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Abstract. In this note we collect some results in Rn about global Poincaré inequalities

for differential forms obtained in a joint research with Pierre Pansu and presented by

the authors in two seminars held in Bologna respectively in 2023 and 2024. At the end

of the note we comment some very new results obtained in the Heisenberg groups Hn.

Sunto. In questa nota presentiamo alcuni risultati che riguardano disuguaglianze di

Poincaré per forme differenziali. Questi risultati sono stati ottenuti in collaborazione con

Pierre Pansu e presentati dagli autori in due seminari tenuti a Bologna rispettivamente

nel 2023 e 2024. Alla fine della nota commenteremo alcuni risultati ottenuti nei gruppi

di Heisenberg Hn.
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Keywords. Differential forms, Poincaré inequalities, homotopy formula, currents

1. Introduction

Let us start by recalling what we mean by a (p, q)-Poincaré inequality for differential

forms in Rn. When dealing with differential forms there is a well known topological

problem, whether a given closed form is exact. Besides, for several applications to the

cohomology theory for example, we can study also an analytical problem: Whether a

primitive φ of a given exact form ω can be upgraded to one which satisfies a (p, q)-

estimate of the type ‖φ‖q ≤ c‖ω‖p. More precisely, if 1 ≤ p ≤ n, we ask whether, given a

closed differential h-form ω in Lp(Rn), there exists an (h− 1)-form φ in Lq(Rn) for some
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q ≥ p such that dφ = ω and

(1) ‖φ‖q ≤ C ‖ω‖p,

for C = C(n, p, q, h). We refer to the above inequality as to the (p, q)-Poincaré inequality

for h-forms (notice that, for 1 < p < n, by the scale invariance, we must have 1
p
− 1

q
= 1

n
).

Also the end-point situation p = 1 and p = n have been considered in several papers. We

refer to [9] for a long list of references. The result in Rn can be summarized as follows.

Theorem 1.1. Let h = 1, 2, · · ·n and let ω be a closed h-differential form in Lp(Rn).

i) If 1 < p < n then (1) holds for any h.

ii) If p = 1 then (1) holds for any h < n.

iii) If p = n then (1) holds for any h ≥ 2.

Here we mention only a result, about the case p = n, covered by Bourgain and Brezis

(see [15] for differential form in Rn) and, much more recently, by Baldi, Franchi and

Pansu in [8] in the setting of Heisenberg groups (and also in a more general subriemannian

setting). In [14], which deals with functions, i.e. 0-forms, the statement takes the following

form: let ω be an exact n-form on the n-torus, which belongs to Ln, then there exists a

bounded differential (n− 1)-form φ on the torus such that dφ = ω and

‖φ‖L∞ ≤ C‖ω‖Ln .

Furthermore, Bourgain and Brezis show that the primitive can be taken to be continuous,

with a similar estimate.

In this note we want to cover the endpoint limiting case p = n for differential forms of

any degree by showing the following global Poincaré inequality:

Theorem 1.2. Let 2 ≤ h ≤ n, and let ω ∈ Ln be a closed h-form, then there exists a

(h− 1)-form φ whose coefficients are in C0(Rn) such that dφ = ω and

‖φ‖C0 ≤ C‖ω‖Ln .

Here C0 denotes the space of differential forms with coefficients that are continuous and

vanishing at infinity, endowed with the L∞-norm.
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In the Appendix we provide a short review of the argument used by Bourgain and

Brezis in [14]. Here we mention that the main idea of their proof relies on an abstract

principle, i.e., that a closed unbounded operator with dense domain between two Banach

spaces has a closed range if and only if its adjoint does. In order to adapting this abstract

principle to our situation, first of all we see that the two Banach spaces are C0 and Ln

and the unbounded operator has to be the exterior differential d. The abstract scheme

that we are going to apply is contained in the following proposition (whose proof can be

found e.g. in in [9], Lemma 5.2, but basically is contained in Brezis’s book, section II.7,

[16]):

Proposition 1.1. Let A : D(A) ⊂ E → F be a closed unbounded operator between Banach

spaces. Assume that D(A) is dense in E. Then the adjoint A∗ : D(A∗) ⊂ F ∗ → E∗ is

uniquely defined, and closed. The following are equivalent:

(1) A(D(A)) ⊂ F is closed.

(2) ∃C, ∀e∗ ∈ A∗(D(A∗)), ∃f ∗ ∈ D(A∗), A∗f ∗ = e∗ and ‖f ∗‖F ∗ ≤ C ‖e∗‖E∗.

(3) A∗(D(A∗)) ⊂ E∗ is closed.

(4) ∃C, ∀f ∈ A(D(A)), ∃e ∈ D(A), Ae = f and ‖e‖E ≤ C ‖f‖F .

