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Abstract. In this note we shall present some result proved in [16] on the uniqueness

of Schrödinger equations with space-variable coefficients, that is Schrödinger equations

where the Laplacian is replaced by an elliptic operator with space-variable coefficients.

Sunto. In queste note presenteremo alcuni risultati dimostrati in [16] sull’unicità di

soluzioni di equazioni di Schrödinger a coefficienti variabili dipendenti dallo spazio, ovvero

equazioni di Schrödinger in cui il Laplaciano viene sostituito da un operatore ellittico a

coefficienti variabili che dipendono dalla variabile spaziale.
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1. Introduction

In the present note we will discuss some results proved in [16] showing that linear

Schrödinger equations with variable coefficients have a unique solution whenever suit-

able decay assumptions are satisfied. More precisely, let P (t, x,Dt, Dx) be the variable

coefficient Schrödinger operator of the form

P = ∂t − i(L+ V ) on [0, 1]× Rn,

Bruno Pini Mathematical Analysis Seminar, Vol. 15 No. 1 (2024) pp. 60-78

Dipartimento di Matematica, Università di Bologna
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where V ∈ L∞(Rn,R) and

L = L(x,Dx) =
n∑

j,k=1

∂k(akj(x)∂j)

is a second order elliptic operator defined by a real symmetric matrixA(x) = (akj(x))k,j=1,··· ,n

satisfyng the boundedness and ellipticity condition

∃λ,Λ > 0, ∀x, ξ ∈ Rn, λ|ξ|2 ≤
n∑

j,k=1

ajk(x)ξjξk ≤ Λ|ξ|2.

Then the question we will answer for P is the following:

Q1: Let P (t, x,Dt, Dx) be as in (2.2), and let u1, u2 be two solutions of the equation

Pu = 0 in [0, 1]× Rn. Under which decay assumptions on u1, u2 we have that u1 ≡ u2?

Question Q1 – concerning the uniqueness of the solution – can be formulated in the

following equivalent form.

Q1: Let P (t, x,Dt, Dx) be as in (2.2), and let u1 be a solution of Pu = 0 in [0, 1] × Rn.

Under which decay assumption on u1 we have that u1 ≡ 0?

The investigation of this type of problems for general variable coefficient partial differ-

ential equations (PDEs) started after the publication of the pioneering work by Carleman

in 1939 (see [4]). In [4] Carleman proved a unique continuation result for linear elliptic

equations on bounded domains in R2 which says the following: if u solves the elliptic

equation ∆u = V (x)u in a connected open subset Ω ⊂ R2 (where V ∈ L∞(Ω)), and if

u = 0 in an open subset ω ⊂ Ω, then u ≡ 0 in Ω.

After Carleman’s work, local unique continuation questions – on bounded domains or

in a neighborhood of each point of the domain – were studied and answered for more

general variable coefficient partial differential operators (PDOs), in other words for non-

elliptic operators whose principal part may have variable coefficients. Particular attention

was given to the study of unique continuation properties of PDOs (and more generally

of pseudo-differential operators) across hypersurfaces (see [22, 34, 41, 27]), investigation

which lead to many local results across so-called pseudoconvex hypersurfaces. Of course

unique continuation results can be seen as uniqueness results, for that we use the two

terms unique continuation and uniqueness withouth distinction.
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We stress once more that the results listed above are local. Moreover, the initial as-

sumption on the solution u of the homogeneus equation is a vanishing assumption, in

that the hypothesis on u is that it vanishes in a subdomain of the domain, exactly as in

Carleman’s original theorem.

When dealing with evolution equations, we wish to consider unbounded domains, since

very often the goal is to see what happens globally in space. For Schrödinger and other

dispersive equations with constant coefficients in the principal part, uniqueness results on

unbounded domains have been proved, as in the bounded domain case, under vanishing

conditions, that is assuming that the solution vanishes somewhere (see [24, 25]) in the

space-time domain.

