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SUPERFICI INTRINSECHE REGOLARI NEI GRUPPI DI CARNOT

DANIELA DI DONATO

Abstract. A Carnot group G is a simply connected, nilpotent Lie group with strati-

fied Lie algebra. Intrinsic regular surfaces in Carnot groups play the same role as C1

surfaces in Euclidean spaces. As in Euclidean spaces, intrinsic regular surfaces can be

locally defined in different ways: e.g. as non critical level sets or as continuously intrinsic

differentiable graphs. The equivalence of these natural definitions is the problem that

we are studying. This is a note based on the paper [8].

Sunto. Un gruppo di Carnot è un gruppo di Lie nilpotente e semplicemente connesso

che ammette una Lie algebra stratificata. Nei gruppi di Carnot, le superfici intrinseche

regolari giocano lo stesso ruolo delle superfici C1 negli spazi euclidei. Come negli spazi

euclidei, esse posso essere viste in diversi modi: per esempio, come insiemi di livello

non critici oppure come grafici di mappe intrinsecamente differenziabili. L’equivalenza

tra queste definizioni è il problema che viene preso in esame. Questo lavoro è basato

sull’articolo [8].
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1. Introduction

In the last years a systematic attempt to develop a good notion of rectifiable sets in

metric space and in particular inside Carnot groups, has become the object of many

studies. For a general theory of rectifiable sets in Euclidean spaces one can see [13, 12, 25]

while a general theory in metric spaces can be found in [1].

Rectifiable sets are classically defined as contained in the countable union of C1 sub-

manifolds. In this paper we focus our attention on the natural notion of C1 surface, inside

a special class of metric spaces i.e. the Carnot groups G of step κ. A short description

of Carnot groups is in Section 2. Here we simply recall that they are connected, simply

connected Lie group whose Lie algebra g admits a step κ stratification. Through the

exponential map, a Carnot group G can be identified with RN , for a certain N > 0,

endowed with a non commutative group operation.

Euclidean spaces are commutative Carnot groups and are the only commutative ones.

The simplest but, at the same time, non-trivial instances of non-Abelian Carnot groups

are provided by the Heisenberg groups Hn (see for instance [6]).

A Carnot group G is endowed with a natural left-invariant metric d. Non commutative

Carnot groups, endowed with their left invariant metric are not Riemannian manifolds not

even locally. In fact they are particular instances of so called sub Riemannian manifolds.

Main objects of study in this paper are the notions of regular surfaces and of intrinsic

graphs and their link.

Intrinsic regular surfaces in Carnot groups should play the same role as C1 surfaces

in Euclidean spaces. In Euclidean spaces, C1 surfaces can be locally defined in different

ways: e.g. as non critical level sets of C1 functions or, equivalently, as graphs of C1

maps between complementary linear subspaces. In Carnot groups the equivalence of

these definitions is not true any more. One of the main aim of this paper is to find the

additional assumptions in order that these notions are equivalent in G. Precisely we want

to generalize the results on [2] valid in Heisenberg groups to the more general setting of

Carnot groups.
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Here by the word intrinsic and regular we want to emphasize a privileged role played

by group translations and dilations, and its differential structure as Carnot-Carathéodory

manifold in a sense we will precise below.

We begin recalling that an intrinsic regular hypersurface (i.e. a topological codimension

1 surface) S ⊂ G is locally defined as a non critical level set of a C1 intrinsic function.

More precisely, there exists a continuous function f : G → R such that locally S =

{p ∈ G : f(p) = 0} and the intrinsic gradient ∇Gf = (X1f, . . . , Xmf) exists in the

sense of distributions and it is continuous and non vanishing on S. In a similar way, a

k-codimensional regular surface S ⊂ G is locally defined as a non critical level set of a C1

intrinsic vector function F : G→ Rk.

On the other hand, the intrinsic graphs came out naturally in [16], while studying level

sets of Pansu differentiable functions from Hn to R. The simple idea of intrinsic graph

is the following one: let M and W be complementary subgroups of G, i.e. homogeneous

subgroups such that W ∩M = {0} and G = W ·M (here · indicates the group operation

in G and 0 is the unit element), then the intrinsic left graph of φ : W→M is the set

graph (φ) := {a · φ(a) | a ∈W}.

