)/2 .

We divide both sides by tp̃ and we get

(14) ν − c

tp̃
≤ pt2−p̃

(µ+ t2 + t2s)(2−p)/2 =
pt2−p̃

ts(2−p)( µ
t2s

+ 1
t2s−2 + 1)(2−p)/2 .

We would like that s(2− p) > 2− p̃: since p < 2 we have 2− p > 0 and this means that

s > 2−p̃
2−p . We choose s > max{1; 2−p̃

2−p} and we let t→ +∞: (14) becomes

ν ≤ 0.

This gives us the desired contradiction since ν was assumed to be positive: ν > 0. The

previous calculations were performed at points x with a(x) = 0. This means that also the

standard vectorial p-Laplacian does not enjoy componentwise coercivity when 1 < p < 2.

More precisely, neither the system

−
∑n

i=1 Di

[
p|Du|p−2Diu

1
]

= 0,

−
∑n

i=1 Di

[
p|Du|p−2Diu

2
]

= 0,

............................................

−
∑n

i=1 Di [p|Du|p−2Diu
m] = 0,

nor the one



−
∑n

i=1Di

[
p(1 + |Du|2)(p−2)/2Diu

1
]

= 0,

−
∑n

i=1Di

[
p(1 + |Du|2)(p−2)/2Diu

2
]

= 0,

............................................

−
∑n

i=1Di

[
p(1 + |Du|2)(p−2)/2Diu

m
]

= 0,
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enjoy the componentwise coercivity when 1 < p < 2. Are there examples of subquadratic

systems enjoying componentwise coercivity? Here is the following one in which we split

the components:

(15)



−
∑n

i=1Di

[
p|Du1|p−2Diu

1
]

= 0,

−
∑n

i=1Di

[
p|Du2|p−2Diu

2
]

= 0,

............................................

−
∑n

i=1Di [p|Dum|p−2Diu
m] = 0.

Indeed, in the previous system we have Aαi (z) = p|zα|p−2zαi and componentwise coercivity

can be easily checked as follows

n∑
i=1

Ai
α(z)zi

α = p|zα|p−2|zα|2 = p|zα|p.

Note that the previous system is decoupled. The next one is no longer decoupled:

(16)



−
∑n

i=1 Di

[
p|Du1|p−2Diu

1
]
−D1

[
2D1u

1D1u
2D1u

2(
1+(D1u

1D1u
2)

2
)2

]
= 0,

−
∑n

i=1Di

[
p|Du2|p−2Diu

2
]
−D1

[
2D1u

1D1u
2D1u

1(
1+(D1u

1D1u
2)

2
)2

]
= 0.

Here, 1 < p < 2, m = 2 and Aαi (z) = p|zα|p−2zαi +
2z11z

2
1z
α̂
1(

1+(z11z21)
2
)2 , where

α̂ =

 2 if α = 1,

1 if α = 2.

Componentwise coercivity can be easily checked as follows

n∑
i=1

Ai
α(z)zi

α = p|zα|p−2|zα|2 +
2z1

1z
2
1z

α̂
1 z

α
1(

1 + (z1
1z

2
1)

2
)2 = p|zα|p +

2(z1
1z

2
1)2(

1 + (z1
1z

2
1)

2
)2 ≥ p|zα|p.
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On the other hand, system (16) does not enjoy Uhlenbeck structure. Indeed, we argue by

contradiction: let assume Uhlenbeck structure, so that

(17) Ai
α(z) = g′(|z|)zi

α

|z|
.

We first take the matrix z̃ as follows

z̃1
1 = 1, z̃βj = 0 otherwise,

so that |z̃| = |z̃1| = 1. Then, we take the matrix ˜̃z as follows

˜̃z1
1 =

1√
2
, ˜̃z2

2 =
1√
2
, ˜̃zβj = 0 otherwise,

so that |˜̃z| = 1 and |˜̃z1| = 1√
2
. We first exploit (17) with z = z̃:

A1
1(z̃) = g′(1).

Then, we exploit (17) with z = ˜̃z:

A1
1(˜̃z) = g′(1)

1√
2
.

These two conditions merge into

(18) A1
1(˜̃z) = g′(1)

1√
2

= A1
1(z̃)

1√
2
.

Now, we compute A1
1(˜̃z) and A1

1(z̃). We have A1
1(˜̃z) = p

(
1√
2

)p−1

and A1
1(z̃) = p. Then,

(18) gives

p

(
1√
2

)p−1

= p
1√
2
,

that is 2
1−p
2 = 2

−1
2 ; this means 1−p

2
= −1

2
, that is, 2 = p: this is false, since we assumed

1 < p < 2. This shows that we cannot have Uhlenbeck structure in system (16).
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We can also modify (15) by adding the q-phase a(x)q|Du|q−2Diu
α as follows

(19)



−
∑n

i=1Di

[
p|Du1|p−2Diu

1 + a(x)q|Du|q−2Diu
1
]

= 0,

−
∑n

i=1Di

[
p|Du2|p−2Diu

2 + a(x)q|Du|q−2Diu
2
]

= 0,

............................................

