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Abstract. In this paper, we study critical nonlinearities for global small data solutions

to the plate equation and other second order p-evolution equations, possibly under the

action of a noneffective dissipative term.

Sunto. In questo lavoro, richiamiamo alcuni recenti risultati in cui viene ottenuto

l’esponente critico per la soluzione globale (in tempo) con dati sufficientemente piccoli

per l’equazione della piastra e altre equazioni di p-evoluzione del secondo ordine, con

nonlinearità di tipo potenza. Con l’aggiunta di un termine dissipativo noneffettivo, cioè

che non cancella le oscillazioni, ma le smorza solamente, è stato recentemente mostrato

come l’esponente critico rimanga lo stesso del caso non dissipativo, almeno in dimensione

bassa. In questo lavoro, viene studiata una condizione integrale sul termine nonlineare

che permette di distinguere precisamente la regione di esistenza globale da quella di

nonesistenza globale della soluzione, raffinando i risultati sugli esponenti critici per non-

linearità di tipo potenza.
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1. Introduction

It has been recently proved [29] that the critical exponent for global (in time) small

data solutions to

(1)


utt + Au = f(u), t ≥ 0, x ∈ Rn,

u(0, x) = 0,

ut(0, x) = u1(x),

where A = (−∆)σ, with σ > 1 and f(u) = |u|p, with p > 1, is

(2) pc = 1 +
2

n
σ
− 1

.

In particular, in [29, Theorem 2.2] it is proved that global (in time) small data solutions

to (1) exist in space dimension n ∈ (σ, 2σ] if p > pc, under the assumption

(3) f(0) = 0, |f(u)− f(v)| ≤ C |u− v| (|u|p−1 + |v|p−1)

while in [17] it is proved that no global (in time) solution to (1) may exist, under a suitable

data sign assumption, if f(u) ≥ C |u|p or f(u) ≤ −C |u|p, with 1 < p ≤ pc.

The proof of this result is based on the use of L1 −Lp estimates for the linear problem

(4)


utt + Au = 0, t ≥ 0, x ∈ Rn,

u(0, x) = 0,

ut(0, x) = u1(x),

and on the use of Duhamel’s principle and a classic contraction argument. When

A =
∑
|α|=2p

aα∂
α
x ,

for some integer p > 1, and the roots λ± of

λ2 + (−1)p
∑
|α|=2p

aαξ
α = 0

are distinct and pure imaginary, for any ξ ̸= 0, the equation in (4) is a p-evolution second

order equation, in the sense of Petrowski. For p = 1, we have strictly hyperbolic equations.

Since the letter p is already used in the nonlinearity (3), we replace it by σ in this paper.
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When A = (−∆)σ, the corresponding roots are ±i|ξ|σ. Moreover, σ > 1 may be non

integer, unless differently specified (in this case, (−∆)σg = F−1(|ξ|2σĝ)). For σ = 2, the

equation in (4) is often called plate equation.

The crucial aspect of L1 − Lp estimates for (4), is that they do not hold [45, 48, 53] if

the quantity

(5) d(p) =
n

σ

(
1− 1

p

)
− n

(
1

2
− 1

p

)
is larger than 1, due to the fact that

mσ(ξ) =
sin |ξ|σ

|ξ|σ
̸∈ Mp

1 .

The notation above means that mσ is not a multiplier from L1 to Lp, that is, the operator

f ∈ S 7→ F−1(mσf̂) is not bounded from L1 to Lp; equivalently, the inverse Fourier

transform F−1(mσ) is not in Lp (see [37, Theorem 1.4]).

When d(p) < 1, the following L1 − Lp estimates hold for the solution to (4):

(6) ∥u(t, ·)∥Lp ≤ C t1−
n
σ (1−

1
p) ∥u1∥L1 , t > 0.

This result for σ > 1 is analogous to the corresponding result for σ = 1 (i.e. A = −∆,

and (4) is the wave equation), thought when σ = 1 the expression for d(p) in (5) is no

longer valid, and is replaced by

(7) d(p) = 1− n

(
1− 1

p

)
− (n− 1)

(
1

2
− 1

p

)
.

This difference, which amounts to the fact that n − 1 in (7) replaces n in (5), is related

to the different properties of the phase function |ξ|σ in e±i|ξ|σ , when σ = 1 or σ ̸= 1 (for

instance, the Hessian of |ξ|σ is singular if, and only if, σ = 1). This difference makes the

case σ = 1 in (1) very peculiar with respect to all other cases σ ̸= 1.

In [13], it has been shown that some L1 − Lp estimates hold for any p ∈ [1,∞], even

if the necessary condition d(p) ≤ 1 is violated, if a noneffective damping is added to (4)

when σ > 1. The term “noneffective” was originally introduced in [56, 57] for a classical

damped wave equation with time-dependent coefficients and later extended in [11] for
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damped σ-evolution equations. The case considered is

(8)


utt + Au+ A

θ
2ut = f(u), t ≥ 0, x ∈ Rn,

u(0, x) = 0,

ut(0, x) = u1(x),

with θ ∈ [1, 2]. In the homogeneous case θ = 1, the estimates are as in (6), but without

the restriction d(p) ≤ 1. In the case θ ∈ (1, 2], the decay rate remains the same if d(p) < 1,

but a loss of decay rate (1+t)(d(p)−1)+(1− 1
θ ) appears if d(p) ≥ 1, possibly with an additional

logarithmic loss. The same phenomenon was already observed in [51] for p = 1 (in odd

space dimension n) and p = ∞, in the case σ = 1 and θ = 2, and in [21] for p = 1 in the

case σ = θ = 2 in space dimension n ≥ 4.