Hence the existence of intrinsic graphs depends on the possibility of splitting G as a

product of complementary subgroups hence it depends on the structure of the algebra g.

By Implicit Function Theorem, proved in [16] for the Heisenberg group and in [17] for

a general Carnot group (see also [24, Theorem 1.3]) it follows

a G-regular surface S locally is an intrinsic graph of a suitable function φ.

Consequently, given an intrinsic graph S = graph (φ) ⊂ G, the main aim of this

paper is to find necessary and sufficient assumptions on φ in order that the opposite

implication is true. More precisely, in the main result of this note, i.e., Theorem 4.1,

we characterize G-regular intrinsic graphs as graphs of uniformly intrinsic differentiable

functions φ : E ⊂ W → M where G is a step κ Carnot group, W,M complementary

subgroups, with M horizontal and k dimensional. This result generalizes [2, Theorem 1.2]

and has proved in [8, Theorem 4.1].
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The rest of the paper is organized as follows. In Section 2, we recall the basic definitions

and preliminary results that we will use later. In Section 3, we provide some properties

of intrinsic linear maps and intrinsic differentiability ones. In Section 4 we focus our

attention on Theorem 4.1 and its corollaries.

2. Notations and preliminary results

2.1. Carnot groups. We begin by recalling briefly the definition of Carnot groups. For

a general account see e.g. [6, 28].

A Carnot group G = (G, ·, δλ) of step κ is a connected and simply connected Lie

group whose Lie algebra g admits a stratification, i.e. a direct sum decomposition g =

V1 ⊕ V2 ⊕· · ·⊕ Vκ. The stratification has the further property that the entire Lie algebra

g is generated by its first layer V1, the so called horizontal layer, that is [V1, Vi−1] = Vi if 2 ≤ i ≤ κ,

[V1, Vκ] = {0},

We denote by N the dimension of g and by ns the dimension of Vs.

The exponential map exp : g → G is a global diffeomorphism from g to G. Hence,

if we choose a basis {X1, . . . , XN} of g, any p ∈ G can be written in a unique way as

p = exp(p1X1 + · · · + pNXN) and we can identify p with the N -tuple (p1, . . . , pN) ∈ RN

and G with (RN , ·, δλ). The identity of G is the origin of RN .

For any λ > 0, the (non isotropic) dilation δλ : G→ G are automorhisms of G and are

defined as

δλ(p1, . . . , pN) = (λα1p1, . . . , λ
αNpN),

where αi ∈ N is called homogeneity of the variable pi in G and is given by αi = j whenever

mj−1 < i ≤ mj with ms −ms−1 = ns and m0 = 0. Hence 1 = α1 = · · · = αm1 < αm1+1 =

2 ≤ · · · ≤ αN = κ.

The explicit expression of the group operation · is determined by the Campbell-Hausdorff

formula. It has the form

p · q = p+ q +Q(p, q) for all p, q ∈ G ≡ RN ,
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where Q = (Q1, . . . ,QN) : RN × RN → RN and every Qi is a homogeneous poly-

nomial of degree αi with respect to the intrinsic dilations of G, i.e. Qi(δλp, δλq) =

λαiQi(p, q) for all p, q ∈ G and λ > 0.

Observe also that G = G1 ⊕ G2 ⊕ · · · ⊕ Gκ where Gi = exp(Vi) = Rni is the ith layer

of G and to write p ∈ G as (p1, . . . , pκ) with pi ∈ Gi. According to this

(1) p · q = (p1 + q1, p2 + q2 +Q2(p1, q1), . . . , pκ + qκ +Qκ((p1, . . . , pκ−1), (q1, . . . , qκ−1)),

for every p = (p1, . . . , pκ), q = (q1, . . . , qκ) ∈ G. In particular p−1 = (−p1, . . . ,−pκ).

The norm of Rns is denoted with the symbol | · |. For any p ∈ G the intrinsic left

translation τp : G→ G are defined as

q 7→ τpq := p · q = pq.

