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FENOMENI DI TIPO COARSENING NEL FLUSSO DI NETWORK
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Abstract. In this short note we summarize recent results on the asymptotic behaviour

of the network flow and we give indications of an expected coarsening–type behaviour

for the network flow past singularities. The paper is complemented with a discussion on

critical points and local minimizers of the length functional.

Sunto. In questa breve nota riassumiamo alcuni risultati sul comportamento asintotico

del moto per curvatura di network, focalizzandoci sugli indizi di comportamenti di tipo

coarsening. La nota contiene anche una discussione sui punti critici e minimi locali del

funzionale lunghezza.
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1. Introduction

A network N is a 1–dimensional connected and planar set composed of a finite number

of smooth, regular and embedded curves {γi}Ni=1 that meet only at their end-points in

junctions. We are interested in the so–called network flow, a geometric flow that can be

understood as the gradient flow of the length functional

(1) L(N ) :=
∑
i

∫ 1

0

|∂xγi(x)| dx =
∑
i

∫
γi

1 ds .
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Formally, we derive the motion equations computing the first variation of L. Each curve

moves with normal velocity equal to its curvature

(2) v⊥(t, x) = ~k(x) ,

or, equivalently 〈∂tγ(t, x), ν(t, x)〉 = κ(t, x). Moreover, to interpret the curvature as the

gradient of the length, we shall put to zero the contribution of the boundary, obtaining

that during the evolution the junctions are “balanced”, in the sense that at the junctions

the unit tangent vectors of the concurring curves sum up to zero.

The network flow, the 1–dimensional case of the multi-phase mean curvature flow, brings

the study of the mean curvature flow a step further, allowing the evolution of a specific

class of singular objects (regular networks, see Definition 2.2) instead of immersions of

a single smooth manifold. Recently the research on this topic has been particularly

flourishing and numerous results have been obtained both for weak [10, 11, 21, 5, 4] and

strong solutions [9, 3, 15, 14, 19].

Even though the flow has become fashionable among researchers in geometric analysis,

the origin of this evolution is definitely more applied: the flow has been indeed proposed

as a model of the growth of polycrystals in metals [16].

One of the motivations of the study of this flow is the tentative formalisation of a

“coarsening–type behaviour” of the flow, that ultimately would indicate how good as a

model of grain growth this flow is. Generically a network flow with a highly complicated

initial datum (with hundreds of loops, for instance) is expected to converge, as time goes to

infinity, to a critical point of the length with a much simpler structure than the initial net-

work. This hypothetical behaviour is evident from numerical simulations (see for instance

experiment posted on the webpage of Selim Esedoglu: dept.math.lsa.umich.edu/esedoglu

and of Ken Brakke: kenbrakke.com and Figure 1).

In this note we describe some arguments supporting this expectation and summarize

some of the tools developed till now to get a very accurate description of the evolution.

We will adopt a classical PDE approach, and all the results will be presented in a

informal and very accessible way.

https://dept.math.lsa.umich.edu/~esedoglu/Research/grains/grains.html
https://kenbrakke.com/
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Figure 1. Expected evolution of a complicated network
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2. Network flow

Consider a smooth planar curve γ : [0, 1] → R2. We say that γ is regular if for every

x ∈ [0, 1] we have ∂xγ(x) 6= 0. For a regular curve γ, define

(3) τ :=
∂xγ

|∂xγ|
, ν := R(τ) ,

the tangent and the normal vector, respectively, where R denotes the anticlockwise rota-

tion centred in the origin of R2 of angle π
2
. As usual we define ds := |∂xγ| dx the arclength

element and ∂s := |∂xγ|−1∂x the arclength derivative. The curvature vector k of γ is

(4) k := ∂2
sγ =

∂2
xγ

|∂xγ|2
− ∂xγ 〈∂2

xγ, ∂xγ〉
|∂xγ|4

,

and in the plane we have the relation k = κν where the scalar κ is the oriented curvature.

