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Abstract. In this paper, we investigate the controllability of a class of semilinear differ-

ential inclusions in Hilbert spaces. Assuming the exact controllability of the associated

linear problem, we establish sufficient conditions for achieving the exact controllability of

the nonlinear problem. In infinite-dimensional spaces, the compactness of the evolution

operator and the linear controllability condition are often incompatible. To address this,

we avoid the compactness assumption on the semigroup by employing two distinct ap-

proaches: one based on weak topology, and the other on the concept of Gelfand triples.

Furthermore, the problem we consider is that of nonlocal controllability, where the solu-

tion satisfies a nonlocal initial condition that depends on the behaviour of the solution

over the entire time interval.

Sunto. In questo lavoro, studiamo la controllabilità di una classe di inclusioni differen-

ziali semilineari in spazi di Hilbert. Assumendo la controllabilità esatta del problema lin-

eare associato, forniamo condizioni sufficienti per ottenere la controllabilità esatta anche

nel caso non lineare. Negli spazi di dimensione infinita, la compattezza dell’operatore

di evoluzione e la condizione di controllabilità lineare risultano spesso incompatibili.

Per superare questo ostacolo, evitiamo di imporre l’assunzione di compattezza sul semi-

gruppo, adottando due approcci distinti: uno basato sulla topologia debole e l’altro sul

concetto di tripla di Gelfand. Inoltre, consideriamo il problema della controllabilità non

locale, in cui la soluzione soddisfa una condizione iniziale non locale che dipende dal

comportamento della soluzione su tutto l’intervallo di tempo.
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1. Introduction

This work deals with the study of the exact controllability for semilinear differential

equations, with a general nonlocal condition, of the form

(P)

y
′(t) ∈ Ay(t) + F (t, y(t)) +Bu(t), a.e. t ∈ [0, T ]

y(0) = y0 + g(y)

with 0 < T < +∞, in an infinite dimensional Hilbert space (H, ‖·‖). We assume that

A : D(A) ⊆ H → H is a linear operator generating a C0-semigroup {S(t)}t≥0, F :

[0, T ]×H ( H and g : C([0, T ];H)→ H are given multivalued and single valued maps

respectively. Moreover, the operator B : U → H, where U is a Hilbert space, is linear

and bounded and we assume that the control term u belongs to L2([0, T ];U). The study

of nonlocal Cauchy problems in Banach spaces begins in 1991 with the work of Byszewski

(see [8]). In that paper, the author examines the so-called multipoint initial condition,

i.e.

(1) y(0) =
n∑

i=1

αiy(ti) + y0, y0 ∈ H,αi ∈ R \ {0}, ti ∈ [0, T ], i = 1, . . . , n,

to study kinematics, determining the evolution t → y(t) of the position of a physical

object where the values of y(0), y(ti), i = 1, . . . , n are unknown, but a relationship de-

scribed by (1) is given. As a result, the condition (1), along with more general nonlocal

initial conditions, allows for the modeling of physical problems that cannot be addressed

through classical Cauchy problems. Later on, nonlocal problems for a semilinear differ-

ential equation with a C0-semigroup generator have been extensively studied for their

interest in several contexts, see for instance [3] and the reference therein. Differential

inclusions are a valuable tool for describing a variety of optimal control problems (see,

e.g., [1] and Section 5.2.2 in the monography [14]). Exact controllability problems are

also highly important in applications. For instance, they are instrumental in addressing

the controllability of size-structured population equations (see [7]). Studying controlla-

bility for differential inclusions allows for the integration of these two different types of

control problems, for instance, achieving the dual goal of minimizing a given cost func-

tional while simultaneously reaching a specified set or position. We refer to [2] for a wide
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overview on the controllability results of the problem (1). Among the extended literature

on the subject, concerning the nonlocal controllability problem, we would like to mention

the contributions [9], where in the linear part is considered a family of operators {A(t)}

generating an evolution system, the multivalued map F satisfies a lower semicontinu-

ous Scorza-Dragony property and g is a compact map; the paper [13] where the exact

controllability is studied for an impulsive differential inclusion with a compact nonlocal

initial condition and the recent contribution [20], where the approximate controllability

is obtained for a semilinear equation with Lipshitz forcing term and a multivalued initial

condition.

Given u ∈ L2([0, T ];U), we look for mild solutions of problem (P), that is to say for

continuous functions y : [0, T ]→ H that satisfy the integral equation

(2) y(t) = S(t)(y0 + g(y)) +

∫ t

0

S(t− s)f(s) ds+

∫ t

0

S(t− s)Bu(s) ds,

for each t ∈ [0, T ], where f ∈ L1([0, T ];H) is a selection of the multivalued map F , i.e.

f(s) ∈ F (s, y(s)) for a.e. s ∈ [0, T ]. We say that problem (P) is controllable if every

initial condition y0 ∈ H can be steered at time T to any y1 ∈ H, i.e. if y(0) = y0+g(y) and

y(T ) = y1, by some admissible control u (see Definition 3.2). So, we will study conditions

under which there exists a mild solution y(·) of (P) reaching a given state at the final

time T .

In the study of the controllability of (P), a pivotal role is played by the linear operator

G : L2([0, T ];U)→ H defined by

G(u) =

∫ T

0

S(T − s)Bu(s) ds,

as it provides a representation of the control function u that satisfies the controllability

condition. In order to characterize the control function, we introduce the following map

yq : [0, T ]→ H defined as

(3) yq(t) = S(t)(y0 + g(q)) +

∫ t

0

S(t− s)f(s) ds+

∫ t

0

S(t− s)Bu(s) ds,

where q : [0, T ]→ H is any continuous function, f ∈ L1([0, T ];H), with f(t) ∈ F (t, q(t))

for a.e. t ∈ [0, T ]. Let y1 ∈ H, if the operator G admits a right inverse, denoted by
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G̃−1 : H → L2([0, T ];U), then the function u ∈ L2([0, T ];U) given by

u = G̃−1

(
y1 − S(T )(y0 + g(q))−

∫ T

0

S(T − s)f(s) ds

)
,

is such that yq(T ) = y1. It is known that every surjective, bounded, linear operator

defined in a Hilbert space admits a right inverse of minimal norm, see Proposition 2.2 in

[17] for a detailed proof.