In order to identify the dual of E := C0 we need the notion of current. In next section

we recall some basic facts about differential forms and currents.

The paper is organized as follows. In Section 2 we recall some more or less known results

about differential forms and currents in Rn. Section 3 contains the proof of our main result

stated in Theorem 1.2. We add also a short Appendix containing the argument used by

Bourgain and Brezis in [15]. Finally, in Section 4 we consider the Heisenberg groups Hn

and we quickly review the main features of the so-called Rumin’s complex, which replaces

the de Rham complex which better fits the geometry of the group.

2. Preliminary on functions, differential forms and currents

Throughout the present note our setting will be the Euclidean space Rn with n > 2.

To keep the paper self contained we recall briefly some definitions and results concerning
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Euclidean currents. We refer to e.g. [20] for a detailed presentation. First of all, we start

with some basic definitions and properties of functions and differential forms.

If f is a real function defined in Rn, we denote by vf the function defined by vf(p) :=

f(−p), and, if T ∈ D′(Rn), then vT is the distribution defined by 〈vT |φ〉 := 〈T |vφ〉 for

any test function φ.

We recall also that the convolution f ∗ g is well defined when f, g ∈ D′(Rn), provided

at least one of them has compact support.

As customary, a basis of the tangent space
∧

1(Rn) := Rn is given by (∂x1 , . . . , ∂xn). We

denote by 〈·, ·〉 the scalar product making (∂x1 , . . . , ∂xn) orthonormal.

The dual space of
∧

1(Rn) is denoted by
∧1(Rn) =: (Rn)∗. The basis of

∧1(Rn), dual

to the basis (∂x1 , . . . , ∂xn), is the family of covectors (dx1, . . . , dxn) and we again indicate

as 〈·, ·〉 the inner product in (Rn)∗ that makes (dx1, . . . , dxn) an orthonormal basis.

We put
∧

0Rn =
∧0Rn(Rn) := R and, for 1 ≤ h ≤ n,

∧
h
Rn := span{∂xi1 ∧ · · · ∧ ∂xih : 1 ≤ i1 < · · · < ih ≤ n}

and

∧h
Rn := span{dxi1 ∧ · · · ∧ dxih : 1 ≤ i1 < · · · < ih ≤ n} .

If I := (i1, . . . , ih) with 1 ≤ i1 < · · · < ih ≤ n, we set |I| := h and

dxI := dxi1 ∧ · · · ∧ dxih .

The elements of
∧
h(Rn) and

∧h(Rn) are called h-vectors and h-covectors respectively.

The scalar products in the spaces of 1-vectors and 1-covectors can be canonically extended

to
∧
h(Rn) and

∧h(Rn) respectively.

The Hodge star operator is a linear operator

∗ :
∧h

Rn →
∧n−h

Rn

defined by ξ ∧ η = 〈ξ, ∗η〉 for any η ∈
∧n−h(Rn) .
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If v ∈
∧
h(Rn) and ξ ∈

∧h(Rn), |v| and |ξ| denote as costumary their Euclidean norm.

We recall now the definition of the comass norm of a covector (see [20], Chapter 2, Section

2.1).

Definition 2.1. We denote by ‖ξ‖ the comass norm of a covector ξ ∈
∧h(Rn) defined by

‖ξ‖ = sup

{
〈ξ|v〉

∣∣ v ∈∧
h

(Rn), |v| ≤ 1, v simple

}
.

By formula (13) of [20], Chapter 1, Section 2.2, there exists a geometric constant c1 > 0

such that

(2) c−11 |ξ| ≤ ‖ξ‖ ≤ |ξ| for all ξ ∈
∧h(Rn).

By translation,
∧h(Rn) defines a fibre bundle over Rn, still denoted by

∧h(Rn). A

differential form on Rn is a section of this fibre bundle.

Through this note, if 0 ≤ h ≤ n and U ⊂ Rn is an open set, we denote by Ωh(U)

the space of smooth differential h-forms on U , and by d : Ωh(U)→ Ωh+1(U) the exterior

differential. Thus (Ω•(U), d) is the de Rham complex in U and any u ∈ Ωh can be written

as u =
∑
|I|=h uIdx

I . Finally we denote by d∗ the L2 (formal) adjoint of d. We remind

the reader that, up to a sign which depends on the degree of the differential form that we

consider, d∗ = ± ∗ d ∗ .

If U is an open set in Rn and ω is an h-form, then we write ω ∈ Dh(U) if its components

with respect to a fixed basis belong to D(U). Analogously, we write ω ∈ Lp(U) if its

components with respect to a fixed basis are in Lp(U), endowed with its natural norm.