−
∑n

i=1Di [p|Dum|p−2Diu
m + a(x)q|Du|q−2Diu

m] = 0.

This system is coupled when q 6= 2, since, in |Du|q−2, we have all the components of u

when q − 2 6= 0. In system (19) we have 1 < p < 2, p < q, 2 ≤ m and 0 ≤ a(x) ≤ M .

Moreover, Aαi (x, z) = p|zα|p−2zαi + a(x)q|z|q−2zαi and componentwise coercivity can be

easily checked as follows

n∑
i=1

Ai
α(x, z)zi

α = p|zα|p−2|zα|2 + a(x)q|z|q−2|zα|2 ≥ p|zα|p.

Note that (19) does not enjoy Uhlenbeck structure. Indeed, calculations made for system

(16) can be done also for (19), since they used the two matrices z̃ and ˜̃z; such matri-

ces forced
2z11z

2
1z
α̂
1(

1+(z11z21)
2
)2 to be zero. In (19), we take x such that a(x) = 0: this forces

a(x)q|z|q−2zαi to be zero as well. Then, the same matrices z̃ and ˜̃z give us the desired

contradiction.

Example 2. Let us consider the variational integral

(20) F2(u) =

∫
Ω

[
|Du(x)|p + a(x)

m∑
β=1

n∑
j=1

(
Dju

β(x)
)4

]
dx,

where

2 ≤ p < 4 = q, 0 ≤ a(x) ≤M.
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Functional F2 is inspired by an example contained in [80], Hasto-Ok (2022). Let us

consider the density of F2:

f(x, z) = |z|p + a(x)
m∑
β=1

n∑
j=1

(
zj
β
)4
,

so that

Ai
α(x, z) =

∂f

∂ziα
(x, z) = p|z|p−2zi

α + a(x)4 (zi
α)3 .

Componentwise coercivity holds true: see [91]. On the contrary, Uhlenbeck structure does

not hold true, see [91]. The Euler system of functional F2 appears to be as follows



−
∑n

i=1 Di

[
p|Du|p−2Diu

1 + a(x)4
(
Diu

1
)3
]

= 0,

−
∑n

i=1 Di

[
p|Du|p−2Diu

2 + a(x)4
(
Diu

2
)3
]

= 0,

............................................

−
∑n

i=1 Di

[
p|Du|p−2Diu

m + a(x)4 (Diu
m)3] = 0.

Example 3. Let us consider the variational integral

(21) F3(u) =

∫
Ω

{
|Du(x)|p + a(x)

(
max{Dnu

1(x); 0}
)q}

dx,

where

2 ≤ p < q, 0 ≤ a(x) ≤M.

Functional F3 is inspired by an example in [117], Tang (1993). See also Esposito-Leonetti-

Petricca (2019): [61].

Let us consider the density of F3:

f(x, z) = |z|p + a(x)
(
max{zn1; 0}

)q
,

so that
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Ai
α(x, z) =

∂f

∂ziα
(x, z) = p|z|p−2zi

α + a(x) δα1δin q
(
max{zn1; 0}

)q−1
,

where δin is Kronecker symbol: δin = 1 if i = n and δin = 0 otherwise; in a similar manner

δα1 is defined. Componentwise coercivity holds true: see [91]. Does this example enjoy

Uhlenbeck structure? No, see [91]. Euler system of F3 appears to be



−
∑n

i=1 Di

[
p|Du|p−2Diu

1
]
−Dn

[
a(x)q

(
max{Dnu

1; 0}
)q−1

]
= 0,

−
∑n

i=1Di

[
p|Du|p−2Diu

2
]

= 0,

.....................................................................................

−
∑n

i=1 Di [p|Du|p−2Diu
m] = 0.

Example 4. Let us consider the variational integral

(22) F4(u) =

∫
Ω

{
|Du(x)|p + a(x)

(
D1u

1(x)−D2u
1(x)

)4
}
dx,

where

2 ≤ p < 4 = q, 0 ≤ a(x) ≤M.

This functional has been inspired by an example in [31], Cianchi (2000); see also Esposito-

Leonetti-Petricca (2019): [61].

