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Abstract. Let D be a bounded open subset of RN and let z0 be a point of D. Assume

that the Newtonian potential of D is proportional outside D to the potential of a mass

concentrated at z0. Then D is a Euclidean ball centred at z0. This theorem, proved by

Aharonov, Schiffer and Zalcman in 1981, was extended to the caloric setting by Suzuki

and Watson in 2001. In this note, we extend the Suzuki–Watson Theorem to a class of

hypoellliptic operators of Kolmogorov-type.

Sunto. Sia D un sottoinsieme aperto e limitato di RN e sia z0 un punto D. Assumiamo

che il potenziale Newtoniano di D sia proporzionale fuori da D al potenziale di una

massa concentrata in z0. Allora D è una palla Euclidea centrata in z0. Questo teorema,

provato da Aharonov, Schiffer and Zalcman nel 1981, fu esteso all’ambiente calorico da

Suzuki e Watson nel 2001. In questa nota estendiamo il Teorema di Suzuki e Watson a

una classe di operatori ipoellittici di tipo Kolmogorov.
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1. Introduction

Let us recall some classic results. The harmonic functions, i.e., the solutions to the

Laplace equation

∆u :=
N∑
j=1

∂2u

∂x2
j

= 0
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in some open set O ⊂ RN , satisfy the Gauss Mean Value property

u(x0) = Mr(u)(x0) :=
1

|B(x0, r)|

∫
B(x0,r)

u(ξ) dξ,

for every Euclidean ball B(x0, r), centred at x0 with radius r, with the closure B(x0, r)

contained in O.

The average operators on the Euclidean balls actually characterize the harmonic func-

tions in the following sense. If u is a continuous function in O satisfying the Gauss Mean

Value property for every Euclidean ball with its closure contained in O, then u is smooth

and harmonic in O.

Furthermore, the Euclidean balls are the only bounded open sets characterizing the

harmonic functions. More precisely,

Theorem A. Let D ⊂ RN be a bounded open set and let x0 ∈ D. Suppose

u(x0) =
1

|D|

∫
D

u(ξ)dξ

for every integrable harmonic function u in D. Then D has to be a Euclidean ball centred

at x0.

This theorem, proved by Kuran in 1974, can be also deduced from the following spherical

symmetry result obtained in 1981 by Aharonov, Schiffer and Zalcman1.

Theorem B. Let D ⊂ RN be a bounded open set and let x0 ∈ D. Assume there exists a

real constant c > 0 such that

1

c

∫
D

1

|ξ − x|N−2
dξ =

1

|x0 − x|N−2
for every x ∈ RN \D.

Then D is a Euclidean ball centred at x0 and c is the Lebesgue measure of D.

In order to deduce the Kuran Theorem we just need to recall that, denoting by K the

fundamental solution of the Laplace operator at the origin, the function ξ 7−→ K(ξ−x) =

1
|ξ−x|N−2 is harmonic and integrable in D for every x ∈ RN \D.

1Actually Aharonov, Schiffer and Zalcman use Kuran Theorem in the proof of Theorem B. A direct proof
of Theorem B that does not require Theorem A can be found in [2].
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Let us mention that the Aharonov, Schiffer and Zalcman Theorem was obtained to

solve a physical problem posed by Rubel: if the Newtonian potential of D is proportional

outside D to the potential of a mass concentrated at a single point, then D must be

spherical.

In 2001 Suzuki and Watson extended this theorem to the caloric setting. To state their

result we need to introduce some notation.

First of all, we denote by

H = ∆− ∂t

the heat operator in RN+1 = RN ×R 3 z = (x, t). G will stand for the Gauss–Weierstrass

kernel, i.e., the fundamental solution at the origin to H:

G(x, t) =
1

(4πt)
N
2

exp

(
−|x|

2

4t

)
if t > 0, G(x, t) = 0 if t ≤ 0.

We define the heat balls or caloric balls centred at z0 ∈ RN+1 with radius r > 0 as

follows:

Ωr(z0) =

{
z ∈ RN+1 : G(z0 − z) >

1

r

}
.