In order to prove the existence of at least one solution of the problem (P) we make use

of the Gliksberg - Fan fixed point Theorem (see Theorem 2.3). This Theorem guarantees

the existence of a fixed point of an upper semicontinuous multimap with closed, convex

values, defined on a compact convex subset of an Hausdorff locally convex topological

vector space. So, we introduce a suitable multioperator whose fixed points are the sought

solutions. As can be seen from the statement of the Gliksberg - Fan fixed point Theorem,

one of the key assumptions is the compactness of the multioperator. This aim can be

achieved, for instance, assuming the compactness of the semigroup {S(t)}t≥0. However,

as it was pointed out by Triggiani in [21] and [22], in infinite dimensional Banach spaces the

compactness of the semigroup {S(t)}t≥0 generated by the operator A or the compactness

of the control operator B is in contradiction with the exact controllability of problem (P)

while using control u ∈ Lp([0, T ];U), for p > 1. To address this issue, several methods have

been developed. For instance, one approach relies on regularity assumptions with respect

to a measure of non-compactness imposed on the nonlinear term, see [19] and [5]; another

is based on weak topology, see [4]; and a third approach uses Gelfand triples, see [17].

We also mention the recent work [18] where the controllability for a semilinear equation

with non local initial conditions is proven. Specifically, in the mentioned paper the two

approaches, the one introduced for this type of problems in [4] based on weak topology,

and the one introduced in [19] based on the regularity with respect to a measure of non

compactness, are considered. In particular, by employing an appropriate approximation

technique and leveraging the approach based on weak topology, the study successfully

addressed the case of a uniformly convex Banach space U , not necessarily a Hilbert space,

thus, as a consequence, the case of an operator G with a nonlinear inverse.
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In the present paper, employing either weak topology techniques or Gelfand triple tech-

niques, where the Hilbert space H is compactly embedded in a Banach space (E, ‖·‖E),

we introduce sufficient conditions on the multimap F and the operator g that guarantee

controllability for semilinear equations without requiring compactness of the semigroup

or control operator. The first approach was applied to obtain the exact controllability for

semilinear differential inclusions with Cauchy initial conditions in [4] and in [18] for semi-

linear differential equations with nonlocal initial conditions, while the second approach

was introduced in [17] for the controllability of a Cauchy initial problem.

Compared to the cited results [4], [17] and [18], the novelty of this work lies in simultane-

ously addressing nonlocal initial conditions and a multivalued nonlinearity. Moreover, we

avoid the use of a finite dimensional approximation exploited in [17], allowing to consider

the problem (P) in a non separable Hilbert space. We emphasize that no compactness

assumption is imposed on the map g, which enables us to address a wide range of typ-

ical nonlocal initial conditions, including those in (1), as well as periodic, antiperiodic,

(y(0) = ±y(T )) and mean value conditions y(0) =
1

T

∫ T

0

y(t) dt.

The paper is organized as follows. In Section 2 we recall some notions and preliminary

results from the theory of functional analysis and we present some properties about mul-

tivalued maps and semigroups. The existence and controllability results are Theorems

3.1, 3.2, 3.3 and 3.4 in Section 3.

2. Preliminaries

Given a Hilbert space (H, ‖·‖), by Hω we denote the Hilbert space H endowed with the

weak topology and, given a sequence {xn}n∈N ⊂ H we write xn → x0 and xn ⇀ x0, with

x0 ∈ H, to denote the strong and weak convergence in H respectively. Moreover, we

denote with nB the closed ball of H centered at the origin and of radius n and, for a set

D ⊂ H, the symbol D
ω

denotes the weak closure of D. We denote by C([0, T ];H) the

space of all continuous functions y : [0, T ]→ H with norm

‖y‖0 = max
t∈[0,T ]

‖y(t)‖
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and, for 1 ≤ p ≤ ∞, by Lp([0, T ];H) we denote the space of equivalence classes of

functions y : [0, T ] → H such that y is measurable in [0, T ] and ‖y‖p < +∞, where ‖·‖p
is the usual norm defined by

‖y‖p =

(∫ T

0

‖y(t)‖p dt
) 1

p

when 1 ≤ p < +∞ and

‖y‖∞ = ess sup
t∈[0,T ]

‖y(t)‖

when p =∞. We denote by AC([0, T ];H) the space of all absolutely continuous functions

y : [0, T ]→ H. We recall that a function y : [0, T ]→ H with values in a Hilbert space is

absolutely continuous if and only if there exists g ∈ L1([0, T ];H) such that

y(t) = y(0) +

∫ t

0

g(s) ds, t ∈ [0, T ].

Moreover y is a.e. differentiable on [0, T ] and y′(t) = g(t) for almost every t ∈ [0, T ].

We recall the following characterization of weak convergence in the space of continuous

functions.

Theorem 2.1. ([6, Theorem 4.3]) A sequence of continuous functions {xn}n∈N ⊂ C([0, T ];H)

weakly converges to an element x ∈ C([0, T ];H) if and only if

(i) there exists N > 0 such that ‖xn(t)‖ ≤ N , for every n ∈ N and for all t ∈ [0, T ];

(ii) xn(t) ⇀ x(t) as n→∞, for every t ∈ [0, T ].

It follows that {xn}n∈N ⇀ x in C([0, T ];H) implies that {xn}n∈N ⇀ x in L1([0, T ];H).

The following proposition shows that every surjective, bounded, linear operator defined

in a Hilbert space admits a right inverse of minimal norm.

Proposition 2.1. ([17, Proposition 2.2]) Let H1 and H2 be two Hilbert spaces, let G :

H1 → H2 be a surjective, bounded, linear operator. Then there exists a bounded linear

operator G̃−1 : H2 → H1 such that, for every w ∈ H2, G ◦ G̃−1(w) = w and

‖G̃−1(w)‖ = min{‖u‖ : G(u) = w},

for all w ∈ H2.
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We recall some properties of the multimaps, we refer to [14] for details.