However, for some dispersive equations, specifically for the Schrödinger, the KdV and

its 2-dimensional generalization called the ZK equation, a different type of questions, that

is of the form Q1, have been recently answered. The novelty here resides in assuming decay

conditions on the solution of the PDE – instead of vanishing conditions– which allow to

conclude that the solution must be identically zero on the whole (unbounded) space-time

domain.

This new approach to the uniqueness of solutions to dispersive equations, approach

based on the decay of the solution, was introduced in the works [13, 11, 10, 31] for

Schrödinger equations with potentials. As the authors of the listed references clearly

pointed out, the new type of assumption – an L2-exponential decay of Gaussian-type

of the solution – was inspired by the so called Hardy uncertainty Principle (see [21]),

due to the relation between the solution to the free (constant coefficient) Schrödinger

equation and its Fourier transform when these two are considered at two different times.

A brief discussion of Hardy uncertainty principles and of its L2-variants is given below

in Subsection 2.1, and we refer the interested reader to that part for more details on the

argument.

For Schrodinger equations with and without potential, uniqueness results under an ex-

ponential decay condition – also called Hardy uncertainty principles – have been proved

by Escauriaza, Kenig, Ponce and Vega in [13, 11, 10], while results with gradient terms

were proved by Dong and Staubach in [9]. For the KdV and the ZK equation, uniqueness
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results can be found in [6, 12, 26, 30, 37, 42]. Other dispersive models including dis-

crete Schrödinger equations have been treted by Bertolin and Vega in [3] and by Jaming,

Kyubarski, Malinikova and Perfekt in [28], whereas higher order Schrödinger equations

– where the Laplacian is replaced by a constant coefficient higher order elliptic operator

– have been considered by Huang, Huang and Zheng in [23], and by Lee and Yu in [33].

Finally, Hardy uncertainty principles for magnetic Schrödinger equations can be found in

the work by Cassano and Fanelli [5] (see also [2] and references therein).

Now that the picture about known global results, menaing on unbounded domains, for

dispersive equations has been clarified, we wish to explain the novelty of the results in

[16] that we are going to analyze in detail in the present paper. The difference between

the operator in (2.2) and those analyzed in the aforementioned papers, is that we deal

with variable coefficient Schrödinger operators in which the Laplacian is replaced by an

elliptic operator with space-variable coefficients. Hence, the variable coefficients in our

Schrödinger equation, are not introduced by the potential or by first order terms with

variable coefficients as in the papers cited above, but they (also) appear in the principal

symbol of the operator. This forces a new formulation of the problem, that must be based

not only on the decay assumption on the solution, but also on suitable decay assumptions

on the coefficients.

Let us say that the study of Schrödinger operators with variable coefficients is con-

nected to different physical phenomena, especially in nonlinear optics. For example, the

case where the Laplacian is replaced by an elliptic operator with time-variable coefficients

analyzed in [17, 19], is also used in physics to understand soliton’s behaviour. In partic-

ular, one can manipulate soliton’s behaviour by changing the time-dependent operator’s

coefficients (see [43] and references therein). As for operators with space-variable coeff-

cients, they have been studied, for instance, in [18, 8, 29, 36, 39, 38] (see also reference

therein) from the mathematical point of view. Their use in physics, as in the time-variable

coefficients case, is related to soliton control, and we refer to [20] and references therein

for more details on the topic.

We conclude this introduction by explaining the structure of this note.
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Section 2 will be composed of two subsections. In Subsection 2.1 we recall the original

version of Hardy uncertainty principle and of its generalizations, and give the equivalent

statements for free Schrödinger equations with constant coefficients. Afterwards, in Sub-

sections 2.2, we state the main results of [16] holding for variable coefficient Schrödinger

operators. This order of presentation will allow us to make a comparison between the

results in Subsection 2.1 and 2.2 for constant and for variable coefficient operators, re-

spectively.