We remark that, since the fundamental solution has the support in a halfspace, the

“centre” z0 is actually a point of the boundary of the caloric balls.

The caloric functions, i.e., the solutions to the heat equation

Hu = 0

in some open set O ⊂ RN+1, satisfy an analogous of the Gauss Mean Value property. The

history of the Mean Value Theorem for caloric functions started with a paper by Pini

dated 1951 ([11]) and the following formula that characterizes the caloric functions was

discovered by Watson in 1973 ([13]).

Theorem C. Let u ∈ C(O,R). Then, u ∈ C∞(O,R) and Hu = 0 in O if and only if

u(z0) = Mr(u)(z0) :
1

r

∫
Ωr(z0)

u(ζ)W (z0 − ζ) dζ,

for every heat ball Ωr(z0) such that Ωr(z0) ⊆ O.
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The kernel W is given by

W (ζ) = W (ξ, τ) =
|ξ|2

4τ 2
.

As a consequence, since ζ 7−→ G(ζ − z) is caloric in Ωr(z0) for every z /∈ Ωr(z0), one

has

G(z0 − z) =
1

r

∫
Ωr(z0)

G(ζ − z)W (z0 − ζ)dζ,

for every heat ball Ωr(z0), Ωr(z0) ⊆ O, and for every z /∈ Ωr(z0).

Suzuki and Watson extended Aharonov, Schiffer and Zalcman’s Theorem to the caloric

setting proving that this identity is actually a rigidity property of the heat balls. We can

now finally state their result:

Theorem D. Let z0 = (x0, t0) ∈ RN+1 and let D be a bounded open set of RN+1. Assume

that for a suitable constant c > 0,

∫
D

G(ζ − z)W (z0 − ζ) dζ = cG(zo − z) ∀ z /∈ D.

Assume also that

(SW) ζ 7−→ (1D − 1Ωc(z0))(ζ)W (z0 − ζ) ∈ Lp for some p >
n

2
+ 1,

then,

D = Ωc(z0).

Here and henceforth, 1E denotes the characteristic function: 1E(x) = 1 if x ∈ E,

1E(x) = 0 otherwise.

We remark that condition (SW) takes the place of the condition that the point x0 is in

the interior of D in the harmonic case. To use Suzuki and Watson’s words, its meaning

is that D and Ωc(z0) are “indistinguishable in the vicinity of z0”. It can be replaced, e.g.,

by the stronger conditions:

(KLT)
(i) there exists a neighborhood V of z0 s. t. Ωr(z0) ∩ V = D ∩ V ;

(ii) D \ {z0} ⊂ RN×]−∞, t0[.
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Very recently, we extended with Lanconelli the Suzuki–Watson Theorem to the L-

setting, where L is a Kolmogorov-type operator

L = div(A∇) + 〈Bx,∇〉 − ∂t, in RN+1 = RN
x × Rt

where A = (aij)i,j=1,...,N and B = (bij)i,j=1,...,N are N × N matrices with real constant

coefficients, A is symmetric and non-negative definite and A and B satisfy additional

suitable conditions in order that the operator L is hypoelliptic and homogeneous.

We will describe this class of operators and we will state our theorem in detail in the

next Sections 2 and 3.

In 2014, together with Lanconelli and Tralli, in [6], we had already extended this last

rigidity theorem to a more general class of second order hypoelliptic operators containing

in particular the Kolmogorov-type operators of above, but under the hypotheses (KLT).

The new proof of our main rigidity result does not use any symmetry technique: it

closely follows the lines introduced by Cupini and Lanconelli in the paper [2], where

harmonic characterizations of the Euclidean balls are proved by only using ideas and

results from “elliptic” Potential Analysis. We extend the method in [2] to the setting of

the Kolmogorov operators by exploiting the more general Potential Analysis for evolution

linear second order hypoelliptic PDEs. We will give the main ideas of the proof in Section