A homogeneous norm on G is a non negative function p 7→ ‖p‖ such that for all p, q ∈ G

and for all λ ≥ 0

‖p‖ = 0 if and only if p = 0,

‖δλp‖ = λ‖p‖, ‖p · q‖ ≤ ‖p‖+ ‖q‖.

Given any homogeneous norm ‖ · ‖, it is possible to introduce a distance in G given by

d(p, q) = d(p−1q, 0) = ‖p−1q‖ for all p, q ∈ G.

We observe that any distance d obtained in this way is always equivalent with the Carnot-

Carathéodory’s distance dcc of the group (see Proposition 5.1.4 and Theorem 5.2.8 [6]).

The distance d is well behaved with respect to left translations and dilations, i.e. for

all p, q, q′ ∈ G and λ > 0,

d(p · q, p · q′) = d(q, q′), d(δλq, δλq
′) = λd(q, q′).

Moreover, by [6, Proposition 5.15.1], for any bounded subset Ω ⊂ G there exist positive

constants c1 = c1(Ω), c2 = c2(Ω) such that for all p, q ∈ Ω

c1|p− q| ≤ d(p, q) ≤ c2|p− q|1/κ,

and, in particular, the topology induced on G by d is the Euclidean topology.
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We also define the distance distd between two set Ω1,Ω2 ⊂ G by putting

distd(Ω1,Ω2) := max

{
sup
q′∈Ω2

d(Ω1, q
′), sup

Q∈Ω1

d(q,Ω2)

}
,

where d(Ω1, q
′) := inf{d(q, q′) : q ∈ Ω1}.

The Hausdorff dimension of (G, d) as a metric space is denoted homogeneous dimension

of G and it can be proved to be the integer
∑N

j=1 αj =
∑κ

i=1 i dimVi ≥ N (see [26]).

The Haar measure of the group G = RN is the Lebesgue measure dLN . It is left (and

right) invariant.

2.2. C1
G functions and G-regular surfaces. (See [23, 28]). In [27] Pansu introduced

an appropriate notion of differentiability for functions acting between Carnot groups. We

recall this definition in the particular instance that is relevant here.

Let U be an open subset of a Carnot group G. A function f : U → Rk is Pansu differen-

tiable or more simply P-differentiable in a0 ∈ U if there is a homogeneous homomorphism

dPf(a0) : G→ Rk,

the Pansu differential of f in a0, such that, for B ∈ U ,

lim
r→0+

sup
0<‖a−1

0 b‖<r

|f(b)− f(a0)− dPf(a0)(a−1
0 b)|

‖a−1
0 b‖

= 0.

Saying that dPf(a0) is a homogeneous homomorphism we mean that dPf(a0) : G → Rk

is a group homomorphism and also that dPf(a0)(δλb) = λdPf(a0)(b) for all b ∈ G and

λ ≥ 0.

Observe that, later on in Definition 3.2, we give a different notion of differentiability

for functions acting between subgroups of a Carnot group and we reserve the notation df

or df(a0) for that differential.

We denote C1
G(U ,Rk) the set of functions f : U → Rk that are P-differentiable in each

a ∈ U and such that dPf(a) depends continuously on a.

It can be proved that f = (f1, . . . , fk) ∈ C1
G(U ,Rk) if and only if the distributional

horizontal derivatives Xifj, for i = 1 . . . ,m1, j = 1, . . . , k, are continuous in U . Remember

that C1(U ,R) ⊂ C1
G(U ,R) with strict inclusion whenever G is not abelian (see [16, Remark

6]).
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The horizontal Jacobian (or the horizontal gradient if k = 1) of f : U → Rk in a ∈ U

is the matrix

∇Gf(a) := [Xifj(a)]i=1...m1,j=1...k

when the partial derivatives Xifj exist. Hence f = (f1, . . . , fk) ∈ C1
G(U ,Rk) if and only

if its horizontal Jacobian exists and is continuous in U . The horizontal divergence of

φ := (φ1, . . . , φm1) : U → Rm1 is defined as

divGφ :=

m1∑
j=1

Xjφj

if Xjφj exist for j = 1, . . . ,m1.