In Section 3 we will delve into the strategy of the proof of the uniqueness results stated

in Subsection 2.2. Here we will show some complementary results derived in [16] needed

for the proof.

Finally, the note will end with Section 4 containing some final remarks and connected

open problems.

2. Results for variable coefficient Schrödinger operators: the general

and the structural case

This section will be devoted to the statement of the main uniqueness results obtained

in [16]. These will be given in Theorem 2.4 and Theorem 2.5 in Subsection 2.2. To

explain the connection with Hardy uncertainty principles, and especially to compare the

variable coefficient results with those previously established for constant cefficient opera-

tors, we devote Subsection 2.1 to some Hardy uncertainty principles including those for

Schrödinger equations.

2.1. Hardy uncertainty principles for Schrödinger equations. Hardy uncertainty

principle – indeed proved by Hardy in 1933 – was originally given in dimension one in the

following form.

Theorem 2.1 (Hardy uncertainty Principle 1933 [21]). For any function f : R → C, if

f itself and its Fourier transform f̂ satisfy

f(x) = O(e−Ax
2

) and f̂(ξ) = O(e−4Bξ2),

with A,B > 0 and AB > 1/16, then f ≡ 0. Moreover, if A = B = 1/4, then f(x) =

Ce−x
2/4.
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Hardy’s result was later generalized in any dimension by Sitaram, Sundary and Tan-

gavelu [40] in 1995, hence assuming the corresponding higher dimensional condition

f(x) = O(e−A|x|
2

) and f̂(ξ) = O(e−4B|ξ|2).

A further generalization of the previous principle is due to Cowling and Price [7], and

it includes the following L2-variant of Hardy’s uncertainty principle.

Theorem 2.2 (L2-Hardy uncertainty Principle). If eA|x|
2
f ∈ L2(Rn) and e4B|x|2 f̂ ∈

L2(Rn), with A,B > 0 and AB ≥ 1/16, then f ≡ 0.

Next, consider the solution of the free Schrödinger equation

i∂tu+ ∆u = 0, u(0, x) = u0(x), (t, x) ∈ (0, 1]× Rn,

that is

u(t, x) = eit∆u0(x) := F−1(e−it|ξ|
2

û0)(x) =
e
i|x|2
4t

(2it)n/2
F(e−i|·|

2

u0)
( x

2t

)
.(1)

Remark 2.1. The reader may have noticed that in the L2-variant of Hardy’s principle we

have f ≡ 0 even when AB = 1/16. This property indeed holds by virtue of the result in [7].

To be precise, the general statement of Cowling and Price works under the assumptions

eA|x|
2
f ∈ Lp(Rn), e4B|x|2 f̂ ∈ Lq(Rn) and 1 ≤ p, q ≤ ∞, and gives f ≡ 0 even when

AB = 1/16 whenever min(p, q) <∞.

An application of Theorem 2.1 and of Theorem 2.2 to u as in (1) provides two principles

for solutions of free Schrödinger equations. If the free solution u has a certain behaviour

at the initial time t0 = 0 and at the final time T , then it has a prescribed behaviour at

any intermediate time t ∈ (0, T ).

Hardy uncertainty principle for free Schrödinger equations. If u(0, x) = O(e−
1
α2
|x|2)

and u(T, x) = eiT∆u(0, x) = O(e
− 4
β2
|x|2

), T > 0, and αβ < 4T , then u(t, x) ≡ 0 in

[0, T ] × Rn. Moreover, if αβ = 4T then u is the solution with initial data u(0, x) =

ωe
−
(

1
β2

+ i
4T

)
|x|2

, for some ω ∈ C.

L2- Hardy uncertainty principle for free Schrödinger equations. if e
1
α2
|x|2u(0, x)

and e
1
β2
|x|2
u(T, x) are in L2(Rn), and αβ ≤ 4T , then u(t, x) ≡ 0 in [0, T ]× Rn.
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Notice that the first part of these principles can be seen as uniqueness results. In fact

they show that if the solution has a certain behaviour at two different times, then it must

be identically zero.