Definition 2.1. A network N is a connected set in the Euclidean plane, composed of

finitely many regular, embedded smooth curves that meet only at their end–points in junc-

tions.

We distinguish between interior and exterior vertices of the network: at the former,

more than one curve concur, and the latter are the end-points of the network.
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We say that a network is a tree if it does not contain loops. We call grain a bounded

region enclosed by one or more curve of the network.

We denote by Li the length of the i–th curve of a network, namely

Li :=

∫ 1

0

|∂xγi(x)| dx =

∫
γi

1 ds ,

and the length of the network is nothing but the sum of the length of all its curves.

Definition 2.2. A network whose interior vertices are only triple junctions, where the

unit tangent vectors form angles of 120 degrees, is called regular. Otherwise we refer to is

as irregular, so irregular ones can have either triple junctions where the angle condition

is not satisfied or junctions where more than three curves meet. A network is said to be

minimal if it is regular and it is composed of straight segments.

We define now the network flow, namely the formal geometric gradient flow of the

length functional. The flow is described as solution of a system of partial differential

equation. We require that each curve of the network moves by curvature

(5) (∂tγ
i)⊥ = ~κi .

Moreover, apart from the initial time, the evolving network will be regular: for all times

t > 0 we impose the following balancing condition at each triple junction

(6)
γi1 = γi2 = γi3 , and

τ i1 + τ i2 + τ i3 = 0,

Definition 2.3. A time dependent family of networks Nt, with 0 ≤ t < T , is a solution

of the motion by curvature of regular networks if Nt converges to the initial network N0

as t↘ 0, Nt is regular for all t > 0 and satisfies (5), (6) for all 0 < t < T . We say that

the solution is maximal if it does not exists another solution defined on [0, T̃ ) with T̃ > T

that coincide with Nt on [0, T ).

Every solution can be extended to a maximal solution. From now on we consider only

maximal solutions.
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Remark 2.1. To maintain the presentation as simple as possible, we have not specified

the type of convergence towards the initial datum. One can think that the set Nt converges

in Hausdorff distance or that the collection of maps (γ1
t , . . . , γ

N
t ) describing the network

converges uniformly to the collection of maps (γ1
0 , . . . , γ

N
0 ) that describes N0 (some of the

γi0 could be the constant map).

If we suppose that the initial datum is a regular network, with linearization and a

fixed point argument, one can prove that there exists a unique (up to reparametrization )

maximal solution to the network flow with initial datum N0 in the maximal time interval

[0, Tmax) (see [1, 7, 15]).

With definitely much more effort one can still prove a short-time existence result with

irregular networks as initial data [8, 13].

3. Singularities

In this paper we focus our attention on the asymptotic behaviour of the flow. Ideally,

one would like to prove that either the maximal time of existence T is finite and every-

thing vanishes at T (as in the case of closed curves) or T = +∞ and the evolving family of

networks convergence to a critical point of the length functional. Unfortunately compli-

cations arises during the evolution in the form of “singularities”. With the Definition 2.3

of the flow, one can describe the long–time behaviour as follows [15]:

Theorem 3.1. Let T > 0 and let (Nt), with 0 ≤ t < T , be a maximal solution of the

motion by curvature of regular networks in the maximal time interval [0, T ). If T = +∞

the family of evolving networks converges (up to subsequences) to a network composed

of straight segments and balanced junctions (the sum of the unit tangent vector at the

junctions equals zero). If T is finite, as t→ T at least one of the following happens:

i) the inferior limit of the length of at least one curve of the network is zero;

ii) the superior limit of the L2-norm of the curvature is +∞;

and the two possibilities are not mutually exclusive.

If T = +∞, in certain cases, the result can be strengthened, as we will discuss in

Section 7.1. Let us instead elaborate a bit more on the case T < +∞. First of all, if
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T < +∞, we call T singular time, we refer to the phenomena i) and ii) as singularities

and the limit network as t→ T (if it exists) is a singular network.