Clearly, these definitions are independent of the choice of the basis itself.

2.1. Currents.

Definition 2.2. If U ⊂ Rn is an open set and 0 ≤ h ≤ n, we say that T is a h-current

on U if T is a continuous linear functional on smooth compactly supported differential

h-forms endowed with the usual topology and we denote by ϕ → 〈T |ϕ〉 its action on

Dh(U).
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The space of h-dimensional currents in U is denoted by Dh(U). If u is an (n − h)-

differential form in L1
loc(U), then u can be identified canonically with an h-current Tu

through the formula

〈Tu|ϕ〉 :=

∫
U
u ∧ ϕ =

∫
U
〈∗u, ϕ〉 dx

for any smooth compactly supported h-form ϕ on U .

Suppose now u be a sufficiently smooth h-form (take for instance u ∈ C∞(Rn)). If

φ ∈ D(Rn) is an (n− h+ 1)-form, then, by Stokes formula,∫
Rn
du ∧ φ dx = (−1)h

∫
Rn
u ∧ dφ dx.

Thus, if T ∈ Dh(Rn) it is natural to set

〈∂T |φ〉 = 〈T |dφ〉,

for any (h− 1)-form φ ∈ D(Rn) and we call the (h− 1)-current ∂T the boundary of T .

Definition 2.3. Let U be open set. if T, Tj ∈ Dh(U), we say that the sequence {Tj}

converges in the sense of currents to T as j →∞, and we write Tj → T as j →∞ in the

sense of currents, if 〈Tj|α〉 → 〈T |α〉 as j →∞ for any h-form α ∈ D(U).

As for distributions, the support of a current T ∈ Dh(U) is defined as

suppT =
⋂
{K ⊂ U |K relatively closed in U , 〈T |α〉 = 0

for all α ∈ Dh(U) with suppα ⊂ U \K}.

Following [20] Section 2.3 and keeping in mind Definition 2.1, we introduce also the

notion of mass of a current.

Definition 2.4. Let U ,V be open sets and V ⊂ U . Let T ∈ Dh(U). We set

MV(T ) := sup
{
〈T |α〉 |α ∈ Dh(U), suppα ⊂ V , ‖α‖ ≤ 1 ∀x ∈ U

}
,

and we say that T is of finite mass if MV(T ) is finite. If V = U we shall simply write

M(T ) instead of MV(T ).

The mass of currents is lower semicontinuous with respect to the previous convergence.
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Remark 2.1. If 1 ≤ h ≤ n, T, Tk ∈ Dh(Rn) for k ∈ N and Tk → T in Dh(Rn), then

M(T ) ≤ lim inf
k
M(Tk).

In addition we recall that if α ∈ L1(Rn), then

(3) M(Tα) = ‖α‖L1(Rn).

Moreover, if α ∈ L1
loc(Rn) and M(Tα) <∞, then α ∈ L1(Rn) and (3) holds.

Remark 2.2. If α ∈ L1
loc(Rn) is an (n − h)-differential form, we have ∂Tα = 0 if and

only if dα = 0 in the sense of distributions. Indeed, if φ ∈ Dh−1(Rn) it holds that

〈∂Tα|φ〉 = 〈Tα|dφ〉 =

∫
Rn
α ∧ dφ =

∫
Rn
〈∗α, dφ〉 dV

=

∫
Rn
〈∗α, ∗ ∗ dφ〉 dV =

∫
Rn
〈α, ∗dφ〉 dV =

∫
Rn
〈α, ∗d ∗ ∗φ〉 dV

= ±
∫
Rn
〈α, d∗ ∗ φ〉 dV .

With the previous definitions in mind, the following regularization-type result for cur-

rents holds (see [2], Theorem 3.1 and also Proposition 6.16 in [9]).

Theorem 2.1. Let T be an h-current of finite mass M(T ). Then for any ε > 0 there

exists ωε ∈ E(Rn) ∩ L1(Rn) h-form such that, if we set Tε := T∗ωε, for ε→ 0, we have:

i) Tε → T in the sense of currents;

ii) ‖ωε‖L1 = M(Tε)→M(T );

iii) if T = ∂S with S ∈ Dh+1(Rn), then the forms ∗ωε are closed.

The following global Poincaré inequality for currents follows by the previous result and

the Poincaré inequality for differential forms in the case p = 1 proved in [5].

Theorem 2.2. Let h = 1, . . . , n. If T ∈ Dh(Rn) is a current of finite mass of the form

T = ∂S with S ∈ Dh+1(Rn), then there exists a (2n− h)-form φ ∈ Ln/(n−1), such that

∂Tφ = T and ‖φ‖Ln/(n−1)(Rn) ≤ CM(T ).
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We omit the proof of this result that is similar to the one of Theorem 1.1 in [2] (in

the case the domain of T is a ball). For more details, see also the corresponding result

in Heisenberg groups contained in [9] (see Theorem 6.17), keeping in mind that Rn just

requires less technicalities.