The following proposition shows that the P-differential of a P-differentiable map f is

represented by horizontal gradient ∇Gf :

Proposition 2.1. If f : U ⊂ G → R is P-differentiable at a point p and dPf(p) is

P-differential of f at p, then

dPf(p)(q) = ∇Gf(p)q1, for all q = (q1, . . . , qκ) ∈ U .

Now we define co-abelian intrinsic submanifold as in [22, Definition 3.3.4]. Following

the terminology of [18], we call these objects k-codimensional G-regular surfaces.

Definition 2.1. S ⊂ G is a k-codimensional G-regular surface if for every p ∈ S there

are a neighbourhood U of p and a function f = (f1, . . . , fk) ∈ C1
G(U ,Rk) such that

S ∩ U = {q ∈ U : f(q) = 0},

and dPf(q) is surjective, or equivalently if the (k ×m1) matrix ∇Gf(q) has rank k, with

k < m1, for all q ∈ U .

Notice that the topological dimension of a k-codimensional G-regular surface is N − k.

The class of G-regular surfaces is different from the class of Euclidean regular surfaces.

Indeed, in [21], the authors give an example of H1-regular surfaces, in H1 identified with

R3, that are (Euclidean) fractal sets. Conversely, there are continuously differentiable 2-

submanifolds in R3 that are not H1-regular surfaces (see [16, Remark 6.2] and [2, Corollary

5.11]).
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2.3. Complementary subgroups and graphs.

Definition 2.2. We say that W and M are complementary subgroups in G if W and M

are homogeneous subgroups of G such that W ∩M = {0} and

G = W ·M.

By this we mean that for every p ∈ G there are pW ∈W and pM ∈M such that p = pWpM.

The elements pW ∈ W and pM ∈ M such that p = pW · pM are unique because of

W ∩M = {0} and are denoted components of p along W and M or projections of P on

W and M. The projection maps PW : G→W and PM : G→M defined

PW(p) = pW, PM(p) = pM, for all p ∈ G

are polynomial functions (see [15, Proposition 2.2.14]) if we identify G with RN , hence are

C∞. Nevertheless in general they are not Lipschitz maps, when W and M are endowed

with the restriction of the left invariant distance d of G (see [15, Example 2.2.15]).

Remark 2.2. The stratification of G induces a stratifications on the complementary sub-

groups W and M. If G = G1⊕· · ·⊕Gκ then also W = W1⊕· · ·⊕Wκ, M = M1⊕· · ·⊕Mκ

and Gi = Wi ⊕Mi. A subgroup is horizontal if it is contained in the first layer G1. If M

is horizontal then the complementary subgroup W is normal.

Proposition 2.3 (see [4], Proposition 3.2). If W and M are complementary subgroups in

G there is c0 = c0(W,M) ∈ (0, 1) such that for each pW ∈W and pM ∈M

(2) c0(‖pW‖+ ‖pM‖) ≤ ‖pWpM‖ ≤ ‖pW‖+ ‖pM‖.

Definition 2.3. We say that S ⊂ G is a left intrinsic graph or more simply a intrinsic

graph if there are complementary subgroups W and M in G and φ : E ⊂ W → M such

that

S = graph (φ) := {aφ(a) : a ∈ E}.

Observe that, by uniqueness of the components along W and M, if S = graph (φ) then

φ is uniquely determined among all functions from W to M.
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Proposition 2.4 (see [15], Proposition 2.2.18). If S is a intrinsic graph then, for all

λ > 0 and for all q ∈ G, q ·S and δλS are intrinsic graphs. In particular, if S = graph (φ)

with φ : E ⊂W→M, then

(1) For all λ > 0,

δλ (graph (φ)) = graph (φλ),

where φλ : δλE ⊂W→M and φλ(a) := δλφ(δ1/λa), for a ∈ δλE.

(2) For any q ∈ G,

q · graph (φ) = graph (φQ),

where φq : Eq ⊂W→ M is defined as φq(a) := (PM(q−1a))−1φ(PW(q−1a)), for all

a ∈ Eq := {a : PW(q−1a) ∈ E}.

The following notion of intrinsic Lipschitz function appeared for the first time in [16]

and was studied, more diffusely, in [9, 10, 14, 15, 18, 29]. Intrinsic Lipschitz functions

play the same role as Lipschitz functions in Euclidean context but they are different (see

[28, Example 4.58]). Recently, in [11] the authors generalized this concept in the metric

setting.