Consider a grain of the network enclosed in a loop ` composed of m curves (γ1, . . . , γm)

and let A(t) be the area of a grain (see the central picture in Figure 2). Using Gauss–

Bonnet theorem we get that the time-derivative of the area is given by

(7) A′(t) = −
m∑
i=1

∫
γi

〈
∂tγ

i, νi
〉

= −
m∑
i=1

∫
γi
κi = −

(
2− m

3

)
π .

Thus A(t) increases linearly in time if m > 6, remains constant if m = 6, and decreases

linearly in time if m < 6. In this last case, in particular, the area is zero at

(8) T̂ =
A0

(2− m/3) π

where A0 is the initial area enclosed by the loop. It is possible to construct examples

of flows where the maximal time of existence T coincides with T̂ and both the area

enclosed by a loop ` and the length of ` go to zero as t → T̂ . In particular, these are

examples of singularity in which an entire region enclosed by several curves vanishes in

finite time [2, 18, 15]. To do so, we have to consider as initial data networks with a loop

of m < 6 curves that satisfy suitable symmetries. When the length of a loop goes to zero,

the L2–norm of the curvature blows up: indeed by Hölder inequality we get

(9)
(

2− m

3

)
π ≤

∫
`

|~κ| ≤
(∫

`

κ2

)1/2√
L(`) ,

that is

(10)

∫
`

κ2 ds ≥ C

L(`)
withC > 0 for cells with m edges, m < 6 .

We thus have examples of singularities in which both i) and ii) simultaneously happens.

There are also explicit examples of evolution in which as t → T a single curve disap-

pear [15, 19] as depicted in Figure 2 (left and right). Whenever two triple junctions

coalesce without the disappearance of a region, the curvature of the networks remains

bounded [14]. It is instead widely believed that there are no singularities where the length

of each curve is uniformly bounded away from zero and the curvature is unbounded.
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Figure 2. Examples of singularity.

The take-home message of this section is that singularities actually happen and thus

we need to introduce a notion of flow past singularities.

4. Flow past singularities

We now give a different definition of the network flow, it can still be describe by smooth

solutions of a system of partial differential equation and it is still a motion by curvature

of regular networks apart from a finite set of singular times {a1, . . . , a`}.

Definition 4.1. A time dependent family of networks Nt, 0 ≤ t < T , is a solution of the

network flow if Nt converges to the initial network N0 as t↘ 0, and if [0, T ) decomposes

as a finite union of subintervals [0, t1) ∪ [t1, t2) ∪ . . . , [t`, T ) so that Nt is regular for all t

except possibly t1, . . . , t`. On each open interval (tj, tj+1) the family Nt satisfies (5), (6)

and it is continuous across each tj. The times tj are the singular times. The solution is

assumed to be maximal.

Note that it is implicit in the definition that there exists the limit as t ↗ t−j (again

we do not specify here the type of convergence as said in Remark 2.1) but this fact is far

from being trivial.
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For every j ∈ {1, . . . , `}, as t↗ tj the length of some arcs of Nt tends to zero, while for

every tj < t < tj+1 the flow Nt has a collection of new arcs emanating from all vertices in

Ntj with order greater than 3.

At singular times tj irregular networks appears. In many situations, we are able to

“restart” the flow after such singularities [8, 13].

We give now an idea of the construction of a solution past singularities. The notion

of expanding solitons is crucial for the construction. Expanding solitons are solutions

that self-similarly dilates during the evolution, each evolving curve has the form γ(t, x) =

λ(t)η(x) where the expanding factor λ(t) equals
√

2t.

Let the irregular junction coincides with the origin, and let γi1 , . . . γik be the concurring

curves, with unit tangent vectors τ i1 , . . . , τ ik . Consider k halflines from the origin, whose

direction coincides with τ i1 , . . . , τ ik and a small disk centred at O. Replace the part of

the network inside the disk with a miniatures of a expanding soliton. The expanding

soliton must have k non-compact branches whose directions at infinity coincide with the

k halflines. Connect the soliton with the remaining part of the network nicely and let it

flow. We get our evolution past singularity.