3. Main result

We denote again by C0(Rn) the Banach space of continuous functions vanishing at

infinity with the L∞-norm. The same notation is used also for differential forms with

coefficients in C0(Rn). Sometimes we may also write C0(Rn, h) if we want to stress that

we are dealing with an h-differential form, and similarly for Ln(Rn, h) or other spaces.

In order to prove our main result, which is stated in Theorem 1.2 we are going to use

the abstract scheme proposed in Proposition 1.1. Therefore, for 2 ≤ h ≤ n, we set

E := C0(Hn, h− 1) and F = Ln(Rn, h) .

By Riesz representation theorem, the dual space E∗ can be identified with the set of

currents with finite mass and F ∗ can be identified with Ln/(n−1)(Rn, n− h). We set also

D(A) := {ψ ∈ E, dψ ∈ F} ⊂ E,

with

A : D(A)→ F, Aψ := dψ.

Notice that D(A) is dense since contains D(Rn) and A is closed since is a differential

operator.

We can prove that

(4) A∗(β) = ∂Tβ,

and we have description of the domain of A∗, directly from the definition passing through

an approximation argument, and hence we can prove that

D(A∗) = {β ∈ F,M(∂Tβ) <∞}.

See Lemma 7.3 and Proposition 7.4 in [9] for a more detailed discussion about D(A∗).



46 ANNALISA BALDI, BRUNO FRANCHI

Proposition 3.1. With the notation introduced above, D(A∗) is dense in F ∗ and

(5) A∗(D(A∗)) is closed in E∗.

Proof. The fact that D(A∗) is dense in F ∗ holds since F ∗ is reflexive (see [16], Remark

15 of Section 2.6). Let us now show the second assertion. To this end, let {Tk}k∈N be a

sequence of (h−1)-currents in A∗(D(A∗)) that converges to an (h−1)-current T ∈ E∗ (i.e.

in the mass norm). Hence, M(Tk) = ‖Tk‖E∗ ≤ C1 for all k ∈ N. Moreover, in particular

〈T |σ〉 = limk→∞〈Tk|σ〉, for all σ ∈ D(Rn, h− 1) i.e. {Tk}k∈N converges to T also in the

sense of currents. By (3) and (4) there exists a corresponding sequence {Sk}k∈N in Dh(Rn)

such that

(6) Tk = ∂Sk, with Sk = Tβk , βk ∈ F ∗

for any k ∈ N. Since the (h − 1)-currents ∂Sk’s satisfy M(∂Sk) = M(Tk) < ∞, by

Theorem 2.2 there exists φk ∈ F ∗ such that ∂Tφk = ∂Sk = ∂Tβk , and

‖φk‖F ∗ ≤ C2M(∂Sk) = CM(Tk) ≤ C1C2.

Since F ∗ = Ln/(n−1) and n/(n− 1) > 1 we can assume that

φk → φ weakly in Ln/(n−1).

Thus Tφk → Tφ in the sense of currents and Tk = ∂Sk = ∂Tφk → ∂Tφ in the sense of

currents; therefore, since also Tk → T , it follows that T = ∂Tφ. To prove that T ∈

A∗(D(A∗)), by (3) we have only to show that M(∂Tφ) < ∞. Because of the lower

semicontinuity of the mass with respect to the convergence in the sense of currents (see

Remark 2.1), we have

M(∂Tφ) ≤ lim inf
k→∞

M(∂Sk) = lim inf
k→∞

M(Tk) =M(T ).

Thus (5) is proved.

�

We are now ready to prove Theorem 1.2



A BOURGAIN-BREZIS’S DUALITY ARGUMENT FOR CONTINUOUS PRIMITIVES 47

Proof of Theorem 1.2. By Theorem II.18 in [16], (5) implies that

(7) A(D(A)) = (kerA∗)⊥.

Moreover, by Proposition 1.1, (5) implies that there exists C > 0 such that for all f ∈

A(D(A)) there exists e ∈ D(A), satisfying

(8) Ae = f and ‖e‖E ≤ C ‖f‖F .

We are left to show that {ω ∈ Ln(Rn), dω = 0} ⊂ A(D(A)). This will be done by

showing that

(9) {ω ∈ F, dω = 0} ⊂ (kerA∗)⊥.

Suppose for a while that (9) holds. Then combining (9) and (7),

{α ∈ Ln(Rn), dα = 0} ⊂ A(D(A)),

and hence, by (8), we have proved the theorem.

Hence we are left to show (9).