Definition 2.4. Let W,M be complementary subgroups in G, φ : E ⊂W→ M. We say

that φ is intrinsic CL-Lipschitz in E , or simply intrinsic Lipschitz, if there is CL ≥ 0 such

that

‖PM(q−1q′)‖ ≤ CL‖PW(q−1q′)‖, for all q, q′ ∈ graph (φ).

φ : E → M is locally intrinsic Lipschitz in E if φ is intrinsic Lipschitz in E ′ for every

E ′ ⊂⊂ E .

Remark 2.5. In this paper, we are interested mainly in the special case when M is a

horizontal subgroup and consequently W is a normal subgroup. Under these assumptions,

for all p = aφ(a), q = bφ(b) ∈ graph (φ) we have

PM(p−1q) = φ(a)−1φ(b), PW(p−1q) = φ(a)−1a−1bφ(a).

Hence, if M is a horizontal subgroup, φ : E ⊂W→M is intrinsic Lipschitz if

‖φ(a)−1φ(b)‖ ≤ CL‖φ(a)−1a−1bφ(a)‖ for all a, b ∈ E .
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Moreover, if φ is intrinsic Lipschitz then ‖φ(a)−1a−1bφ(a)‖ is comparable with ‖p−1q‖.

Indeed from (2)

c0‖φ(a)−1a−1bφ(a)‖ ≤ ‖p−1q‖

≤ ‖φ(a)−1a−1bφ(a)‖+ ‖φ(a)−1φ(b)‖

≤ (1 + CL)‖φ(a)−1a−1bφ(a)‖.

The quantity ‖φ(a)−1a−1bφ(a)‖, or better a symmetrized version of it, can play the role

of a φ dependent, quasi distance on E . See e.g. [2].

In Euclidean spaces, i.e. when G is RN and the group operation is the usual Euclidean

sum of vectors, intrinsic Lipschitz functions are the same as Lipschitz functions. On the

contrary, when G is a general non commutative Carnot group and W and M are com-

plementary subgroups, the class of intrinsic Lipschitz functions from W to M is different

from the class Lipschitz functions (see [14, Example 2.3.9]). More precisely, if φ : W→M

is intrinsic Lipschitz then in general does not exists a constant C such that

‖φ(a)−1φ(b)‖ ≤ C‖a−1b‖ for a, b ∈W,

not even locally. Nevertheless the following weaker result holds true:

Proposition 2.6 (see [15], Proposition 3.1.8). Let W,M be complementary subgroups in

a step κ Carnot group G. Let φ : E ⊂ W → M be an intrinsic CL-Lipschitz function.

Then, for all r > 0,

(1) there is C1 = C1(φ, r) > 0 such that

‖φ(a)‖ ≤ C1 for all a ∈ E with ‖a‖ ≤ r

(2) there is C2 = C2(CL, r) > 0 such that φ is locally 1/κ-Hölder continuous i.e.

‖φ(a)−1φ(b)‖ ≤ C2‖a−1b‖1/κ for all a, b with ‖a‖, ‖b‖ ≤ r.

3. Intrinsic differentiability

Here we recall a different notion of differentiability, the so called intrinsic differentia-

bility that is, by its very definition, invariant under translations. A function is intrinsic
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differentiable if it is locally well approximated by intrinsic linear functions that are func-

tions whose graph is a homogeneous subgroup in G.

Definition 3.1. Let W and M be complementary subgroups in G. Then ` : W → M is

intrinsic linear if ` is defined on all of W and if graph (`) is a homogeneous subgroup of

G.

Intrinsic linear functions can be algebraically caracterized as follows.

Proposition 3.1 (see [14], Propositions 3.1.3 and 3.1.6). Let W and M be complementary

subgroups in G. Then ` : W→M is intrinsic linear if and only if

`(δλa) = δλ(`(a)), for all a ∈W and λ ≥ 0

`(ab) = (PH(`(a)−1b))−1`(PW(`(a)−1b)), for all a, b ∈W.