Note that the irregular junction is somehow locally replaced by a regular network whose

combinatorics/topology is the same as one of the expanding solitons of the flow. We

stress the fact that the number of solutions past singularities coincides with the number

of expanding solutions compatible with the irregular junction. Moreover, a key feature of

the solution past singularity is that a single irregular junction gives birth to a cluster of

triple junctions.

Now, to discuss the asymptotic behaviour of the flow, we should know that the singular

times are finite.

Figure 3 shows an hypothetical pathological behaviour: the flow oscillates infinitely

many times between two different topologies.

In principle, the singular times could not only be infinite, but even “accumulate”. We

have neither analytical examples nor indications of such a behaviour, however at the

moment we are not able to exclude it (for a partial result in this direction see [17]). From
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Figure 3. The family of evolving networks switches between two different topologies.

now on, we simply suppose to be always able to restart the flow after a singularity and

we exclude any “pathological” behaviour.

5. Simplification of the topology through singularities

If to restart the flow after a singularity we consider only tree-like solitons without loops,

then, we can easily show also that the number of grains, of curves and of triple junctions

is non–increasing during the evolution.

To be precise, when a singularity occurs with no vanishing of regions, the number of

grains, of curves and of triple junctions is preserved. On the other hand, when a bounded

region disappears and we desingularize the irregular junctions by gluing–in a tree like

soliton, we do not add grains to the network, the number of grains is non–increasing, the

total number of curves decreases at least by three and the total number of triple junctions

decreases at least by two.

One may wonder if the alternative of consider solitons with loops is relevant to the

problem. If an expanding soliton contains a grain, then by (7) it is bounded by a loop

composed of at least seven curves. Thus to desingularise a junctions where at most five

curves concur we can use only trees. The eventuality of considering solitons with loops in

the restarting procedure seems not relevant because of the following:

Conjecture [T. Ilmanen] Let Nt be a solution of the network flow in [0, T ), let T̃ > 0

be a singular time of the evolution and let O be an irregular junction of NT̃ . Then, at

most 5 curves concur at O.

If the statement were true, then extra grains can appear only in the desingularisation

of the initial datum and not at a later singular time.
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6. Average growth of the area of the grains

Till now we have described numerous aspects of the network flow summarising the

known results. In this section instead we change perspective: we present an argument

to support the simplification of evolving network through time. The computations are

formal and at the moment we do not have a precise mathematical proof of the stated

facts.

For simplicity we set the evolution in the flat torus T2.

Es I

-

I IY-e e *
I E

t

-e
We suppose that the initial network N0 is composed by a

large number of curves and triple junctions, let’s say that it

has N2 grains.

Then the average diameter of grains is of order 1/N , the

average area of order 1/N2 and the global length of the net-

work is of order N .

We have shown that grains bounded by less than six curve

should disappear during the evolution. We argue that the

average area of the (surviving) grains grows linearly.
By formula (10) we have that along each loop ` there holds∫

`

k2 ds ≥ C

L(`)
& N ,

with C > 0 for cells with m edges, m < 6. Till the percentage of non–hexagonal grains is

sufficiently high (the number of non–hexagonal grains is of order N2), we can pass from

an estimate on a single loop to an integral estimate on the whole network:

(11)

∫
N
k2 ds & N ] (non–hexagonal grains) ≈ N3 .

Computing the evolution of the total length of N , from the gradient flow structure of the

problem we get

(12)
d

dt
L(N ) = −

∫
N
k2 ds .

Putting together (11) and (12) we derive the following differential inequality:

(13)
d

dt
N(t) . −N3(t) ,
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from which we get

(14)
1

N(t)2
& 2t+ c0 , that is N(t) .