To this end, let ω ∈ F be a closed form, and take β ∈ kerA∗. Thus β ∈ Ln/(n−1)(Rn)

and, by Remark 2.2, is a closed form. Therefore, it is possible to show that

(10)

∫
Rn
ω ∧ β = 0.

Indeed, without loss of generality, the previous formula can be proved by assuming that

β and ω are smooth. We set 1
n′′

= 1
n/n−1 −

1
n
. Then, by Poincaré inequality stated in

Theorem 1.1-i), there exists an (h− 1)-form φ ∈ Ln′′ such that dφ = β and

(11) ‖φ‖Ln′′ ≤ C‖β‖Ln/n−1 .

In particular, ω ∧ β = ω ∧ dφ. If N > 0, let now χN be a smooth cut-off function

supported in B(0, 2N), χN ≡ 1 on B(0, N), |dχN | ≤ 2/N . Obviously, since ω ∧ β ∈ L1∫
Rn
χNω ∧ β →

∫
Rn
ω ∧ β,

as N →∞. On the other hand, by Stokes’ theorem and keeping in mind that dω = 0,

|
∫
Rn
χNω ∧ β| = |

∫
Rn
χNω ∧ dφ| = |

∫
Rn
ω ∧ dχN ∧ φ|.
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We have ω ∧ dχN ∧ φ→ 0 pointwise since dχN ≡ 0 on B(0, R).

To finish, let us prove that
∫
Rn ω ∧ dχN ∧ φ → 0 as N →∞. We invoke (11) and, by

Hölder inequality, we get

|
∫
Rn
ω ∧ dχN ∧ φ| ≤ ‖ω‖Ln ‖dχN‖Ln ‖φ‖Ln/(n−2)

<
2

N
|B(0, 2N)|1/N ‖ω‖Ln ‖φ‖Ln/(n−2) ,

since 1
n

+ 1
n

+ n−2
n

= 1.

This proves (10) and therefore we have proved that (9) holds.

�

Appendix: the Bourgain-Brezis duality argument used in [14]

In this section we give a very rough gist of the proof underlying the result of Bourgain

and Bresis for the case p = n. For precise definitions and statements we refer to [14].

In [14] the authors want to get continuous vector-fields solving the equation

div(Y ) = f

for f in Ln on the torus and with
∫
(0,2π)n

f = 0 . They prove that given a such periodic

f ∈ Ln, there exists some Y ∈ L∞∩C0 solving the equation (in the sense of distribution)

so that

‖Y ‖∞ ≤ C(n)‖f‖n .

By the well known Sobolev-Gagliardo-Nirenberg imbedding BV ⊂ Ln/n−1, it holds

‖u‖Ln/n−1 ≤ C(n)‖Du‖M ∀u ∈ BV,

where M denotes the space of measures.

They consider the two Banach spaces E := C0 and F = LN0 , and the unbounded linear

operator A = D(A) ⊂ E → F , defined by

D(A) = {Y ∈ E : divY ∈ Ln}, AY = divY,

so that A is densely defined and has closed graph.
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The dual spaces of E and F are

E∗ =M, F ∗ = L
n/(n−1)
0

and

D(A∗) = F ∗ ∩BV, A∗u = gradu.

Therefore, the Sobolev-Gagliardo-Nirenberg inequality above reads as

‖u‖F ∗ ≤ C(n)‖A∗u‖E∗ ∀u ∈ D(A∗).

Using the geometric version of Hahn-Banach and Closed Range Theorems they achieve

the result.

More precisely, if we consider ‖f‖Ln = 1 and take the two convex sets

B = {Y ∈ E : ‖Y ‖E < 2C(n)}, L = {Y ∈ E : div Y = f},

by contraddiction it is possible to prove that B ∩ L 6= ∅. Indeed, suppose that that

B ∩ L = ∅. By the first geometric form of the Hahn-Banach theorem there exist µ ∈ E∗,

µ 6= 0 and t ∈ R such that:

〈µ|Y 〉 ≤ t, ∀ Y ∈ B, 〈µ|Y 〉 ≥ t, ∀ Y ∈ L .

The first of the two inequalities says that

‖µ‖ ≤ t

2C(n)
.

From the second condition they deduce that 〈µ|Y 〉 = 0 for all Z ∈ Ker(A), and thus

µ ∈ Ker(A)⊥ = R(A∗).

Hence, there exists some u ∈ F ∗ ∩ BV such that gradu = µ. Applying the Gagliardo-

Sobolev inequality they deduce that

‖u‖Ln/n−1 ≤ C(n)‖µ‖ ≤ t/2 .