As already mentioned in the Introduction, uniqueness problems for Schrödinger equa-

tions with potentials, that is of the form

i∂tu+ (∆ + V )u = 0, V 6≡ 0,

were first considered by Escauriaza, Kenig, Ponce and Vega. These authors, inspired by

the previous principles, obtained the following Hardy uncertanty principle for Schrödinger

equations with potential.

Theorem 2.3. Hardy uncertainty principle for Schrödinger equations with

potential. Assume that u ∈ C([0, 1], L2(Rn)) solves i∂tu + ∆u = V (t, x)u, (t, x) ∈

[0, 1]×Rn. Then, under proper boundedness and decay assumptions on V , if for A,B > 0

with AB > 1/16, we have

(2)
∥∥∥eA|x|2u(0, x)

∥∥∥
L2(Rn)

+
∥∥∥eB|x|2u(1, x)

∥∥∥
L2(Rn)

<∞,

then u ≡ 0.

This theorem, as the aformentioned principles, gives information about the solution

u at any time of existence assuming a certain decay of the solution at the initial and

the final time. The information given by the theorem is very precise, that is, under the

above L2-decay condition, the solution of the equation must be identically zero. This fact

translates in a uniqueness result for solutions to Schrödinger equations with potential.

Let us finally stress that the decay assumption in order to have a unique solution in

presence of potentials is an L2-Gaussian decay of u(0, x) and u(T, x), which is the L2-

decay required when V ≡ 0, hence the sharp one. This is important to keep in mind since

this decay rate will be compared with the one needed in the variable coefficients case.

2.2. Variable coefficients Schrödinger equations: results. We recall that the vari-

able coefficient Schrödinger equations we are interested in are those of the form

Pu = ∂tu− i(L+ V )u = 0, (t, x) ∈ [0, 1]× Rn,
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where

L = L(x) =
n∑

j,k=1

∂k(akj(x)∂j),

V ∈ L∞(Rn,R), and A(x) = (akj(x))k,j=1,··· ,n is a real symmetric matrix satisfyng the

boundedness and ellipticity condition

∃λ,Λ > 0, ∀x, ξ ∈ Rn, λ|ξ|2 ≤
n∑

j,k=1

ajk(x)ξjξk ≤ Λ|ξ|2.

Here the coefficients are said to be variable not because of the presencee of the potential V

(which can be assumed identically zero), but due to the presence of a second order elliptic

operator L having, in general, variable coefficients (of course the constant coefficients case

is covered as well).

To summarize the previous discussion, the question we will answer concerning these

operators is the following.

Question: Assume that u solves Pu = 0 in [0, 1]× Rn. Under which

(1) conditions on A(x),

(2) decay assumption on u(0, x), u(1, x),

we have that u ≡ 0?

This question was answered in [16] in two different cases, called, respectively, the general

and the structural case. We state below the uniqueness results we have in the two cases,

and comment on them right afterwards. We specifiy that the notation A ∈ Ck(Rn) used

from now one stands for ajk ∈ Ck(Rn) for all i, j = 1, . . . , n.

Theorem 2.4 (Uniqueness in the general case). Let u ∈ C([0, 1], L2(Rn)) be a solution

to Pu = 0 with

(3) A ∈ C3(Rn), V = V (x) ∈ L∞(Rn,R).

Then there exists a small positive number ε0 = ε0(n, λ,Λ), such that if

(4) sup
Rn
|x||∇A| ≤ ε0

and

ek|x|
3|u(0, x)|, ek|x|3|u(1, x)| ∈ L2

x(Rn), ∀k > 0,
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then u ≡ 0.

Now we assume the following transversally anisotropic type condition on A(x): under

a suitable choice of coordinates, for x = (x1, x
′) ∈ R× Rn−1,

A = A(x1, x
′) =

a11(x1) 0

0 Ã(x′)

 , where Ã is symmetric.