4. For the complete proofs we refer to the work [5], on which this seminar is based.

2. Our class of operators

The operators we are dealing with are Kolmogorov-type operators in RN+1 of the fol-

lowing type

L = div (A∇) + 〈Bx,∇〉 − ∂t,(1)

where div, ∇, 〈·, ·〉 stand respectively for the divergence, the Euclidean gradient and the

inner product in RN . A = (aij)i,j=1,...,N and B = (bij)i,j=1,...,N are N×N matrices with real

constant coefficients, A is symmetric and non-negative definite. We suppose the operator

L to be hypoelliptic and homogeneous of degree two with respect to a group of dilations.
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We know (see [10], see also [3]) that these properties are guaranteed, e.g., by the

following conditions on the matrices A and B. The matrix A has to take the following

block structure:

A =

A0 0

0 0

 ,
for some p0 × p0 symmetric and strictly positive definite matrix A0, p0 ≤ N . Moreover,

if p0 < N , i.e., if L is a degenerate elliptic-parabolic operator, the matrix B has to be

written as follows

B =



0 0 0 0 0

B1 0 0 0 0

0 B2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Bn 0


,

where Bj is a pj×pj−1 matrix with maximum rank pj; j = 1, 2, ..., n, p0 ≥ p1 ≥ ... ≥ pn ≥ 1

and p0 + p1 + ...+ pn = N .

In 1994 Lanconelli and Polidoro in [10] studied the operators L in (1) and they proved

their left translation invariance with respect to the Lie group K = (RN+1, ·, δr) with

composition law

(x, t) · (x′, t′) = (x′ + E(t′)x, t+ t′),

where E represents the matrix

E(s) := e−sB, s ∈ R.

Furthermore, they proved their homogeneity with respect to the group of dilations

δλ : RN+1 −→ RN+1, δλ(x, t) := (λx(p0), λ3x(p1), . . . , λ2n+1x(pn), λ2t);

where x(pi) ∈ Rpi , i = 0, . . . , n, and λ > 0. Since the operator is hypoelliptic, the matrix

C(t) =

∫ t

0

E(s)AET (s) ds
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is strictly positive definite for every t > 0. An explicit fundamental solution for L is given

by

Γ (z, ζ) := γ
(
ζ−1 ◦ z

)
for z, ζ ∈ Rn+1,

where ζ−1 = (ξ, τ)−1 = (−E (−τ) ξ,−τ) is the opposite of ζ with respect to the composi-

tion law and

γ(z) = γ (x, t) :=

 0 for t ≤ 0

(4π)−N/2√
detC(t)

exp
(
−1

4
〈C−1 (t)x, x〉

)
for t > 0

.

The function γ is the fundamental solution of L with pole at the origin and is δλ-

homogeneous of degree 2−Q, i.e.,

γ(δλ(z)) = λ2−Qγ(z) ∀ z ∈ RN+1, ∀λ > 0.

The natural number Q = p0 + 3p1 + . . . + (2r + 1)pr + 2 is the homogeneous dimension

related to the family of dilations δλ.

A celebrated example of operator belonging to this class is the kinetic Kolmogorov

operator. Let In be the identity n× n matrix, let N be equal to 2n and let the matrices

A and B be of the type

A =

 In 0

0 0

 and B =

 0 0

In 0

 ,

one recovers the prototype K of the operators introduced in 1934 by Kolmogorov in

studying diffusion phenomena from a probabilistic point of view:

K = div(A∇) + 〈Bx,∇〉 − ∂t =
n∑
i=1

∂2
xi

+
n∑
i=1

xi∂xn+i
− ∂t in R2n+1.

In the model of Kolmogorov the positive solutions of Ku = 0 are probability densities

of a system having 2n degrees of freedom. The 2n dimensional space is the phase space:

(x1, . . . , xn) is the velocity vector and (xn+1, . . . , x2n) is the vector of the positions of the

system. In this case:

E(s) = e−sB = I2n − sB
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E(s) A E(s)
T

=

 In 0n

−sIn In

 In 0n

0n 0n

 In −sIn
0n In

 ,

so that,

E(s) A E(s)
T

=

 In −sIn
−sIn s2In


and

C(t) =

∫ t

0

E(s) A E(s)
T

ds =

 tIn − t2

2
In

− t2

2
In

t3

3
In

 .