Moreover any intrinsic linear function ` is a polynomial function and it is intrinsic Lips-

chitz with Lipschitz constant CL := sup{‖`(a)‖ : ‖a‖ = 1}. Note that CL < +∞ because

` is continuous. Moreover

‖`(a)‖ ≤ CL‖a‖, for all a ∈W.

In particular, if W is normal in G then ` : W→M is intrinsic linear if and only if

`(δλa) = δλ(`(a)), for all a ∈W and λ ≥ 0

`(ab) = `(a)`
(
`(a)−1b`(a)

)
, for all a, b ∈W.

(3)

We use intrinsic linear functions to define intrinsic differentiability as in the usual

definition of differentiability.

Definition 3.2. Let W and M be complementary subgroups in G and let φ : O ⊂W→M

with O open in W. For a ∈ O, let p := a · φ(a) and φp−1 : Op−1 ⊂ W → M be the

shifted function defined in Proposition 2.4. We say that φ is intrinsic differentiable in a

if the shifted function φp−1 is intrinsic differentiable in 0, i.e. if there is a intrinsic linear

dφa : W→M such that

(4) lim
r→0+

sup
0<‖b‖<r

‖dφa(b)−1φp−1(b)‖
‖b‖

= 0.

The function dφa is the intrinsic differential of φ at a.
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Remark 3.2. Definition 3.2 is a natural one because of the following observations.

(i) If φ is intrinsic differentiable in a ∈ O, there is a unique intrinsic linear function dφa

satisfying (4). Moreover φ is continuous at a. (See Theorem 3.2.8 and Proposition 3.2.3

in [14]).

(ii) The notion of intrinsic differentiability is invariant under group translations. Pre-

cisely, let p := aφ(a), q := bφ(b), then φ is intrinsic differentiable in a if and only if

φqp−1 := (φp−1)q is intrinsic differentiable in b.

(iii) The analytic definition of intrinsic differentiability of Definition 3.2 has an equiva-

lent geometric formulation. Indeed intrinsic differentiability in one point is equivalent to

the existence of a tangent subgroup to the graph (see [14, Theorem 3.2.8]). Let φ : W→M

be such that φ(0) = 0. We say that an homogeneous subgroup T of G is a tangent sub-

group to graph (φ) in 0 if

(1) T is a complementary subgroup of M

(2) in any compact subset of G

lim
λ→∞

δλ (graph (φ)) = T

in the sense of Hausdorff convergence.

Moreover in [14, Theorem 3.2.8], the authors show that φ is intrinsic differentiable in 0 if

and only if graph (φ) has a tangent subgroup T in 0 and in this case T = graph (dφ0).

In addition to pointwise intrinsic differentiability, we are interested in an appropriate

notion of continuously intrinsic differentiable functions. For functions acting between

complementary subgroups, one possible way is to introduce a stronger, i.e. uniform,

notion of intrinsic differentiability in the general setting of Definition 3.2.

Definition 3.3. Let W and M be complementary subgroups in G and φ : O ⊂W→ M

with O open in W. For any a ∈ O, let p := a · φ(a) and φp−1 : Op−1 ⊂ W → M

be the shifted function defined in Proposition 2.4. We say that φ is uniformly intrinsic

differentiable in a0 ∈ O or φ is u.i.d. in a0 if there exist a intrinsic linear function
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dφa0 : W→M such that

(5) lim
r→0+

sup
‖a−1

0 a‖<r
sup

0<‖b‖<r

‖dφa0(b)−1φp−1(b)‖
‖b‖

= 0.

Analogously, φ is u.i.d. in O if it is u.i.d. in every point of O.

Remark 3.3. We recall that in [4, Definition 3.16] the authors give another notion of

uniformly intrinsic differentiable map. It is possible compare these two notions; indeed,

for example, Proposition 3.7 (3) is in the definition of u.i.d. for [4]. Moreover, it is clear,

taking a = a0 in (5), that if φ is uniformly intrinsic differentiable in a0 then it is intrinsic

differentiable in a0 and dφa0 is the intrinsic differential of φ at a0 (that is the first point

of the definition for [4]).