Let us consider the density of F4:

f(x, z) = |z|p + a(x)
(
z1

1 − z2
1
)4

;

then

Ai
α(x, z) =

∂f

∂ziα
(x, z) = p|z|p−2zi

α + a(x) δα1 4
(
z1

1 − z2
1
)4−1

[δi1 − δi2].
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Componentwise coercivity holds true: see [91]. Does this example enjoy Uhlenbeck struc-

ture? No, see [91]. Euler system of F4 appears to be

−
∑n

i=1Di

[
p|Du|p−2Diu

1
]
− [D1 −D2]

[
a(x)4

(
D1u

1 −D2u
1
)3
]

= 0,

−
∑n

i=1Di

[
p|Du|p−2Diu

2
]

= 0,

.....................................................................................

−
∑n

i=1Di [p|Du|p−2Diu
m] = 0.

Let us come back to the regularity result previously discussed and contained in Cupini-

Leonetti-Mascolo (2022) [37]. We recall that A(x, z) has q growth from above, see (7);

moreover, the weak solution u is assumed to belong to W 1,q, compare with (10). Examples

1,...,4 discussed before were the Euler system of a variational integral

F(u,Ω) =

∫
Ω

f(x,Du(x))dx,

where

ν|z|p ≤ f(x, z) ≤ c(|z|q + 1)

and

z → f(x, z) convex.

Direct methods of the calculus of variations ensure that, after fixing a suitable boundary

value, there exists a minimizer

u ∈ W 1,p(Ω).

Note that p is the exponent of the growth condition from below. We ask the question:

does the minimality property forces u to enjoy

u ∈ W 1,q
loc (Ω)?

The answer is YES, provided some further restrictions are assumed. Namely,
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ν(µ+ |z|2 + |z̃|2)
p−2
2 |z − z̃|2 ≤ 〈∂f

∂z
(x, z)− ∂f

∂z
(x, z̃); z − z̃〉

and

∣∣∣∣∂f∂z (x, z)− ∂f

∂z
(y, z)

∣∣∣∣ ≤ c|x− y|σ(1 + |z|q−1).

Moreover, we assume that

1 < p < q < p
n+ σ

n
,

and

F(uk, BR)→ F(u,BR)

for some uk ∈ W 1,p(BR;Rm) ∩W 1,q
loc (BR;Rm) with uk → u weakly in W 1,p(BR;Rm).

Under these assumptions, the minimizer u enjoys the following higher integrability of the

gradient

u ∈ W 1,q
loc (Ω;Rm).

This is contained in Esposito-Leonetti-Mingione (2004): [64].

Failure of the energy approximation

F(uk, BR)→ F(u,BR)

for some uk ∈ W 1,p(BR;Rm) ∩W 1,q
loc (BR;Rm) with uk → u weakly in W 1,p(BR;Rm), gives

rise to the Lavrentiev phenomenon:

inf
v∈u+W 1,p

0 (BR;Rm)
F(v,BR) < inf

v∈[u+W 1,p
0 (BR;Rm)]∩W 1,q

loc (BR;Rm)
F(v,BR),

see the survey [10] and the recent contributions [118], [44], [66], [64], [45], [79], [19], [6],

[18], [4].
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Do the double phase functionals F1(u,Ω), · · · ,F4(u,Ω) enjoy the energy approximation?

YES!

F1(u,Ω) =

∫
Ω

(|Du(x)|p + a(x)|Du(x)|q) dx,

F2(u,Ω) =

∫
Ω

{
|Du(x)|p + a(x)

m∑
β=1

n∑
j=1

(
Dju

β(x)
)4

}
dx,

F3(u,Ω) =

∫
Ω

{
|Du(x)|p + a(x)

(
max{Dnu

1(x); 0}
)q}

dx,

F4(u) =

∫
Ω

{
|Du(x)|p + a(x)

(
D1u

1(x)−D2u
1(x)

)4
}
dx,

a ∈ C0,σ(Ω), q ≤ p
n+ σ

n
,

⇓

Fi(uk, BR)→ Fi(u,BR)

for some uk ∈ W 1,p(BR;Rm) ∩W 1,q
loc (BR;Rm) with uk → u weakly in W 1,p(BR;Rm). For

energy approximation, see [118], [64], [61], [47], [51], [86], [24], [53], [18], [50], [54].

Remark. Existence ofW 1,q solutions to general elliptic systems with p, q-growth is obtaned

in [35]. Existence of solutions to one single equation with p, q-growth and with explicit

dependence on u has been studied in the recent [41].

An interesting example

Example 5. Let us consider the variational integral

(23) F5(u) =

∫
Ω

{|Du(x)− ẑ|p + a(x)|Du(x)|q} dx,

where
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ẑ ∈ Rm×n, ẑ 6= 0, 2 ≤ p < q, 0 ≤ a(x) ≤M.