Then, since

detC(t) =

(
1

12

)n
t4n > 0, ∀t > 0,

C is strictly positive definite for every t > 0.

The composition law of the group K related to the Kolmogorov operator can be explicitly

written. Indeed we have just observed that

E(t) = I2n − tB =

 In 0n

−tIn In

 .

As a consequence,

(z ◦ ζ) = (x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t+ τ) = (ξ′ + x′, ξ′′ + x′′ − τx′, t+ τ),

where x = (x′, x′′) and ξ = (ξ′, ξ′′), x′, x′′, ξ′, ξ′′ ∈ Rn. Moreover, K is homogeneous of

degree two with respect to the dilations

δλ : R2n+1 −→ R2n+1

δλ(x, t) = δλ(x
′, x′′, t) = (λx′, λ3x′′, λ2t).

The homogeneous dimension of this group is Q = n+ 3n+ 2 = 4n+ 2.
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3. Main results

As in the case of the heat operator, we will define the L-balls centred at z0 as superlevel

sets of the fundamental solution with pole at z0. So, for every z0 ∈ RN+1 and r > 0 we

call L-ball with center z0 and radius r > 0 the following open set

Ωr(z0) =

{
z ∈ RN+1 : Γ(z0, z) >

1

r

}
.

Over these balls we define the kernel W as follows

W (z) = W (x, t) :=
〈AC−1(t)x,C−1(t)x〉

4
.

We observe that W is well-defined and moreover is a smooth function which is strictly

positive almost everywhere in RN+1. We remark that in the particular case

A = IN , B = 0N , E(t) = IN , C(t) = tIN ,

then L becomes the heat operator and W coincides with the Pini–Watson kernel of the

heat operator. Also in this setting we have an analogous of the Gauss Mean Value theorem,

essentially due to Kupcov (see [9], see also [10], [6, Theorem 1.1]), for the L-harmonic

functions in O, i.e., the solutions to Lu = 0 in O.

Theorem E. Let u ∈ C(O,R). Then, u ∈ C∞(O,R) and Lu = 0 in O if and only if

u(z0) = Mr(u)(z0) =:
1

r

∫
Ωr(z0)

u(ζ)W (z−1
0 ◦ ζ) dζ,

for every L-ball Ωr(z0) such that Ωr(z0) ⊆ O.

From this Mean Value formula, just proceeding as in the caloric case, one gets∫
Ωr(z0)

Γ(ζ, z)W (z−1
0 ◦ ζ) dζ = rΓ(z0, z) ∀ z /∈ Ωr(z0).

We will prove that this is a rigidity property of the L-balls, extending to the Kolmogorov

setting the Suzuki–Watson theorem.
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Theorem 3.1. Let z0 ∈ RN+1 and let D be a bounded open subset of RN+1 such that, for

a suitable r > 0, ∫
D

Γ(ζ, z)W (z−1
0 ◦ ζ) dζ = rΓ(z0, z) ∀ z ∈ RN+1 \D.

If, moreover,

(SW’) ζ 7−→ (1D − 1Ωr(z0))W (z−1
0 ◦ ζ) ∈ Lp for some p >

Q

2
,

then D = Ωr(z0).

As a corollary, for our class of operators we will have in our setting an analogous of the

Kuran Theorem for the harmonic functions.

Corollary 3.1. Let z0 ∈ RN+1 and let D be a bounded open subset of RN+1 such that,

for a suitable r > 0,

u(z0) =
1

r

∫
D

u(ζ)W (z−1
0 ◦ ζ) dζ

for every non negative function u L-harmonic in an open set containing D ∪ {z0}. If,

moreover, condition (SW′) holds, then D = Ωr(z0).

4. Proof of theorem 3.1: key ideas

We introduce two Radon measures, µ and ν, and the corresponding “Γ-potentials” Γµ

and Γν . For fixed z0 ∈ RN+1 and r > 0, we define µ as the Radon measure in RN+1 such

that

dµ(ζ) =
1

r
1Ωr(z0)(ζ)W (z−1

0 ◦ ζ) dζ.