Let X and Y be two locally convex topological spaces. A multivalued map F is a corre-

spondence which associates to every x ∈ X a nonempty subset F (x) ⊆ Y . We write this

correspondence as F : X ( Y .

Definition 2.1. A multivalued map F : X ( Y is upper semicontinuous (u.s.c. for

short) at the point x ∈ X if, for every open set W ⊆ Y such that F (x) ⊂ W , there

exists a neighbourhood V (x) of x with the property that F (V (x)) ⊂ W . It is upper

semicontinuous (u.s.c. for short) if it is upper semicontinuous at every point x ∈ X.

Definition 2.2. A multimap F : X ( Y is said to be

(a) closed if its graph ΓF is a closed subset of the space X × Y ;

(b) compact if its range F (x) is relatively compact in Y , i.e. F (X) is compact in Y .

Proposition 2.2. A closed, compact multivalued map F : X ( Y with compact values

is upper semicontinuous.

Now, we recall some results concerning the semigroup theory, for further details we refer

the reader to [23].

Let (X, ‖·‖X) be a Banach space and let L(X) be the set of all linear bounded operators

from X to X.

Definition 2.3. A one parameter family {S(t)}t≥0 in L(X) is a semigroup of linear

operators on X if

(i) S(0) = I;

(ii) S(t+ s) = S(t)S(s) for every t, s ≥ 0.

If, in addition, it satisfies the following continuity condition at t = 0

lim
t→0+
‖S(t)− I‖L(X) = 0,

the semigroup is called uniformly continuous and it is called C0-semigroup, if the mapping

t 7→ S(t)x is strongly continuous, for each x ∈ X i.e.

lim
t→0

S(t)x = x ∀x ∈ X.
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Definition 2.4. Let {S(t)}t≥0 be a C0-semigroup defined on X. The linear operator A

defined by

Ax = limt→0
S(t)x− x

t
for x ∈ D(A),

D(A) =
{
x ∈ X : limt→0

S(t)x− x
t

exists in X
}
,

is the infinitesimal generator of {S(t)}t≥0.

Theorem 2.2. A linear operator A : D(A) ⊆ X → X is the generator of a uniformly

continuous semigroup if and only if D(A) = X and A ∈ L(X).

Given a bounded and linear operator A : X → X, the uniformly continuous semigroup

generated by A is defined by

eAt =
∞∑
k=0

Aktk

k!

for each t ≥ 0. Let S(t) = eAt for each t ≥ 0, it is well known that

d

dt
(S(t)) = AS(t) = S(t)A.

Remark 2.1. An uniformly continuous semigroup is a C0-semigroup.

It is known that there exist M ≥ 1 and ω ∈ R such that

(4) ‖S(t)‖L(X) ≤Meωt, ∀ t ≥ 0.

Finally, for sake of completeness, we recall some results that we will need in the main

section.

Firstly we state the Glicksberg - Fan fixed point Theorem ([12], [16]).

Theorem 2.3. Let X be a Hausdorff locally convex topological vector space, K a compact

convex subset of X and G : K ( K an upper semicontinuous multimap with closed,

convex values. Then G has a fixed point x∗ ∈ K : x∗ ∈ G(x∗).

We mention also two results that are contained in the so called Eberlein-Smulian theory.

Theorem 2.4. [15, Theorem 1, p. 219] Let Ω be a subset of a Banach space X. The

following statements are equivalent:

1. Ω is relatively weakly compact;
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2. Ω is relatively weakly sequentially compact.

Corollary 2.1. [15, p. 219] Let Ω be a subset of a Banach space X. The following

statements are equivalent:

1. Ω is weakly compact;

2. Ω is weakly sequentially compact.

We recall the Krein-Smulian Theorem.

Theorem 2.5. [10, p. 434] The convex hull of a weakly compact set in a Banach space

E is weakly compact.

3. Problem statement

Let (H, ‖·‖) be a Hilbert space with scalar product (· , ·). We study the controllability

problem for a system governed by inclusion (P) under the following assumptions:

(A): A : D(A) ⊆ H → H is a linear operator generating a C0-semigroup {S(t)}t≥0;

(F ): F : [0, T ]×H ( H is a multivalued map such that:

(F0) the multimap F : [0, T ] × H ( H has nonempty, bounded, closed, convex

values;

(F1) the multimap F (·, c) : [0, T ] ( H has a strongly measurable selection for

every c ∈ H, i.e., there exists a strongly measurable function f : [0, T ] → H

such that f(t) ∈ F (t, c) for a.e. t ∈ [0, T ];

(F2) the multimap F (t, ·) : H ( Hω is sequentially closed for a.e. t ∈ [0, T ];

(F3) for every bounded subset Ω ⊂ H there exists a function vΩ ∈ L1([0, T ];R+)

such that

‖F (t, w)‖ = sup
x∈F (t,w)

‖x‖ ≤ vΩ(t)

for a.e. t ∈ [0, T ] and for each w ∈ Ω;

(B): B : U → H is a bounded linear operator defined on a Hilbert space U and the

control function u(·) belongs to the space L2([0, T ];U);

(g): g : C([0, T ];H)→ H is a given map.

We look for mild solutions of problem (P), that is to say for functions that satisfy the

following definition.
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Definition 3.1. Given u ∈ L2([0, T ];U), a continuous map y : [0, T ] → H is said to be

a mild solution of the problem (P) if there exists f ∈ L1([0, T ];H), f(s) ∈ F (s, y(s)) for

a.e. s ∈ [0, T ], such that the integral equation

(5) y(t) = S(t)(y0 + g(y)) +

∫ t

0

S(t− s)f(s) ds+

∫ t

0

S(t− s)Bu(s) ds

is verified for each t ∈ [0, T ].

Definition 3.2. We say that problem (P) is nonlocally controllable on [0, T ] if for all y0, y1

in H there exists a control u ∈ L2([0, T ];U) such that the corresponding mild solution

y(·) of (P) satisfies y(0) = y0 + g(y) and y(T ) = y1.

In order to prove the controllability of the problem (P) we need the following assumption:

(G) the linear operator G : L2([0, T ];U)→ H defined by

G(u) =

∫ T

0

S(T − s)Bu(s) ds

is onto.