On the other hand, since 〈µ|Y 〉 ≥ t for all Y ∈ L, then for Y ∈ L one has

t ≤ 〈µ|Y 〉 = 〈gradu, Y 〉 = −
∫
u divY = −

∫
uf ≤ ‖u‖Ln/n−1 ≤ t/2 .

This is impossible since t > 0 (because µ 6= 0). The proof is therefore complete.
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We end this section by recalling that, apart from [9], an abstract scheme similar to the

previous one has been applied also by L. Moonens and T. Picon [22], and T. De Pauw and

M. Torres [17]. In addition, a special instance in general Carnot groups for top degree

Rumin forms, is considered by A. Baldi and F. Montefalcone [1].

4. The case of Heisenberg groups

In [9], the previous results are generalized to differential forms of Rumin’s complex in

Heisenberg groups. Let us give a gist of the notion of Rumin complex. When dealing with

differential forms in Hn, the de Rham complex lacks scale invariance under anisotropic

dilations (see (17)). M. Rumin, in [24] has defined a substitute of the de Rham’s com-

plex for arbitrary contact manifolds, that recovers scale invariance under the family of

anisotropic dilations of Hn. In the present section, we shall merely list a few properties of

Rumin’s complex that we used in [9]. We send a reader, interested to understand better

Rumin’s complex, to the Appendix of [8] for a quick review, or to [24] and [10], [7] for

more details of the construction.

We denote by Hn the n-dimensional Heisenberg group, identified with R2n+1 through

exponential coordinates. A point p ∈ Hn is denoted by p = (x, y, t), with both x, y ∈ Rn

and t ∈ R. If p and p′ ∈ Hn, the group operation is defined by

p · p′ = (x+ x′, y + y′, t+ t′ +
1

2

n∑
j=1

(xjy
′
j − yjx′j)).

The unit element of Hn is the origin, that will be denoted by e. For any q ∈ Hn, the (left)

translation τq : Hn → Hn is defined as

p 7→ τqp := q · p.

The Lebesgue measure in R2n+1 is a Haar measure in Hn (i.e., a bi-invariant measure on

the group). It is denoted by L2n+1, and when we need to stress the integration variable

p, will be denoted also by dp.

For a general review on Heisenberg groups and their properties, we refer to [25], [21],

[13], and to [26]. We limit ourselves to fix some notation, following [18].
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The Heisenberg group Hn can be endowed with the homogeneous norm (Cygan-Korányi

norm)

(12) %(p) =
(
|p′|4 + 16 p22n+1

)1/4
,

and we define the gauge distance (a true distance, see [25], p. 638), that is left invariant

i.e. d(τqp, τqp
′) = d(p, p′) for all p, p′ ∈ Hn as

(13) d(p, q) := %(p−1 · q).

Finally, the balls for the metric d are the so-called Korányi balls

(14) B(p, r) := {q ∈ Hn; d(p, q) < r}.

Notice that Korányi balls are convex smooth sets.

A straightforward computation shows that there exists c0 > 1 such that

(15) c−20 |p| ≤ ρ(p) ≤ |p|1/2,

provided p is close to e. In particular, for r > 0 small, if we denote by BEuc(e, r) the

Euclidean ball centred at e of radius r,

(16) BEuc(e, r
2) ⊂ B(e, r) ⊂ BEuc(e, c

2
0r).

We denote by h the Lie algebra of the left invariant vector fields of Hn. The standard

basis of h is given, for i = 1, . . . , n, by

Xi := ∂xi −
1

2
yi∂t, Yi := ∂yi +

1

2
xi∂t, T := ∂t.

The only non-trivial commutation relations are [Xi, Yi] = T , for i = 1, . . . , n. The hori-

zontal subspace h1 is the subspace of h spanned by X1, . . . , Xn and Y1, . . . , Yn:

h1 := span {X1, . . . , Xn, Y1, . . . , Yn} .

Coherently, from now on, we refer to X1, . . . , Xn, Y1, . . . , Yn (identified with first order

differential operators) as to the horizontal derivatives. Denoting by h2 the linear span of

T , the 2-step stratification of h is expressed by

h = h1 ⊕ h2.
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The stratification of the Lie algebra h induces a family of non-isotropic dilations δλ :

Hn → Hn, λ > 0 as follows: if p = (x, y, t) ∈ Hn, then

(17) δλ(x, y, t) = (λx, λy, λ2t).

Notice that the gauge norm (12) is positively δλ-homogenous, so that the Lebesgue mea-

sure of the ball B(x, r) is r2n+2 up to a geometric constant (the Lebesgue measure of

B(e, 1)).

The constant

Q := 2n+ 2

is said the homogeneous dimension of Hn with respect to δλ, λ > 0. It is well known that

the topological dimension of Hn is 2n + 1, since as a smooth manifold it coincides with

R2n+1, whereas the Hausdorff dimension of (Hn, d) is Q.