Remark 3.4. In Heisenberg groups, it is known after the results in [2, 5] that the intrinsic

differentiability of φ is equivalent to the existence and continuity of suitable ’derivatives’

Dφφ of φ. The non linear first order differential operators Dφ
j were introduced by Serra

Cassano et al. in the context of Heisenberg groups Hn (see [28] and the references therein)

and, in the first Heisenberg group H1, Dφφ reduces to the classical Burgers’ equation. This

issue has been fully addressed in [3] in the general context of Carnot groups (see also [8]).

From now on we restrict our setting studying the notions of intrinsic differentiability

and of uniform intrinsic differentiability for functions φ : W→ H when H is a horizontal

subgroup. When H is horizontal, W is always a normal subgroup since, as observed in

Remark 2.2, it contains the whole strata G2, . . . ,Gκ. In this case, the more explicit form

of the shifted function φp−1 allows a more explicit form of equations (4) and (5).

First we observe that, when the target space is horizontal, intrinsic linear functions are

Euclidean linear functions from the first layer of W to H. The analogous of the following

proposition is [4, Proposition 3.23] in the Heisenberg groups.

Proposition 3.5 (see [8], Proposition 3.4). Let W and H be complementary subgroups in

G with H horizontal. Then an intrinsic linear function ` : W → H depends only on the

variables in the first layer W1 := W ∩G1 of W. That is

(6) `(a) = `(a1, 0, . . . , 0), for all a = (a1, . . . , aκ) ∈W.
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Moreover there is CL ≥ 0 such that, for all a ∈W,

(7) ‖`(a)‖ ≤ CL‖(a1, 0, . . . , 0)‖

and `|W1 : W1 → H is Euclidean linear.

Finally if k < m1 is the dimension of H and if, without loss of generality, we assume

that

H = {p = (p1, . . . , pN) : pk+1 = · · · = pN = 0}, W = {p = (p1, . . . , pN) : p1 = · · · = pk = 0}

then there is a k × (m1 − k) matrix L such that

`(a) =
(
L(ak+1, . . . , am1)

T , 0, . . . , 0
)

(8)

for all a = (a1, . . . , aN) ∈W .

Keeping in mind this special form of intrinsic linear functions we obtain the following

special form of intrinsic differentiability. The reader can see Proposition 3.25 (ii) and

Proposition 3.26 (ii) in [4] for the Heisenberg groups.

Proposition 3.6 ([8], Proposition 3.5). Let H and W be complementary subgroups of

G, O open in W and H horizontal. Then φ : O ⊂ W → H is intrinsic differentiable in

a0 ∈ O if and only if there is a intrinsic linear dφa0 : W→ H such that

lim
r→0+

sup
0<‖a−1

0 b‖<r

‖φ(b)− φ(a0)− dφa0(a−1
0 b)‖

‖φ(a0)−1a−1
0 bφ(a0)‖

= 0.

Analogously, φ is uniformly intrinsic differentiable in a0 ∈ O if there is a intrinsic linear

dφa0 : W→ H such that

lim
r→0+

sup
‖a−1

0 a‖<r
sup

0<‖a−1b‖<r

‖φ(b)− φ(a)− dφa0(a−1b)‖
‖φ(a)−1a−1bφ(a)‖

= 0

where r is small enough so that U(a0, 2r) ⊂ O.

We conclude this section by giving a regularity result. The point (1) of the following

proposition states precisely a natural relation between uniform intrinsic differentiability

and intrinsic Lipschitz continuity (see [4, Proposition 3.30] for the Heisenberg groups).

The point (2) is a generalization of what was previously known for u.i.d. functions in

Heisenberg groups (see [2, Theorem 1.3]).
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Proposition 3.7 (see [8], Proposition 3.7). Let H, W be complementary subgroups of G

with H horizontal. Let O be open in W and φ : O → H be u.i.d. in O. Then

(1) φ is intrinsic Lipschitz continuous in every relatively compact subset of O.

(2) φ ∈ h1/κ
loc (O), that is φ ∈ C(O,R) and for all F ⊂⊂ O and a, b ∈ F

(9) lim
r→0+

sup
0<‖a−1b‖<r

‖φ(b)− φ(a)‖
‖a−1b‖1/κ

= 0.

(3) the function a 7→ dφa is continuous in O.