By Propostion 2.1 we deduce that the linear operator G admits a right inverse of minimal

norm.

Proposition 3.1. If G : L2([0, T ];U) → H is the linear operator defined in (G), then

there exists a bounded linear operator G̃−1 : H → L2([0, T ];U) such that, for every w ∈ H,

G ◦ G̃−1(w) = w and

‖G̃−1(w)‖L2([0,T ];U) = min{‖u‖L2([0,T ];U) : G(u) = w},

for all w ∈ H.

Given q ∈ C([0, T ];H), let us denote

(6) Σq = {f ∈ L1([0, T ];H) : f(t) ∈ F (t, q(t)) for a.e. t ∈ [0, T ]}.

Under the considered assumptions, this set is nonempty, as the following assertion shows.

Proposition 3.2. ([4, Proposition 4.1]) Let F : [0, T ]×H ( H be a multimap satisfying

properties (F0), (F1), (F2) and (F3). Then the set Σq is nonempty for any q ∈ C([0, T ];H).
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We denote with S1 : L1([0, T ];H)→ C([0, T ];H) the linear and continuous operator

(7) S1f(t) =

∫ t

0

S(t− s)f(s) ds, t ∈ [0, T ]

and with S2 : L1([0, T ];H)→ C([0, T ];H) the linear and continuous operator

(8) S2f(t) =

∫ t

0

S(t− s)BG̃−1

(
−
∫ T

0

S(T − τ)f(τ) dτ

)
(s) ds t ∈ [0, T ].

Fix n ∈ N, consider

(9) Qn = {q ∈ C([0, T ];H) : ‖q(t)‖ ≤ n for all t ∈ [0, T ]}

the closed ball of radius n in C([0, T ];H) centered at the origin and define the solution

multioperator Tn : Qn( C([0, T ];H) as

(10)

Tn(q) =

{
y ∈ C([0, T ];H) :

y(t) = S(t)(y0 + g(q)) + S1f(t)

+

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(q))

)
(s) ds

+ S2f(t), t ∈ [0, T ], f ∈ Σq

}
.

It is easy to verify that the fixed points of the multioperator Tn are mild solutions of

problem (P) such that y(T ) = y1.

3.1. Existence via weak topology. In this section we prove the existence of at least

one mild solution of problem (P) exploiting a method based on weak topology. To this

aim we have to strengthen the assumptions on the regularity of the multimap F and the

map g. Namely, we assume that:

(F ′2) the multimap F (t, ·) : Hω ( Hω is sequentially closed for a.e. t ∈ [0, T ];

(g′) g : C([0, T ];H) → H is a weakly sequentially continuous operator mapping

bounded sets into bounded sets.

Remark 3.1. Notice that, since condition (F ′2) implies (F2), the set Σq is nonempty for

every q ∈ C([0, T ];H) (see Proposition 3.2).
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Now, we describe the properties of the multioperator Tn : Qn ( C([0, T ];H) needeed to

apply the Gliksberg - Fan fixed point Theorem (see Theorem 2.3). We recall that in this

subsection we require assumptions (A), (F0), (F1), (F ′2), (F3), (B), (G) and (g′).

Proposition 3.3. The multioperator Tn : Qn ( C([0, T ];H) has a weakly sequentially

closed graph.

Proof. Let {qk}k∈N ⊂ Qn be a sequence such that qk ⇀ q in C([0, T ];H) and let {yk}k∈N ⊂

C([0, T ];H) satisfying yk ∈ Tn(qk) for all k ∈ N and such that yk ⇀ y in C([0, T ];H). We

shall prove that y ∈ Tn(q).

Since qk ⇀ q in C([0, T ];H), by assumption (g′), we have

(11) g(qk) ⇀ g(q)

and, by the linearity and continuity of the operator S(t), for every t ≥ 0, we get

(12) S(t)(y0 + g(qk)) ⇀ S(t)(y0 + g(q))

for every t ∈ [0, T ] and, in particular,

(13) gk = y1 − S(T )(y0 + g(qk)) ⇀ y1 − S(T )(y0 + g(q)) =: g0.

The fact that yk ∈ Tn(qk) means that there exists a sequence {fk}k∈N, fk ∈ Σqk , such that

(14)

yk(t) = S(t)(y0 + g(qk)) + S1fk(t)

+

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qk))

)
(s) ds+ S2fk(t)

for every t ∈ [0, T ]. Since qk ∈ Qn for all k ∈ N, according to (F3), there exists a function

vn ∈ L1([0, T ];R+) such that

‖fk(t)‖ ≤ vn(t)

for a.e. t ∈ [0, T ] and every k ∈ N, i.e. {fk}k∈N is bounded and uniformly integrable and

{fk(t)}k∈N is bounded in H for a.e. t ∈ [0, T ]. Hence, by the reflexivity of the space H and

by Dunford-Pettis Theorem (see [10, p. 294]), we have that there exists a subsequence,
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still denoted as the sequence, and a function f0 such that fk ⇀ f0 in L1([0, T ];H).

Therefore, by the linearity and continuity of the operators S1 and S2, we have

(15) S1fk ⇀ S1f0

and

(16) S2fk ⇀ S2f0

in C([0, T ];H).

Let us show that

(17)

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qk))

)
(s) ds

⇀

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(q))

)
(s) ds

for every t ∈ [0, T ]. Consider φ ∈ H and t ∈ [0, T ] and define the linear functional

φ̃ : H → R as

φ̃(w) =

(
φ,

∫ t

0

S(t− s)BG̃−1(w)(s) ds

)
, w ∈ H.