Theorem 2.5 (Uniqueness in the structural case). Let u ∈ C([0, 1], L2(Rn)) be a solution

to Pu = 0, let A with the structure above be s.t.

(5) a11 ∈ C2(R), Ã ∈ C3(Rn−1), and V = V (x) ∈ L∞(Rn,R).

Then there exists a small positive number ε0 = ε0(n, λ,Λ) and a large number k =

k(n, λ,Λ, ‖a11‖C2 , ‖Ã‖C3), such that if

(6) sup
Rn−1

|x′||∇x′Ã| ≤ ε0,

and

ek|x|
2|u(0, x)|, ek|x|2 |u(1, x)| ∈ L2

x(Rn),

then u ≡ 0.

We shall refer to (3) and (4) as the regularity and smallness conditions when dealing

with the general case. Similarly, we shall refer to (5) and (6) as the regularity and

smallness conditions when dealing with the structural case.

Let us now give a few comments on the above statements. Theorem 2.4 is for operators

in general form, that is with the minimum regularity requirement on the coefficients of

L. Nevertheless, compared to Theorem 2.3 we need to ask higher that L2-Gaussian decay

for u(0, x) and u(T, x), indeed due to the generality of the considered framework. On the

other hand, by adding the structural condition in Theorem 2.5, we can get a sharp result

in terms of decay requirement, since by requiring L2-Gaussian type decay of u(0, x) and

u(T, x) – the same as in the constant coefficients case – we reach the desired conclusion.
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3. Complementary results and strategy of the proof

The strategy to prove Theorem 2.4 and Theorem 2.5 is based on three key ingredients:

a log-convexity result, a Carleman estimate, and a lower bound for a suitable localized

norm of the solution. For completeness we state these complementary results – which,

per se, show other properties of the solution – below.

3.1. log-convexity. The log-convexity result in Theorem 3.1 should be interpreted in the

following way: if the solution u of the variable coefficient Schrödinger equation Pu = 0

has a certain L2-exponential decay at two different times, then the same rate of decay is

possessed by u at any intermediate time. The result is a log-convexity result because it

amounts to the log-convexity of H(t) := ‖eβ|x|2u(t, x)‖2
L2
x
. Moreover, it gives the bound-

edness of a weighted L2
tH

1
x-norm of u, an estimate which is crucial to get the proof of our

main results.

Theorem 3.1 (log-convexity). Let u ∈ C([0, 1], L2(Rn)) be a solution to Pu = 0 with

A ∈ C3(Rn),M1 := ‖V ‖L∞ < ∞. Then there exist a small enough ε0 = ε0(n, λ,Λ) > 0

and a large enough β0 = β0(n, λ,Λ, ‖A‖C3), s.t. if

sup
Rn
|x||∇A| ≤ ε0, and eβ|x|

2

u(0, x), eβ|x|
2

u(1, x) ∈ L2(Rn), with β > β0,

then for all t ∈ (0, 1), we have

‖eβ|x|2u(t, x)‖2
L2
x
≤ CeM

2
1

(
‖eβ|x|2u(0, x)‖2

L2
x

)1−t (
‖eβ|x|2u(1, x)‖2

L2
x

)t
,

and

β‖
√
t(1− t)eβ|x|2|∇u|‖2

L2
t,x

+ β3‖
√
t(1− t)eβ|x|2|xu|‖2

L2
t,x

≤ CeM
2
1 (‖eβ|x|2u(0, x)‖2

L2
x

+ ‖eβ|x|2u(1, x)‖2
L2
x
).

Here C is an absolute constant and L2
t,x := L2([0, T ]× Rn).