4. G-regular surfaces

The main result of this note is Theorem 4.1 where we prove that, if H is a horizontal

subgroup, the intrinsic graph of φ : O ⊂W→ H is a G-regular k-codimensional surface if

and only if φ is uniformly intrinsic differentiable in O. The proof of this theorem requires

both Whitney’s Extension Theorem and Implicit Function Theorem ([24, Theorem 1.3])

in Carnot groups. The proof of Whitney’s Extension Theorem can be found in [19] for

Carnot groups of step two only, but it is identical for general Carnot groups (see [7,

Theorem 2.3.8]).

Theorem 4.1 (see [8], Theorem 4.1). Let W and H be complementary subgroups of a

Carnot group G with H horizontal and k dimensional. Let O be open in W, φ : O ⊂

W→ H and S := graph (φ). Then for every a0 ∈ O the following are equivalent:

(1) there are a neighbourhood U of a0 · φ(a0) and f ∈ C1
G(U ;Rk) such that

S ∩ U = {p ∈ U : f(p) = 0}

dPf(q)|H : H→ Rk is bijective for all q ∈ U

and q 7→
(
dPf(q)|H

)−1
is continuous.

(2) φ is u.i.d. in a neighbourhood O′ ⊂ O of a0.

Moreover, if (1) or equivalently (2), hold then, for all a ∈ O the intrinsic differential dφa

is

dφa = −
(
dPf(aφ(a))|H

)−1 ◦ dPf(aφ(a))|W.
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Remark 4.2. If, without loss of generality, we choose a base X1, . . . , XN of g such that

X1, . . . , Xk are horizontal vector fields, H = exp(span{X1, . . . , Xk}) and

W = exp(span{Xk+1, . . . , XN}) then

H = {p ∈ G : pk+1 = · · · = pN = 0} W = {p ∈ G : p1 = · · · = pk = 0},

and, if f = (f1, . . . , fk), then ∇Gf = (M1 | M2 ) where

M1 :=


X1f1 . . . Xkf1

...
. . .

...

X1fk . . . Xkfk

 , M2 :=


Xk+1f1 . . . Xm1f1

...
. . .

...

Xk+1fk . . . Xm1fk

 .

Moreover, for all q ∈ U , for all a ∈ O and for all p ∈ G

(dPf(q)) (p) = (∇Gf( q))p1

and the intrinsic differential is

dφa(b) =
((
∇φφ(a)

)
(bk+1, . . . , bm1)

T , 0, . . . , 0
)

=
((
−M1(aφ(a))−1M2(aφ(a))

)
(bk+1, . . . , bm1)

T , 0, . . . , 0
)
,

(10)

for all b = (b1, . . . , bN) ∈W.

An immediate corollary of the Theorem 4.1 is the following.

Corollary 4.3. Under the same assumptions of Theorem 4.1, if S := graph (φ) satisfies

the condition (1) of Theorem 4.1, then

(1) the function b 7→ dφ(b) is continuous in O.

(2) φ ∈ h1/κ
loc (O), that is φ ∈ C(O,R) and for all F ⊂⊂ O and a, b ∈ F

lim
r→0+

sup
0<‖a−1b‖<r

‖φ(b)− φ(a)‖
‖a−1b‖1/κ

= 0.

We conclude this note observing that u.i.d. functions do exist. In particular, when H

is a horizontal subgroup, H valued Euclidean C1 functions are u.i.d.

Theorem 4.4 (see [8], Theorem 4.9). If W and H are complementary subgroups of a

Carnot group G with H horizontal and k dimensional. If O is open in W and φ : O ⊂

W→ H is such that φ ∈ C1(O,H) then φ is u.i.d. in O.
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the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144.

[21] B.Kirchheim, F.Serra Cassano, Rectifiability and parametrization of intrinsic regular surfaces in the

Heisenberg group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) III, (2004), 871-896.

[22] A.Kozhevnikov, Propriétés métriques des ensembles de niveau des applications différentiables sur
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Università di Pavia, Dipartimento di Matematica, Via Adolfo Ferrata, 5, 27100 Pavia,

Italy

Email address: daniela.didonato@unipv.it