By the boundedness of the operators B, G̃−1 and S(t), for every t ≥ 0, and by Cauchy-

Schwarz inequality in L2(0, T ), we have

(18)

|φ̃(w)| ≤ ‖φ‖
∥∥∥∥∫ t

0

S(t− s)BG̃−1(w)(s) ds

∥∥∥∥ ≤ ‖φ‖∫ t

0

∥∥∥S(t− s)BG̃−1(w)(s)
∥∥∥ ds

≤ ‖φ‖C‖B‖L(U,H)

∫ t

0

∥∥∥G̃−1(w)(s)
∥∥∥
U
ds ≤ ‖φ‖C‖B‖L(U,H)‖G̃−1(w)‖L1([0,T ];U)

≤ ‖φ‖C‖B‖L(U,H)

√
T‖G̃−1(w)‖L2([0,T ];U)

≤ ‖φ‖C‖B‖L(U,H)

√
T‖G̃−1‖L(H,L2([0,T ];U))‖w‖

for every w ∈ H, where C := sup
t∈[0,T ]

‖S(t)‖. Therefore φ̃ is bounded and, by (13), we obtain

that

(19)

φ̃(gk) =

(
φ,

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qk))

)
(s) ds

)
→
(
φ,

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(q))

)
(s) ds

)
= φ̃(g0)

for every t ∈ [0, T ]. Then (17) follows.
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Thus, by (12), (15), (16) and (17) we have

(20)

yk(t) = S(t)(y0 + g(qk)) + S1fk(t)

+

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qk))

)
(s) ds+ S2fk(t)

⇀ S(t)(y0 + g(q)) + S1f0(t) +

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(q))

)
(s) ds

+ S2f0(t) =: l(t) ∀ t ∈ [0, T ].

For the uniqueness of the weak limit in H, we obtain that l(t) = y(t) for all t ∈ [0, T ].

To conclude, we have only to prove that f0(t) ∈ F (t, q(t)) for a.e. t ∈ [0, T ]. By Mazur’s

convexity Theorem (see, e.g. [11]) we have that there exists a sequence

(21) f̃k =

mk∑
i=0

λkifk+i, λki ≥ 0,

mk∑
i=0

λki = 1

satisfying f̃k → f0 in L1([0, T ];H) and, up to subsequence, there is N0 ⊂ [0, T ] with

Lebesgue measure zero such that f̃k(t) → f0(t) for all t ∈ [0, T ] \ N0. With no loss of

generality we can also assume that F (t, ·) : Hω ( Hω is weakly sequentially closed and

sup
‖x‖≤n

‖F (t, x)‖ ≤ vn(t) for every t /∈ N0. Fix t0 /∈ N0 and assume, by contradiction, that

f0(t0) /∈ F (t0, q(t0)). By the reflexivity of the space H and (F3), the restriction FnB(t0, ·)

of the multimap F (t0, ·) on the set nB is weakly compact. Moreover, by assumption (F ′2),

FnB(t0, ·) is weakly sequentially closed and thus, by Corollary 2.1, we have that FnB(t0, ·)

is a weakly closed multimap and, as a result, it is weakly u.s.c. (see Proposition 2.2).

Since ‖q(t0)‖ ≤ n and since FnB(t0, q(t0)) is closed and convex, from the Hahn Banach

Theorem there is a weakly open convex set V ⊃ FnB(t0, q(t0)) satisfying f0(t0) /∈ V
ω
.

Since FnB(t0, ·) is weakly u.s.c., we can also find a weak neighborhood V1 of q(t0) such

that FnB(t0, x) ⊂ V for all x ∈ V1 with ‖x‖ ≤ n. Moreover, ‖qk(t0)‖ ≤ n for all k ∈ N

and qk(t0) ⇀ q(t0) as k → ∞. Then, there exists k0 ∈ N such that qk(t0) ∈ V1 for all

k > k0. Therefore fk(t0) ∈ FnB(t0, qk(t0)) ⊂ V for all k > k0. Since V is convex, we have

f̃k(t0) ∈ V for all k > k0 and, since t0 /∈ N0, we also have f̃k(t0)→ f0(t0). Then, we obtain

the contradictory conclusion that f0(t0) ∈ V ω
. We can conclude that f0(t) ∈ F (t, q(t))

for a.e. t ∈ [0, T ]. �
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Proposition 3.4. The multioperator Tn : Qn( C([0, T ];H) is weakly compact.

Proof. We first prove that Tn(Qn) is weakly relatively sequentially compact.

Let {qk}k∈N ⊂ Qn and let {yk}k∈N ⊂ C([0, T ];H) satisfying yk ∈ Tn(qk) for all k ∈ N.

By the definition of the multioperator Tn, there exists a sequence {fk}k∈N, fk ∈ Σqk , such

that

(22)

yk(t) =S(t)(y0 + g(qk)) + S1fk(t)

+

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qk))

)
(s) ds+ S2fk(t)

for every t ∈ [0, T ].

By the boundedness of the sequence {qk}k∈N, since by assumption (g′) the operator g

maps bounded sets into bounded sets and by the reflexivity of the space H, we have that,

up to subsequence, there exists y ∈ H such that g(qk) ⇀ y. Moreover, reasoning as in

Proposition 3.3, we have that there exists a subsequence, still denoted as the sequence,

and a function f0 such that fk ⇀ f0 in L1([0, T ];H). Therefore,

(23)

yk(t) ⇀ S(t)(y0 + y) + S1f0(t)

+

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + y)

)
(s) ds+ S2f0(t) = y(t)

for all t ∈ [0, T ].

Furthermore, by the boundedness of the operators B, G̃−1, S(t), for every t ≥ 0, S1 and

S2, it follows that

(24)

‖yk(t)‖ =

∥∥∥∥S(t)(y0 + g(qk)) + S1fk(t)

+

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qk))

)
(s) ds+ S2fk(t)

∥∥∥∥
≤ C(‖y0‖+ ‖g(qk)‖) + C‖fk‖L1([0,T ];H)

+ C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T (‖y1‖+ C(‖y0‖+ ‖g(qk)‖))

+ C2‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T‖fk‖L1([0,T ];H) ≤ N

for all k ∈ N and for all t ∈ [0, T ] and for some N > 0.

By (23) and (24) and applying Theorem 2.1, we have that yk ⇀ y in C([0, T ];H). Thus
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Tn(Qn) is weakly relatively sequentially compact. Applying Theorem 2.4, we obtain that

Tn(Qn) is weakly relatively compact. �

Proposition 3.5. The multioperator Tn : Qn ( C([0, T ];H) has convex and weakly

compact values.