The subsequent corollary shows that the same log-convexity result as above holds with

higher order exponential weights if the solution enjoys additional decay. This, in partic-

ular, is needed to prove Theorem 2.4.
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Corollary 3.1. Under the assumptions of Theorem 3.1, ∀α > 1, ∃κ0 = κ0(β0, α), s.t. if

we further assume that for some κ > κ0

eκ|x|
2α

u(0, x), eκ|x|
2α

u(1, x) ∈ L2(Rn),

then for any t ∈ (0, 1), we also have

eκ|x|
2α

u(t, x) ∈ L2(Rn),

√
t(1− t)eκ|x|2α∇u(t, x),

√
t(1− t)eκ|x|2αxu(t, x) ∈ L2([0, 1], L2(Rn)),

with estimates

‖eκ|x|2αu(t, x)‖2
L2
x
≤ CeM

2
1

(
‖eκ|x|2αu(0, x)‖2

L2
x

)1−t (
‖eκ|x|2αu(1, x)‖2

L2
x

)t
,

and

β‖
√
t(1− t)eκ|x|2α|∇u|‖2

L2
t,x

+ β3‖
√
t(1− t)eκ|x|2α |xu|‖2

L2
t,x

≤ CeM
2
1 (‖eκ|x|2αu(0, x)‖2

L2
x

+ ‖eκ|x|2αu(1, x)‖2
L2
x
).

3.2. Carleman estimates. Next, we discuss the second crucial ingredient in the proof of

Theorems 2.4 and 2.5, i.e. Carleman estimates. In the two cases, general and structural,

this estimate is slightly different. However, this small difference becomes essential to get a

sharp lower bound estimate for a certain norm of the solution (see Subsection 3.3), which,

in the end, translates into a sharp uniqueness in terms of decay assumptions.

It will be clear from the following statements that Carleman estimates are weighted

estimates of the form

‖eφPu‖X ≥ C‖eφu‖Y , ∀u ∈ C∞0 (Ω)

for some X, Y functional spaces, usually Lebesgue or Sobolev spaces or a weighted ver-

sion of them, and for some open set Ω ⊆ Rn. The most challenging part is to find a

weight function φ allowing for an estimate of this kind and being suitable for a cutting-off

procedure employed in the proof of the uniqueness theorems.



UNIQUENESS RESULTS FOR VARIABLE COEFFICIENT SCHRÖDINGER EQUATIONS 71

Theorem 3.2 (Carleman estimate in the general case). Assume A ∈ C3
b (Rn), ϕ = ϕ(t) ∈

C∞c (R), and r0 > 0. There exists an ε0 = ε0(n, λ,Λ), such that if

sup
x∈Rn
|x||∇A| < ε0,

then for any function

f ∈ C∞c (R×Bc
r0

)

and β,R satisfying

β ≥ β1 := max{λ−1‖ϕ′′‖1/2
L∞r

−1
0 R3, C1(1 + r−1

0 )R2}, R ≥ 1

with C1 = C1(n, λ,Λ, ‖A‖C3), we have

βR−2

∫
R

∫
Rn
|∇f |2 dxdt+ β3R−6

∫
R

∫
Rn
|x|2|f |2 dxdt

≤ λ−2

∫
R

∫
Rn

∣∣eβ(|x/R|2+ϕ(t))(i∂t + L)e−β(|x/R|2+ϕ(t))f
∣∣2 dxdt.

If we set f = eβ(|x/R|2+ϕ(t))u and φ(t, x) = β(|x/R|2 + ϕ(t)), we have

βR−2

∫
R

∫
Rn
e2φ|∇u|2 dxdt+ β3R−6

∫
R

∫
Rn
e2φ|x|2|u|2 dxdt

. λ−2

∫
R

∫
Rn
e2φ
∣∣(i∂t + L)u

∣∣2 dxdt.
Theorem 3.3 (Carleman estimate in the structural case). Let R > 1 and ϕ = ϕ(t) ∈