The vector space h can be endowed with an inner product, indicated by 〈·, ·〉, making

X1, . . . , Xn, Y1, . . . , Yn and T orthonormal.

Throughout this note, we write also

(18) Wi := Xi, Wi+n := Yi and W2n+1 := T, for i = 1, . . . , n.

Let 1 ≤ p ≤ ∞ and m ∈ N, Wm,p
Euc (U) denotes the usual Sobolev space.

The dual space of h is denoted by
∧1 h. The basis of

∧1 h, dual to the basis {X1, . . . , Yn, T},

is the family of covectors {dx1, . . . , dxn, dy1, . . . , dyn, θ} where

θ := dt− 1

2

n∑
j=1

(xjdyj − yjdxj)

is the contact form in Hn. We denote by 〈·, ·〉 the inner product in
∧1 h that makes

(dx1, . . . , dyn, θ) an orthonormal basis and by dV the associated volume form

dV := dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn ∧ θ.

Throughout this paper,
∧h h denotes the h-th exterior power of the Lie algebra h.

Keeping in mind that the Lie algebra h can be identified with the tangent space to Hn at

x = e (see, e.g. [19], Proposition 1.72), starting from
∧h h we can define by left translation
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a fiber bundle over Hn that we can still denote by
∧h h '

∧h T ∗Hn. Moreover, a scalar

product in h induces a scalar product and a norm on
∧h h.

We can think of h-forms as sections of
∧h h and we denote by Ωh the vector space of

all smooth h-forms.

• For h = 0, . . . , 2n + 1, the space of Rumin h-forms, Eh
0 , is the space of smooth

sections of a left-invariant subbundle of
∧h h (that we still denote by Eh

0 ). Hence

it inherits the inner product and the norm of
∧h h.

• If we denote by ? the Hodge duality operator associated with the inner product

in E•0 and the volume form dV , then ?Eh
0 = E2n+1−h

0 .

In particular we have

Remark 4.1. If α ∈ Eh
0 , then ? ? α = (−1)(2n+1−h)hα = α. Thus

α ∧ φ = φ ∧ (? ? α) = 〈?α, φ〉 dV.

Moreover, if β ∈ Eh
0

〈?α, ?β〉 dV = α ∧ ?β = (−1)h(2n+1−h) ? β ∧ α

= 〈? ? β, α〉 dV = 〈β, α〉 dV = 〈α, β〉 dV.

• A differential operator dc : Eh
0 → Eh+1

0 is defined. It is left-invariant, homogeneous

with respect to group dilations. It is a first order homogeneous operator in the

horizontal derivatives in degree 6= n, whereas it is a second order homogeneous

horizontal operator in degree n.

• Altogether, operators dc form a complex: dc ◦ dc = 0.

• This complex is homotopic to de Rham’s complex (Ω•, d). More precisely there

exist a sub-complex (E, d) of the de Rham complex and a suitable “projection”

ΠE : Ω• → E• such that ΠE is a differential operator of order ≤ 1 in the horizontal

derivatives.

• ΠE is a chain map, i.e.

dΠE = ΠEd.
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• Let ΠE0 be the orthogonal projection on E•0 . Then

ΠE0ΠEΠE0 = ΠE0 and ΠEΠE0ΠE = ΠE

(we stress that ΠE0 is an algebraic operator).

• The exterior differential dc can be written as

dc = ΠE0dΠEΠE0 .

• The L2-formal adjoint d∗c of dc on Eh
0 satisfies

(19) d∗c = (−1)h ? dc ? .

When dc is second order (when acting on forms of degree n), (E•0 , dc) stops behaving like

a differential module. This is the source of many complications. In particular, the classical

Leibniz formula for the de Rham complex d(α ∧ β) = dα ∧ β ± α ∧ dβ is true in Rumin’s

complex only in special degrees, as shown in [11], Proposition A.1 and [23], Proposition

4.1. However, in general, the Leibniz formula fails to hold (see [11], Proposition A.7).

This causes several technical difficulties when we want to localize our estimates by means

of cut-off functions.

In fact, the main difficulty of our proof is hidden in the following Leibniz’ formula for

Rumin’s differential forms.