This functional has been inspired by an example in [76], Guarnotta-Mosconi (2023). Let

us consider the density of F5:

f(x, z) = |z − ẑ|p + a(x)|z|q,

so that

Ai
α(x, z) =

∂f

∂ziα
(x, z) = p|z − ẑ|p−2(zi

α − ẑαi ) + a(x)q|z|q−2zi
α.

Does this example satisfy Uhlenbeck structure? No, see [91]. What about componentwise

coercivity? The answer depends on p:

2 = p =⇒ Yes

2 < p =⇒ No

Let us check componentwise coercivity when 2 = p. We write the density for F5 when

2 = p:

f(x, z) = |z − ẑ|2 + a(x)|z|q,

so that

Ai
α(x, z) =

∂f

∂ziα
(x, z) = 2(zi

α − ẑαi ) + a(x)q|z|q−2zi
α.

Then

n∑
i=1

Ai
α(x, z)zi

α = 2〈zα − ẑα; zα〉+ a(x)q|z|q−2|zα|2 ≥

2〈zα − ẑα; zα〉 = 2|zα|2 − 2〈ẑα; zα〉 ≥ 2|zα|2 − 2|ẑα||zα| ≥

2|zα|2 − |ẑα|2 − |zα|2 = |zα|2 − |ẑα|2,
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so that F5 enjoys componentwise coercivity when 2 = p. The Euler system of functional

F5, with p = 2, appears to be



−
∑n

i=1Di

[
2(Diu

1 − ẑ1
i ) + a(x)q|Du|q−2Diu

1
]

= 0,

−
∑n

i=1Di

[
2(Diu

2 − ẑ2
i ) + a(x)q|Du|q−2Diu

2
]

= 0,

............................................

−
∑n

i=1Di [2(Diu
m − ẑmi ) + a(x)q|Du|q−2Diu

m] = 0.

Let us check that componentwise coercivity fails when 2 < p, a(x) = 0 at some x ∈ Ω,

ẑ 6= 0 and m ≥ 2. Now the density is

f(x, z) = |z − ẑ|p + a(x)|z|q,

so that

Ai
α(x, z) =

∂f

∂ziα
(x, z) = p|z − ẑ|p−2(zi

α − ẑαi ) + a(x)q|z|q−2zi
α.

We work with x such that a(x) = 0 and with α such that ẑα 6= 0:

n∑
i=1

Ai
α(x, z)zi

α = p|z − ẑ|p−2〈zα − ẑα; zα〉.

Now we choose z as follows

zα =
1

2
ẑα, zβ = ẑβ + tv, for β 6= α,

where |v| = 1 and t ∈ R. It turns out that

〈zα − ẑα; zα〉 = −1

4
|ẑα|2 < 0

and

|z − ẑ|p−2 =

(
1

4
|ẑα|2 + (m− 1)t2

) p−2
2

→∞ when t→∞,
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since 2 < p and 2 ≤ m. Putting together the previous informations, we get

n∑
i=1

Ai
α(x, z)zi

α = p|z − ẑ|p−2〈zα − ẑα; zα〉 =

p

(
1

4
|ẑα|2 + (m− 1)t2

) p−2
2

(−1

4
|ẑα|2)→ −∞.

If α and z are as before, the inequality

ν|zα|p̃ − c2 ≤
n∑
i=1

Ai
α(x, z)zi

α

does not hold true, since the left hand side is the fixed number ν
2p̃
|ẑα|p̃ − c2 and the right

hand side tends to −∞. This shows that componentwise coercivity fails when 2 < p,

a(x) = 0 at some x ∈ Ω, ẑ 6= 0 and m ≥ 2. The Euler system of functional F5, with

p > 2, appears to be



−
∑n

i=1Di

[
p|Du− ẑ|p−2(Diu

1 − ẑ1
i ) + a(x)q|Du|q−2Diu

1
]

= 0,

−
∑n

i=1Di

[
p|Du− ẑ|p−2(Diu

2 − ẑ2
i ) + a(x)q|Du|q−2Diu

2
]

= 0,

............................................

−
∑n

i=1 Di [p|Du− ẑ|p−2(Diu
m − ẑmi ) + a(x)q|Du|q−2Diu

m] = 0.

It would be nice to study boundedness of weak solutions to such a system, maybe using

a technique not based on componentwise coercivity. Let us remark that boundedness of

solutions to some elliptic systems has been studied in [38], see also [42]. Let us note that

assumptions in [38] do not fit the previous system, see [91].
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Università degli Studi dell’Aquila, DISIM, Via Vetoio snc, Coppito, 67100 – L’Aquila,

Italy

Email address: francesco.leonetti@univaq.it