C∞c (R). Then there exists a large constant c0 = c0(n, λ,Λ, ‖A‖C3 , ‖ϕ′‖L∞ , ‖ϕ′′‖L∞) > 0,

such that if the smallness and regularity conditions are satisfied, then for any R ≥ 1,

f ∈ C∞c (R× Rn) with

supp(f) ⊂ {|x/R + ϕ(t)~e1| ≥ 1},

and

β ≥ β3 := c0R
2,

we have

β

R2
‖∇xf‖2

L2
t,x

+
β3

R6
‖|x/R + ϕ~e1|f‖2

L2
t,x

≤C‖eβ|x/R+ϕ~e1|2(i∂t + L)e−β|x/R+ϕ~e1|2f‖2
L2
t,x
,
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where ~e1 is the unit vector (1, 0, . . . , 0). If we set f = e|x/R+ϕ(t)~e1|u and φ(t, x) = β|x/R+

ϕ(t)~e1|, we have

β

R2
‖eφ∇xf‖2

L2
t,x

+
β3

R6
‖|x/R + ϕ~e1|eφu‖2

L2
t,x

≤C‖eφ(i∂t + L)u‖2
L2
t,x
,(7)

Remark 3.1. Observe that in Theorems 3.2 and 3.3 the weight function φ in the weighted

norms is different, respectively φ(t, x) = β(|x/R|2 + ϕ(t)) and φ(t, x) = β|x/R + ϕ(t)~e1|.

In addition, the functions on which the two theorems apply are supported in different sets.

This is due to the choice of the weight function, which, in turn, is dictated by the form of

the operator.

3.3. Lower bounds for nontrivial solutions and proof of the main results. We

can finally state the last fundamental ingredient to prove the uniqueness theorems. We

will provide two lower bounds for nontrivial solutions valid in the general and in the

structural case. These bounds are stated in Theorem 3.4 and Theorem 3.5 respectively.

Let us also say that the proof of the subsequent theorems relies on the use of the previous

Carleman estimates.

Theorem 3.4 (Lower bound in the general case). Let u ∈ L∞([0, 1], L2(Rn))∩L2
loc((0, 1), H1(Rn))

solves Pu = 0 where A = A(x) satisfy the smallness condition (4) in Theorem 2.4 and

V ∈ L∞(R× Rn,C). Denote by M1 := ‖V ‖L∞.

Furthermore, let E1, E2, R0, ε be the numbers such that∫ 7/8

1/8

∫
Rn

(|u(t, x)|2 + |∇u(t, x)|2) dtdx ≤ E2
1 <∞

and ∫ 3/4

1/4

∫
BR0
\B2ε

|u(t, x)|2 dtdx ≥ E2
2 ,

then there exist positive constants R1 = R1(n, λ,Λ, ‖A‖C3 , ε,M1, E1, E2, R0), C0 = C0(λ, ε),

and C = C(n, λ,Λ, ‖A‖C3 , ε,M1, E1, E2, R0), such that, for any R > R1,

δ(R) :=

∫ 7/8

1/8

∫
BR\BR−1

(|u(t, x)|2 + |∇u(t, x)|2) dxdt ≥ C e−C0R3

.
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Theorem 3.5 (Lower bound in the structural case). Let u ∈ L∞L2 ∩L2H1 be a solution

of Pu = 0 with A satisfying the smallness and regularity assumption (6) in Theorem 2.5.

Let also V ∈ L∞([0, 1]× Rn,R) and M1 := ‖V ‖L∞.

Furthermore, let E1, E2, R0 be the numbers such that∫ 7/8

1/8

∫
Rn

(
|u(t, x)|2 + |∇u(t, x)|2

)
dxdt ≤ E2

1 <∞

and ∫ 3/4

1/4

∫
BR0

|u(t, x)|2 dxdt ≥ E2
2 > 0,

then there exist some positive constants R1 = R1(n, λ,Λ,
∥∥∥Ã∥∥∥

C3
,M1, E1, E2, R0), C0 =

C0(n, λ,Λ, ‖Ã‖C3), and C1 = C1(n, λ,Λ,
∥∥∥Ã∥∥∥

C3
,M1, E1, E2, R0), such that, for any R >

R1,

δ(R) :=

∫ 7/8

1/8

∫
BR\BR−1

(|u(t, x)|2 + |∇u(t, x)|2) dxdt ≥ C1 e
−C0R2

.