From the Mean Value formula,

∫
Ωr(z0)

Γ(ζ, z)W (z−1
0 ◦ ζ) dζ = rΓ(z0, z) ∀ z /∈ Ωr(z0),

so for every z /∈ Ωr(z0)

Γµ(z) =

∫
RN+1

Γ(z, ζ) dµ(ζ) =
1

r

∫
Ωr(z0)

Γ(ζ, z)W (z−1
0 ◦ ζ) dζ = Γ(z0, z).

Whereas ν, for fixed z0 ∈ RN+1 and r > 0, is the Radon measure in RN+1 such that
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dν(ζ) =
1

r
1D(ζ)W (z−1

0 ◦ ζ) dζ.

From the assumption in Theorem 3.1,

∫
D

Γ(ζ, z)W (z−1
0 ◦ ζ) dζ = rΓ(z0, z) ∀ z /∈ D,

so for every z /∈ D

Γν(z) =

∫
RN+1

Γ(z, ζ) dν(ζ) =
1

r

∫
D

Γ(ζ, z)W (z−1
0 ◦ ζ) dζ = Γ(z0, z).

To recap, as a consequence of the definitions of µ and ν, we have first of all

µ|Ωr(z0)∩D = ν|Ωr(z0)∩D;

moreover

Γµ(z) = Γ(z0, z) ∀ z /∈ Ωr(z0)

and

Γν(z) = Γ(z0, z) ∀ z /∈ D

imply

Γµ(z) = Γν(z) ∀ z ∈ RN+1 \ (Ωr(z0) ∪D).

We extend the equality of the Γ-potentials to the following set

Γµ(z) = Γν(z) ∀ z ∈ RN+1 \ Ωr(z0).

To this end, we use some basic notions and results of Potential Theory for L and for its

adjoint L?, a strong parabolic maximum principle for the L?-subharmonic functions and

a propagation theorem of the maxima (see e.g.[7]). Furthermore, we use the assumption

(SW′) in order to get the continuity of Γµ−Γν (this follows from a real analysis convolution
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result). Then, from

Γµ(z) = Γν(z) ∀ z ∈ RN+1 \ Ωr(z0),

we obtain that D has to be a subset of Ω. Indeed, being Γ the fundamental solution,

L∗Γµ = −µ and so Γ is L?-harmonic outside its support in RN+1 \ Ω.

As a consequence,

ν = −L?(Γν) = −L?(Γµ) = 0 in RN+1 \ Ω,

i.e.,

ν(RN+1 \ Ω) = 0,

or, equivalently,

supp ν ⊆ Ω.

Then supp ν = D ⊆ Ω and D ⊆ int(Ω). On the other hand, as γ is δλ-homogeneous of

degree 2−Q,

int(Ω) = Ω.

Hence,

D ⊆ Ω.

The last step is to prove that D = Ω. We argue by contradiction and assume D 6= Ω. In

this case, there exists z ∈ Ω such that z /∈ D. As a consequence of a Poisson–Jensen-type

formula (see [8, Corollary 3.2]), we get that for every z ∈ Ω

Γ(z0, z) > Γµ(z).

Moreover, we know that µ and ν coincide on Ω ∩D; so, as D ⊆ Ω, we have

µ|D = ν.

In addition, since z /∈ D, from our theorem’s assumption,

Γν(z) = Γ(zo, z).
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Combining the above, we have

Γ(z0, z) > Γµ(z) =

∫
Ω

Γ(ζ, z) dµ(ζ)

≥
∫
D

Γ(ζ, z) dµ(ζ) =

∫
D

Γ(ζ, z) dν(ζ) = Γν(z) = Γ(zo, z),

that is Γ(z0, z) > Γ(z0, z). This contradiction proves D = Ω and completes the proof of

our theorem.

We are currently working on extending this method to more general class of Partial

Differential Equations; in particular to the class of the Hörmander evolution operators

m∑
i=1

X2
j +X0 − ∂t in RN+1

left invariant and homogeneous of degree two on a homogeneous Lie group introduced

and studied in [4].
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