Lemma 4.1 (see also [6], Lemma 4.1). If ζ is a smooth real function, then the following

formulae hold in the sense of distributions:

i) if h 6= n, then on Eh
0 we have

[dc, ζ] = P h
0 (Wζ),

where P h
0 (Wζ) : Eh

0 → Eh+1
0 is a linear homogeneous differential operator of order

zero with coefficients depending only on the horizontal derivatives of ζ. If h 6= n+1,

an analogous statement holds if we replace dc in degree h with d∗c in degree h+ 1;
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ii) if h = n, then on En
0 we have

[dc, ζ] = P n
1 (Wζ) + P n

0 (W 2ζ),

where P n
1 (Wζ) : En

0 → En+1
0 is a linear homogeneous differential operator of or-

der 1 (and therefore horizontal) with coefficients depending only on the horizontal

derivatives of ζ, and where P h
0 (W 2ζ) : En

0 → En+1
0 is a linear homogeneous differ-

ential operator in the horizontal derivatives of order 0 with coefficients depending

only on second order horizontal derivatives of ζ. If h = n + 1, an analogous

statement holds if we replace dc in degree n with d∗c in degree n+ 1.

The result we present here within Rumin’s complex is a part of along-standing project

initiated by the authors in collaboration with Pierre Pansu starting from [4] (see also [3]

and [12].)

As for the de Rham complex, we can associate with Rumin’s complex a class of currents.

Their main properties can be found, e.g., in Section 6 of [9]. In the setting of Rumin’s

complex, Theorem 2.2 reads as follows.

Theorem 4.1. The following global Poincaré inequalities hold.

i) if 2 ≤ h ≤ 2n+ 1, h 6= n + 1, then a dc-exact Rumin h-form ω ∈ L2n+2(Hn, Eh
0 )

admits a primitive φ ∈ C0(Hn, Eh−1
0 ) such that

‖φ‖C0(Hn,Eh−1
0 ) ≤ C‖ω‖L2n+2(Hn,Eh0 );

ii) a dc-exact Rumin (n + 1)-form ω ∈ Ln+1(Hn, En+1
0 ) admits a primitive φ ∈

C0(Hn, En
0 ) such that

‖φ‖C0(Hn,En0 ) ≤ C‖ω‖Ln+1(Hn,En+1
0 ).

The proof of statement i) it is not very far from that of Theorem 2.2, whereas the proof

of statement ii) requires an utterly different functional setting, because of the structure

of Leibniz’ formula in degree n. More precisely, we have to use the so-called Beppo Levi-

Sobolev spaces that allow us to control extra derivatives in Leibniz formula when dc is a

second order operator. Below we give the basic definitions and properties, and we refer

to Section 8 in [9] for definitions and proofs.
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Definition 4.1. If 1 < p < Q, we denote by BL1,p(Hn) the homogeneous Sobolev space

(called also Beppo Levi space) defined as the completion of D(Hn) with respect to the norm

‖u‖BL1,p(Hn) :=
2n∑
j=1

‖Wju‖Lp(Hn).

Remark 4.2. Since BL1,p(Hn) is reflexive, it can be identified with its bidual via the

canonical isomorphism τ(u)(f) = f(u) for all BL1,p(Hn) and f ∈ (BL1,p(Hn))∗.

Proposition 4.1. If 1 < p < Q, then

(BL1,p(Hn))∗ = {T ∈ D′(Hn) ; T =
∑
j

Wjfj , fj ∈ Lp
′
(Hn)}.

If F = (f1, . . . , f2n) is a horizontal vector field, then we set

divH F :=
∑
j

Wjfj.

Definition 4.2. If 1 ≤ h ≤ 2n + 1, then a form α belongs to BL1,p(Hn, Eh
0 ) if and only

if all its components with respect to a fixed left invariant basis of EQ
0

(20) Ξh
0 = {ξh1 , . . . ξhNh}

belong to BL1,p(Hn).

Proposition 4.2. The dual space (BL1,p(Hn, Eh
0 ))∗ can be identified with a family of

currents T ∈ D′(Hn, Eh
0 ) such that, with the notation of (20)

T =
∑
j

Tj(ξ
h
j )∗,

with Tj ∈ D′(Hn), j = 1, . . . , Nh of the form

Tj = divH Fj,

with Fj ∈ (Lp
′
)2n, j = 1, . . . , Nh.

More precisely, by the density of D(Hn, Eh
0 ) in BL1,p(Hn, Eh

0 ), an element of (BL1,p(Hn, Eh
0 ))∗

is fully identified by its restriction to D(Hn, Eh
0 ).

We can now define a new functional setting where Brezis and Bourgain’s abstract theory

applies.
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Definition 4.3. We set

E := C0(Hn, En
0 ), and F := (BL1,Q/(Q−1)(Hn, En

0 ))∗,

D(A) := {ψ ∈ E, ∂cTψ ∈ F}, and Aψ := ∂cTψ,

where, according to Proposition 4.2, we use the identification of (BL1,p(Hn, En
0 ))∗ with a

space of currents.

Again, as for de Rham currents, the dual space of E can be identified with the set of

currents with finite mass.
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