Remark 3.2. In Theorem 3.4 the lower bound estimate in the general case involves

an exponential function with exponent −C0R
3, while the estimate in the structural case

exhibits a quadratic exponent on the right hand side, that is −C0R
2. This is the origin of

the decay conditions in Theorems 2.4 and 2.5.

Let us now sketch the proof of Theorems 2.4 and 2.5 by using the results presented so

far in this section.

proof of Theorems 2.4 and 2.5. Assume that the hypotheses of Theorem 2.4 are satisfied

when dealing with the general case, and that those of Theorem 2.5 hold in the structural

case.

We proceed by contradiction assuming that u 6≡ 0. Then (due to the form of the

solution when V is real) there exist R0 > 0 sufficiently large and ε > 0 sufficiently small

such that ∫ 3/4

1/4

∫
BR0
\B2ε

|u(t, x)|2 dxdt ∈ (0,∞).
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Now the last part of Theorem 3.1 yields∫ 7/8

1/8

∫
Rn

(|u(t, x)|2 + |∇u(t, x)|2) dxdt <∞,

which shows that the hypotheses in Theorem 3.4 and in Theorem 3.5 are satisfied in the

general and in the structural case respectively. An application of these theorems gives

∫ 7/8

1/8

∫
BR+1\BR

(|u(t, x)|2 + |∇u(t, x)|2) dxdt ≥

 C1e
−C0R3

, in the general case

C1e
−C0R2

, in the structural case.

(8)

Next, by Theorem 3.1 and Corollary 3.1, for κ > κ0, we have∫ 1

0

∫
Rn
eκ|x|

α(|u(t, x)|2 + t(1− t)|∇u(t, x)|2
)
dxdt <∞,

implying that

eκR
α

(∫ 7/8

1/8

∫
BR+1\BR

(|u(t, x)|2 + |∇u(t, x)|2) dxdt

)
= 0

with α = 3 in the general case, and with α = 2 in the structural case. Therefore, choosing

κ large enough and α = 3, we reach a contradiction with the lower bound (8) in the

general case. By the same argument with α = 2 we reach a contradiction with the lower

bound (8) in the structural case. This concludes the proof. �

4. Final remarks

In this final section we wish to make some comments on the role of the assumptions

used in the uniqueness theorems, i.e. the smallness and the structural condition, and

share some open problems close to that studied in this note.

The smallness conditions (4) and (6) are quite different, in the sense that the second

one is not exactly a translation of the first one, but a new suitable requirement. Moreover,

smallness assumptions of this kind – and even more restrictive ones – are used to show

the validity of smoothing and Strichartz estimates for variable coefficient Schrödinger

operators as in (2.2) (see, for instance, [39, 38, 36]). The reason behind the smallness

condition is that it is related with the behaviour of the bicharacteristics of the operator

L, or, in other words, with the so called non-trapping condition.
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The structural condition in Theorem 2.5 is not surprising. A similar structure – giving

a translation invariance in one direction – is also required in [5] to get a sharp uniqueness

result for magnetic Schrödinger equations, that is to say for operators involving an elliptic

operator with constant coefficient leading part and variable coefficient lower order terms.

This raises the question of whether it is possible to remove the structural condition and

get the sharp result (in terms of decay) in the general case.

Uniqueness results for other dispersive equations have been investigated for KdV and

ZK equations, i.e. involving constant coefficients operators. It is an open problem to

understand the validity of Hardy-type uniqueness results as the preceding ones, that is

based on decay assumptions, for variable coefficient operators of this type. A first step

in this direction is the proof of a suitable Carleman estimate. Such an estimate has been

recently derived in [14] for some KdV-type operators with variable coefficients in a local

framework. This estimate is not ready to be used in a uniqueness argument, however it

can give an insight on the weighted estimate one can hope for.
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