1√
2t+ c0

,

with c0 a constant encoding the number of initial grains. From this computation we obtain

that the average area of the grains grows at least linearly in time: 1
N(t)2

≥ 2Ct. However,

there are two main limitations: we basically supposed that all grains are very similar to

each other and we supposed that we see a certain fixed amount of non–hexagonal cell

during the whole evolution.

7. Stability

The last topic we consider in the note is the analysis the flow as t → +∞. The

asymptotic analysis of solutions t→ +∞ is a very relevant subject for parabolic problems

in general and in our specific case it could shed light on the question of coarsening.

A “soft” statement (part of Theorem 3.1) reads as follow: if Nt is a solution to the

network flow in [0,+∞), then as t→ +∞, the evolving networksNt converge, up to subse-

quences, in C1,α ∩W 2,2, for every α ∈ (0, 1/2), to a critical point of the length functional.

We stress the fact that the limit is not necessarily a regular network, but it is merely

composed of straight segments and balanced junctions (sum of the unit tangent vectors

equals zero) and it is not necessarily a global minimizer of the length functional [19].

At this point three questions naturally arise.

• Does the full sequence Nt converges to a limit network as t→ +∞?

• Under which hypothesis on the initial datum are we able to ensure global existence?

• When is it possible to prove that there exists a time T̃ such that Nt with t ∈

[T̃ ,+∞) and the limit network N∞ have the same topology?

It turns out that these three questions are intimately related, as shown in [19]:

Theorem 7.1. Let N∗ be a minimal network. Then, there exists ε = ε(N∗) > 0 such that

the network flow starting from any regular network N0 with

(15) ‖N∗ −N0‖H2 < ε
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exists for all times and converges to a network N∞ with the same topology and same length

of N∗.

In the statement the norm H2 of the difference of two network is a shortcut to write

the sum of the Sobolev H2 norm of the difference of the parametrizations of the curve of

the two networks.

We point out two facts.

• In general, it is not true that N∞ coincide with N∗. However, it is easy to prove

that if N∗ is a tree, then N∞ must coincide with N∗.

• Being H2–close is a very strong condition. One would like to replace the Sobolev

H2 norm with a weaker one, for example the Hausdorff distance between the two

networks.

Apparently Theorem 7.1 goes against the supposed coarsening–type behaviour of the

evolution, under the hypothesis the evolving network does not simplify, its topology is

preserved. However, we expect the cases in which one has stability to be scarce. The

length functional lacks deeply convexity in the class of networks with fixed end-points, and

the number of critical points is bigger and bigger as the number of end-points increases.

We thus expect the basin of attraction of a critical point to become smaller and smaller.

We would like to have a bound from above on the thickness of the basin of attraction of

critical points. As a first step in the estimate of the basin of attraction of minimal networks

for the flow, we now present a result on local minimizers of the length functional. We give

a quantitative bound from below on their local minimality. One should hope that the

order of the bound from above would coincide with the order of the bound from below.

7.1. Critical points of the length functional. To consider the grains of the network as

a partition of an open subset of R2 could be particularly convenient. We briefly summarise

the relevant jargon relative to Cacciopoli partitions.

Let Ω ⊂ R2 be open. A partition E = (E1, . . . , En) of Ω is a collection of finite perimeter

sets Ei ⊂ Ω such that |Ei∩Ej| = 0 for i 6= j and |Ω\∪ni=1Ei| = 0. We define the perimeter
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of the partition of Ω as

(16) P (E,Ω) =
1

2

N∑
i=1

P (Ei,Ω)

where P (Ei,Ω) := |DχEi
|(Ω) is the (relative) perimeter of Ei in Ω.

We denote by ΣE
ij := ∂∗Ei ∩ ∂∗Ej and by νij = νi = −νj the unit normal to Σij,

where νi is the generalized outer unit normal to the set Ei. In particular we can think

of νij as a normal pointing from Ei into Ej. We informally refer to
⋃N
i=1 (∂∗Ei ∩ Ω) =⋃N

i<j=1

(
ΣE
ij ∩ Ω

)
as the boundary of the partition E.