Proof. Fix q ∈ Qn. Since the multimap F is convex valued, the set Tn(q) is convex from

the linearity of the integral operator and of the operators B, G̃−1, g and S(t), for every

t ≥ 0. The weak compactness of Tn(q) follows by Propositions 3.3 and 3.4. �

We are able now to state the main result of this section.

Theorem 3.1. Let conditions (A), (F0), (F1), (F ′2), (B), (G) and (g′) hold. In addition

suppose that, for every n ∈ N, there exists a function φn ∈ L1([0, T ];R+) such that

(25) (F ′3)


sup
‖c‖≤n
‖F (t, c)‖ ≤ φn(t) for a.e. t ∈ [0, T ],

lim inf
n→∞

1

n

∫ T

0

φn(s) ds = 0

and

(26) (g1) lim
‖u‖0→+∞

‖g(u)‖
‖u‖0

= 0,

then the problem (P) is controllable.

Proof. We want to apply Theorem 2.3 in order to prove the existence of at least one

fixed point y of Tn, that is a mild solution of the controllability problem (P) such that

y(T ) = y1. It remains to prove that there exists n ∈ N such that the multioperator

Tn : Qn( C([0, T ];H) maps the ball Qn into itself. By contradiction, assume that there

exist two sequences {qn}n∈N, {yn}n∈N such that qn ∈ Qn, yn ∈ Tn(qn) and yn /∈ Qn, for

all n ∈ N. By the definition of the multioperator Tn, there exists a sequence {fn}n∈N ⊂

L1([0, T ];H), fn(t) ∈ F (t, qn(t)) for all n ∈ N and a.e. t ∈ [0, T ], such that

(27)

yn(t) =S(t)(y0 + g(qn)) + S1fn(t)

+

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qn))

)
(s) ds+ S2fn(t)
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for all t ∈ [0, T ]. Since qn ∈ Qn for all n ∈ N, condition (F ′3) implies that there exists

φn ∈ L1([0, T ];R+) such that ‖fn(t)‖ ≤ φn(t) for a.e. t ∈ [0, T ]. Since yn /∈ Qn for all

n ∈ N, we have

(28)

n < ‖yn‖0

≤ C(‖y0‖+ ‖g(qn)‖) + C

(∫ T

0

‖fn(η)‖ dη
)

+ C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T (‖y1‖+ C(‖y0‖+ ‖g(qn)‖))

+ C2‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T

(∫ T

0

‖fn(η)‖ dη
)

≤ C‖y0‖+ C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T (‖y1‖+ C‖y0‖)

+ C(1 + C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T )‖g(qn)‖

+ C(1 + C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T )

(∫ T

0

φn(η) dη

)
= C1 + C2

(∫ T

0

φn(η) dη

)
+ C2‖g(qn)‖

for all n ∈ N, with

(29) C1 = C‖y0‖+ C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T (‖y1‖+ C‖y0‖)

and

(30) C2 = C(1 + C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T ).

Now, dividing by n ∈ N the terms of the previous inequality we have

(31)
1 <
‖yn‖0

n
≤ C1

n
+

C2

(∫ T

0

φn(η) dη

)
n

+
C2‖g(qn)‖

n
.

Notice that, if ‖qn‖0 ≤ H < +∞ for any n ∈ N, then lim
n→∞

‖g(qn)‖
n

= 0, since g maps

bounded sets into bounded sets. If lim sup
n→∞

‖qn‖0 = +∞, then, by condition (g1), we have

(32) lim sup
n→+∞

‖g(qn)‖
n

≤ lim sup
n→+∞

‖g(qn)‖
‖qn‖0

≤ lim sup
‖u‖0→+∞

‖g(u)‖
‖u‖0

= 0.
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In both cases, passing to the limit for n→∞ and using (25), we obtain the contradiction

(33)
1 ≤ C1

n
+

C2

(∫ T

0

φn(η) dη

)
n

+
C2‖g(qn)‖

n
→ 0.

Now, fix n ∈ N such that Tn(Qn) ⊆ Qn. By Proposition 3.4 the set Vn = Tn(Qn)
ω

is

weakly compact. Let now Wn = co(Vn), where co(Vn) denotes the closed convex hull of

Vn. By Theorem 2.5 Wn is a weakly compact set. Moreover, since Tn(Qn) ⊂ Qn and Qn

is a convex closed set, we have that Wn ⊂ Qn and hence

(34) Tn(Wn) = Tn(co(Tn(Qn))) ⊆ Tn(Qn) ⊆ Tn(Qn)
ω

= Vn ⊂ Wn.

Therefore, from Proposition 3.3 and from Corollary 2.1, we obtain that the restriction

of the multimap Tn on Wn has a weakly closed graph, hence, by Proposition 3.4 and

Proposition 3.5, applying Proposition 2.2, it is weakly u.s.c.. Finally, applying Theorem

2.3, we obtain the existence of a fixed point y of Tn, which is a solution to (P). �

It is possible to prove the controllability result also under less restrictive growth assump-

tions.

Theorem 3.2. Let conditions (A), (F0), (F1), (F ′2), (B), (G) and (g′) hold. In addition

suppose that there exists a function α ∈ L1([0, T ];R+) such that

(35) (F ′′3 ) ‖F (t, c)‖ ≤ α(t)(1 + ‖c‖) for a.e. t ∈ [0, T ] and for all c ∈ H

and there exists β > 0 such that

(36) (g2) ‖g(u)‖ ≤ β(1 + ‖u‖0) for all u ∈ C([0, T ];H).

Moreover, suppose that

(37) C(1 + C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T )(‖α‖L1([0,T ];R+) + β) < 1,

then the problem (P) is controllable.