Given a network N we denote by d be the minimum between the minimal distance of

any two external vertices of the network and the length of the shortest edge of N .

We say that a compact and connected set N disconnects two points x, y of ∂Ω if any

continuous path σ in Ω from x to y intersects N .

Let Ω be a open subset of the plane. Suppose that a network N ∗ ⊂ Ω has all its

end-points on ∂Ω. We call A(N ∗,Ω) the class of all networks with the following property:

if N ∗ disconnects two points x, y of ∂Ω then also N disconnects x and y.

Theorem 7.2. Let N ∗ be a minimal network. Then, there exists a δ–neighbourhood Ω of

N ∗ with 0 < δ ≤
√

3
8
d such that N ∗ is a minimizer of the length among all networks N

in A(N ∗,Ω).

Remark 7.1. For the sake of clarity in the statement we refer to Ω as a δ–neighbourhood

of N ∗. To be precise, Ω is truncated as in Figure 4

Idea of the proof

The result is a direct consequence of [20, Theorem 3.9]. Instead of explaining only how

our current statement fits in the framework of Theorem 3.9, we prefer, in addition, to

summarise its proof here.

Construct Ω as in Figure 4 Since locally N ∗ is an hexagonal lattice, one shows that N ∗

can be interpreted as the boundary of a suitable partition E = (E1, E2, E3) of Ω.

Now to prove that E is perimeter minimizing among all partitions F of Ω with the same

trace on the boundary of Ω of E we construct an explicit calibration of E in Ω.
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Figure 4. Left: A minimal network and the truncated neighborhood Ω.

Right: the associated partition of three phases E = (E1, E2, E3).

A calibration for E is a collection of three (sufficiently regular) vector fields (Φ1,Φ2,Φ3),

Φi : Ω→ R2 with (distributional) divergence equal to zero fulfilling the following proper-

ties:

|Φi − Φj| ≤ 1 H1 − a.e. in Ω , for i, j = 1, 2, 3 , , i 6= j ,(17)

(Φi − Φj) · νij = 1 H1 − a.e. in ΣE
ij , for i, j = 1, 2, 3 , i 6= j .(18)

We then have

P(E) =

∫
ΣE

12∩Ω

(Φ1 − Φ2) · ν12 dH1 +

∫
ΣE

23∩Ω

(Φ2 − Φ3) · ν23 dH1 +

∫
ΣE

31∩Ω

(Φ3 − Φ1) · ν31 dH1

(19)

=
3∑
i=1

∫
Ω

Φi ·DχEi
=

3∑
i=1

∫
Ω

Φi ·DχFi

(20)

≤
∫

ΣF
12∩Ω

|Φ1 − Φ2| dH1 +

∫
ΣF

23∩Ω

|Φ2 − Φ3| dH1 +

∫
ΣF

31∩Ω

|Φ3 − Φ1| dH1 = P(F) .

(21)

for every partition F that have the same trace of the boundary of Ω of E.

Note that the differences Φi − Φj play a crucial role, we can actually focus directly on

the differences. Indeed, any time we are able to find three divergence free vector fields

Ψ12,Ψ23,Ψ31 : Ω→ R2 such that

• |Ψ12|, |Ψ23|, |Ψ31| ≤ 1 H1-a.e. in Ω,

• Ψij · νij = 1 H1-a.e. in Σij, for i, j = 1, 2, 3 such that Ψij is defined,
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Figure 5. A calibration of a minimal network

• Ψ12 + Ψ23 + Ψ31 = 0 H1-a.e. in Ω.

We are then able to exhibit a calibration (Φ1,Φ2,Φ3). Indeed, we can fix for example,

Φ1(x, y) := (0, 0)|Ω and set Φ2 := Φ1 − Ψ12 and Φ3 := Ψ31 + Φ1. The three vector fields

Ψ12,Ψ23,Ψ31 that do the job are the unitary vector fields depicted in Figure 5.

To conclude it remains to prove that to any network N satisfying the hypothesis of the

theorem we can associate a partition (F1, F2, F3) with trDχFi
= trDχEi

whose boundary

is contained in N .

We associate to N a partition (F1, . . . , Fn). Then each connected component of Ω \ N

corresponds to one of the Fi and there exists a unique j ∈ {1, 2, 3} such that Fi ∩ ∂Ω

coincides with Ej ∩ ∂Ω. It is enough to rename Fi as Fj with j ∈ {1, 2, 3}. �

By checking the proof, one realises that the theorem can be immediately improved to

the following stronger but less direct/transparent statement:

Corollary 7.1. Let N ∗ be a minimal network. Then there exists Ω as in Theorem 7.2

and there exists a partition E = (E1, E2, E3) of Ω whose boundary coincides with N ∗ such

that N ∗ is a minimizer of the length functional in Ω among all networks N inducing a

partition F = (F1, F2, F3) of Ω with trDχFi
= trDχEi

.

As one can see in Figure 6, there are networks that are competitors in the sense of the

corollary but not in the sense of the theorem.

We have repeatedly use the fact that a network in Ω induces a partition of Ω. On the

contrary, the boundary of a partition can be understood as a network in the plane. Based
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Figure 6. Left: a minimal network. Right: a competitor.

on this observation it is not hard to imagine that Theorem 7.2 can be stated directly in

the language of partitions.

Corollary 7.2. Let Ω ⊂ R2 be open. Let E = (E1, . . . , En) be a partition of Ω whose

boundary is a minimal network and let d be the minimum of the distance between any

two end-points and the shortest edge of N . Then there exists a δ–neighbourhood D of N

with 0 < δ ≤
√

3
8
d such that E is a minimizer in D for the perimeter among all partitions

F = (F1, . . . , Fn) with trDχFi
= trDχEi

.

Proof. Let E be a partition as in the statement and F a competitor. To apply [20,

Theorem 3.9] it is enough to canonically associate in D a partition of three sets Ẽ to E

and F̃ to F, so that P (Ẽ) = P (E) and P (F̃) ≤ P (F). In a δ–neighbourhood of N it is

always possible to associate a partition of three sets Ẽ = (Ẽ1, Ẽ2, Ẽ3) to E = (E1, . . . , En)

(see [20, Theorem 3.9] for details). Consider now a competitor F. Since trDχFi
= trDχEi

,

we can associate to each Fi such that Fi ∩ ∂D 6= ∅ one of the three F̃i in such a way that

trDχF̃i
= trDχẼi

. To conclude we associate to all the remaining Fi the set F̃1. �

The corollary establishes the local minimality of the partition among all partitions that

are close to the minimal candidate in a L∞ sense. With extra work, one can obtain a

statement of the same flavour but with the L1 distance in place of the L∞ distance [6].

8. Conclusions

In the paper we listed the properties of the flow that indicate that the structure/topology

of the networks should simplify during the evolution.
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Figure 7. Left: two partition of Ω′, the boundary of the first is a minimal

network. Right: construction of Ω and relabelling of the two partitions

inside of Ω.

• When at most five curves concur at an irregular junction, locally all flowouts are

without loops. Hence, the number of grains, of curves and of triple junctions is

non–increasing during the evolution. In particular, when a region enclosed by a

loop vanishes, the total number of curves decreases at least by three and the total

number of triple junctions decreases at least by two.

• If we suppose that all grains are very similar to each other and that percentage

of non–hexagonal grains is sufficiently high during the evolution, then we proved

that grains bound by less than six curve should disappear during the evolution

and the average area of the (surviving) grains grows linearly.

• It is well-known that regular networks with straight segments are critical points of

the length functional, thus steady states of the network flow. However, we expect

the volume of the basin of attraction of all the many critical point of the length

functional to be small in the space of networks. A first step in this direction is

the quantitative estimate of the size of the basin of local minimality of regular

networks with straight segments obtained by local calibrations.
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