Proof. Reasoning as in Theorem 3.1, we have to prove that there exists n ∈ N such that the

multioperator Tn : Qn ( C([0, T ];H) maps the ball Qn into itself. By contradiction, we

assume that there exist two sequences {qn}n∈N, {yn}n∈N such that qn ∈ Qn, yn ∈ Tn(qn)
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and yn /∈ Qn, for all n ∈ N. By the definition of the multioperator Tn, there exists a

sequence {fn}n∈N ⊂ L1([0, T ];H), fn(t) ∈ F (t, qn(t)) for all n ∈ N and a.e. t ∈ [0, T ],

such that

(38)

yn(t) = S(t)(y0 + g(qn)) + S1fn(t) +

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qn))

)
(s) ds+ S2fn(t)

for all t ∈ [0, T ]. Since qn ∈ Qn for all n ∈ N, by condition (F ′′3 ), there exists α ∈

L1([0, T ];R+) such that ‖fn(t)‖ ≤ α(t)(1 + n) for a.e. t ∈ [0, T ]. Since yn /∈ Qn for all

n ∈ N, by condition (g2), we have

(39)

n < ‖yn‖0

≤ C(‖y0‖+ ‖g(qn)‖)

+ C(1 + C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T )

(∫ T

0

‖fn(η)‖ dη
)

+ C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T (‖y1‖+ C(‖y0‖+ ‖g(qn)‖))

≤ C‖y0‖+ C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T (‖y1‖+ C‖y0‖)

+ C(1 + C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T )β(1 + n)

+ C(1 + C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T )(1 + n)‖α‖L1([0,T ];R+)

= C1 + C2(1 + n)‖α‖L1([0,T ];R+) + C2(1 + n)β

for all n ∈ N, with constants C1 and C2 defined respectively in (29) and (30).

Now, dividing by n ∈ N the first and the last terms of the previous inequality, we have

(40) 1 <
C1

n
+ C2

(
1

n
+ 1

)
‖α‖L1([0,T ];R+) + C2

(
1

n
+ 1

)
β

and, passing to the limit for n→∞, we get

(41) 1 ≤ C2‖α‖L1([0,T ];R+) + C2β.

By (37) and by the definition of C2, it follows the contradiction

(42)
1 ≤ C2‖α‖L1([0,T ];R+) + C2β

= C(1 + C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T )(‖α‖L1([0,T ];R+) + β) < 1.

The conclusion then follows by Theorem 2.3, as in Theorem 3.1. �
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3.2. Existence with a Gelfand triple type method. We consider the Hilbert space

(H, ‖·‖) compactly embedded in a Banach space (E, ‖·‖E), therefore there exists a costant

λ > 0 such that ‖·‖E ≤ λ‖·‖, and we consider the problem (P) under the following

assumptions:

(A′) A : H → H is a bounded linear operator;

(F ′′2 ) (a) the multimap F (t, ·) : H ( Hω is closed for a.e. t ∈ [0, T ];

(b) the multimap F (t, ·) : H ( H is E − E u.s.c. for a.e. t ∈ [0, T ] in the

following sense: for each w ∈ H and ε > 0 there exists δ > 0 such that from

w′ ∈ BE(w, δ) it follows F (t, w′) ⊂ F (t, w) +BE(0, ε);

(g′′) g : C([0, T ];H)→ H is a bounded linear operator.

As we recalled in the preliminary section, A : H → H generates a uniformly continuous

semigroup {S(t)}t≥0, that in particular is a C0-semigroup.

Remark 3.2. Notice that, since condition (F ′′2 )(a) implies (F2), by Proposition 3.2 the

set Σq, defined in (6), is nonempty for every q ∈ C([0, T ];H) also in this setting.

Now, we describe the properties of the multioperator Tn : Qn ( C([0, T ];H) needeed to

apply the Gliksberg - Fan fixed point Theorem (see Theorem 2.3). We recall that in this

subsection we require assumptions (A′), (F0), (F1), (F ′′2 ), (F3), (B), (G) and (g′′).

Proposition 3.6. The multioperator Tn : Qn( C([0, T ];H) has a closed graph.

Proof. We prove in the following that Tn has a sequentially closed graph. Then, let

{qk}k∈N ⊂ Qn a sequence such that qk → q in C([0, T ];H). Let {yk}k∈N ⊂ C([0, T ];H)

satisfying yk ∈ Tn(qk) for all k ∈ N and such that yk → y in C([0, T ];H). We shall

prove that y ∈ Tn(q). Since yk ∈ Tn(qk), it follows that there exists a sequence {fk}k∈N,

fk ∈ Σqk , such that

(43)

yk(t) =S(t)(y0 + g(qk)) + S1fk(t)

+

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qk))

)
(s) ds+ S2fk(t)

for every t ∈ [0, T ]. Reasoning as in Proposition 3.3, it is possible to prove that there

exists a subsequence, still denoted as the sequence, and a function f0 such that fk ⇀ f0 in
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L1([0, T ];H). Then, by the linearity and continuity of the operators S1 and S2, we have

(44) S1fk ⇀ S1f0

and

(45) S2fk ⇀ S2f0

in C([0, T ];H). Since qk → q in C([0, T ];H), by assumption (g′′), we have

(46) g(qk)
H−→ g(q)

and, by the linearity and continuity of the operator S(t), for every t ≥ 0, we obtain

(47) S(t)g(qk)
H−→ S(t)g(q)

for every t ∈ [0, T ]. In particular,

(48) S(t)(y0 + g(qk))
H−→ S(t)(y0 + g(q))

for every t ∈ [0, T ]. Moreover, by (46) and by the boundedness of the operators B, G̃−1

and S(t), for every t ≥ 0, we have

(49)∥∥∥∥∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qk))

)
(s) ds−

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(q))

)
(s) ds

∥∥∥∥
≤
∫ t

0

∥∥∥∥S(t− s)BG̃−1

(
− S(T )(g(qk)− g(q))

)
(s)

∥∥∥∥ ds
≤ C‖B‖L(U,H)

∫ t

0

∥∥∥∥G̃−1

(
− S(T )(g(qk)− g(q))

)
(s)

∥∥∥∥
U

ds

≤ C‖B‖L(U,H)

∥∥∥∥G̃−1

(
− S(T )(g(qk)− g(q))

)∥∥∥∥
L1([0,T ];U)

≤ C‖B‖L(U,H)

√
T

∥∥∥∥G̃−1

(
− S(T )(g(qk)− g(q))

)∥∥∥∥
L2([0,T ];U)

≤ C2‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T‖g(qk)− g(q)‖ → 0.
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Then (44), (45) and (48) imply that

(50)

yk(t) = S(t)(y0 + g(qk)) + S1fk(t) +

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qk))

)
(s) ds+ S2fk(t)

H−⇀ S(t)(y0 + g(q)) + S1f0(t) +

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(q))

)
(s) ds+ S2f0(t)

= l(t)

for every t ∈ [0, T ]. By the uniqueness of the weak limit in H, we obtain that y(t) = l(t)

for every t ∈ [0, T ]. Reasoning as at the end of the proof of Proposition 3.3, we get that

f0(t) ∈ F (t, q(t)) for a.e. t ∈ [0, T ], thus the claimed result. �

Proposition 3.7. The multioperator Tn : Qn( C([0, T ];H) is compact.

Proof. We prove that Tn(Qn) is relatively sequentially compact in C([0, T ];H). Then, let

{qk}k∈N ⊂ Qn and let {yk}k∈N ⊂ C([0, T ];H) satisfying yk ∈ Tn(qk) for all k ∈ N. By the

definition of the multioperator Tn, there exists a sequence {fk}k∈N, fk ∈ Σqk , such that

(51)

yk(t) = S(t)(y0 + g(qk)) + S1fk(t) +

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(qk))

)
(s) ds+ S2fk(t)

for every t ∈ [0, T ].

By the boundedness of the sequence {qk}k∈N, since by assumption (g′′) the operator g

maps bounded sets into bounded sets and by the reflexivity of the space H, we have that,

up to subsequence, there exists y ∈ H such that g(qk)
H−→ y. Moreover, reasoning as in

Proposition 3.3, we have that there exists a subsequence, still denoted as the sequence,

and a function f0 such that fk ⇀ f0 in L1([0, T ];H). Therefore,

(52)

yk(t)
H−⇀ S(t)(y0 + y) + S1f0(t) +

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + y)

)
(s) ds+ S2f0(t) = l(t)

for all t ∈ [0, T ]. From the compact embedding it follows

(53) yk(t)
E−→ l(t) for every t ∈ [0, T ].
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Now, fix q ∈ Qn and t ∈ [0, T ] and consider y(t) ∈ Tn(q)(t). It follows that there exists a

selection f ∈ Σq, such that

(54)

y(t) = S(t)(y0 + g(q)) + S1f(t) +

∫ t

0

S(t− s)BG̃−1

(
y1 − S(T )(y0 + g(q))

)
(s) ds+ S2f(t)

= S(t)(y0 + g(q)) +

∫ t

0

S(t− s)f(s) ds+

∫ t

0

S(t− s)BG̃−1(pq)(s) ds,

where pq = y1−S(T )(y0 +g(q))−
∫ T

0

S(T −s)f(s) ds. Recall that the map y : [0, T ]→ H

is a strong solution of the problem

(55)

y
′(t) ∈ Ay(t) + F (t, q(t)) +BG̃−1(pq)(t), a.e. t ∈ [0, T ]

y(0) = y0 + g(q),

(see [14, Theorem 4.1.3]). By the boundedness of the operators B, G̃−1 and S(t), for

every t ≥ 0, we have

‖y(t)‖ ≤ C(‖y0‖+ ‖g(q)‖) + C‖f‖L1([0,T ];H)

+ C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T (‖y1‖+ C(‖y0‖+ ‖g(q)‖))

+ C2‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T‖f‖L1([0,T ];H)

and, since q ∈ Qn, according to (F3), there exists a function vn ∈ L1([0, T ];R+) such that

‖f(t)‖ ≤ vn(t)

for a.e. t ∈ [0, T ], then it follows

(56)

‖y(t)‖ ≤ C(‖y0‖+ ‖g(q)‖) + C‖vn‖L1([0,T ];H)

+ C‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T (‖y1‖+ C(‖y0‖+ ‖g(q)‖))

+ C2‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))

√
T‖vn‖L1([0,T ];H) =: D1

and

(57)

‖pq‖ ≤ ‖y1‖+ C(‖y0‖+ ‖g(q)‖) + C

∫ T

0

‖f(s)‖ ds

≤ ‖y1‖+ C(‖y0‖+ ‖g(q)‖) + C

∫ T

0

vn(s) ds

= ‖y1‖+ C(‖y0‖+ ‖g(q)‖) + C‖vn‖L1([0,T ];H) =: D2.
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Then by (56) and (57), for every 0 ≤ t1 < t2 ≤ T , we have

(58)

‖y(t2)− y(t1)‖E ≤ λ‖y(t2)− y(t1)‖ = λ

∥∥∥∥∫ t2

0

y′(s) ds−
∫ t1

0

y′(s) ds

∥∥∥∥ = λ

∥∥∥∥∫ t2

t1

y′(s) ds

∥∥∥∥
≤ λ

∫ t2

t1

‖y′(s)‖ ds = λ

∫ t2

t1

‖Ay(s) + f(s) +BG̃−1(pq)(s)‖ ds

≤ λ

(
‖A‖L(H)D1(t2 − t1) + ‖vn‖L1([0,T ];R+)

+
√
t2 − t1‖B‖L(U,H)‖G̃−1‖L(H,L2([0,T ];U))D2

)
.

Then the functions in Tn(Qn) are equicontinuous in C([0, T ];E). Applying the Ascoli-

Arzelà Theorem (see [23, Theorem A.2.1.]), we can conclude that the multioperator Tn is

compact in C([0, T ];E). �

Reasoning as in Proposition 3.5 it is possible to prove the following.

Proposition 3.8. The multioperator Tn : Qn ( C([0, T ];H) has convex and compact

values.

From Propositions 3.6 and 3.7, again applying Proposition 2.2, we obtain that Tn is a

compact u.s.c. multimap.

Now, reasoning as in the proofs of Theorems 3.1 and 3.2 we can apply Theorem 2.3 to

obtain the following existence results.

Theorem 3.3. Let conditions (A′), (F0), (F1), (F ′′2 ), (F ′3), (B), (G), (g′′) and (g1) hold.

Then the problem (P) is controllable.

Theorem 3.4. Let conditions (A′), (F0), (F1), (F ′′2 ), (F ′′3 ), (B), (G), (g′′), (g2) and (37)

hold. Then the problem (P) is controllable.
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