During his “Bruno Pini seminar” held on 26 January 2023, the first author announced

that he and M.R. Ebert obtained an analogous result for the wave equation (i.e. σ = 1),

for a class of dissipative wave equations which include (8) as a special case. In particular,

they obtained the long time estimates

∥u(t, ·)∥Lp ≤ C (1 + t)1−n(1− 1
p)+(d(p)−1)+(1− 1

θ )∥u1∥L1 ,

with a (log(e+ t))
1
2 loss of decay in the case n = p = 2 (see [15]).

In recent years many authors have investigated the critical power pc for nonlinearities

as in (3), for damped equations

(9)


utt + Au+ A

θ
2ut = f(u), t ≥ 0, x ∈ Rn,

u(0, x) = 0,

ut(0, x) = u1(x).

By critical power, we mean that for p > pc the global (in time) solution to (1) or (9) exists

for sufficiently small initial data in a suitable space, whereas no global solutions exist if

1 < p < pc under a suitable sign condition on the data and f(u) ≥ C|u|p or f(u) ≤ −C|u|p.

The case p = pc often belongs to the nonexistence range, though sometimes it belong to the

existence range (this happens, for instance, in some models where fractional derivatives

in time appears, see [7, 16, 19, 20]).



SECOND ORDER p-EVOLUTION EQUATIONS WITH CRITICAL NONLINEARITY 267

The results available in literature allow to understand how the interplay of different

terms in the left-hand side of the equation influences the critical exponent pc. It is well

known that the critical exponent for the wave equation, that is problem (1) with σ = 1,

is the Strauss exponent (see [32, 35, 36, 39, 40, 49, 52, 59, 61]), defined as the solution to

the quadratic equation

(p− 1)

(
n− 1

2
+

1

p

)
= 2.

Strauss exponent is not determined by scaling arguments. Adding a damping term, like

in (9), can deeply influence the critical exponent. Already in [44], A. Matsumura proved

the existence of small data global-in-time solutions to the classical damped wave equation

(σ = 1 and θ = 0 in (9)) in the supercritical case p > 1+2/n in space dimension n = 1, 2.

This result has been extended to any space dimension n ≥ 3 in [55] (see also [38]), and

the nonexistence counterpart has been proved in [60]. The exponent p = 1 + 2/n is

known as the Fujita exponent and it is the same critical power as that of the nonlinear

heat equation [31]. The classical damping ut produces a diffusion phenomenon, i.e., the

asymptotic profile of the solution to the corresponding linear problem can be described

by the solution to an heat equation with suitable initial data (see [43, 47, 58]). The

critical exponent remains the same if one replaces the constant damping ut by an effective

time-dependent damping b(t)ut (see [23, 41, 42]); however, adding a mass term m2(t)u

can affect the critical exponent [22, 33].

If the damping is effective (σ = 1 and θ ∈ (0, 1) in (9)) a double diffusion phenomenon

appears, that is the solution to (8) may be written as the sum of two terms, whose

asymptotic profiles as t → ∞ are described by the solutions to the two diffusion problems

[9]. As a consequence, the critical exponent is determined by a scaling argument related

to its diffusive profiles [12, 24], as it was for θ = 0 (though only one diffusive profile

appears for θ = 0), and it is of Fujita type, namely pc = 1 + 2/(n− θ).

The techniques related to the treat the nonlinearity as a perturbation for small initial

data often involves the use of appropriate decay estimates for the corresponding linear

problem. It is relatively easy to use energy methods based on L1−Hκ estimates to study

models with an effective damping, due to the diffusive structure. Those methods however

don’t work very well then the critical exponent is less than 2, due to the lack of Sobolev
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embeddings Hκ ↪→ Lp. The use of L1 − Lp estimates is therefore useful when pc < 2

(see [10, 46]; see [12] for σ > 1). The use of L1 − Lp estimates is particularly easy in

presence of two dissipative terms, an effective one and a non effective one, see [2, 6].

In the case of noneffective damping, when the oscillations are not canceled by the

diffusive structure, one may employ Fourier analysis and stationary phase methods to

obtain the L1−Lp estimates (6), with p ∈ (2,∞], at least in low space dimension (namely,

when d(1, p) ≤ 1). The decay in (6) cannot be derived by the Sobolev embeddings, as

for the wave equation and σ-evolution equations without damping. Therefore, for the

nonlinear models related to those equations, L1 − Lp estimates (6) are also interesting

when pc ≥ 2.

2. The critical nonlinearity

Our purpose is to obtain a sharp condition on the nonlinearity f(u) in (1): we consider

the critical case and we assume that there exists ε > 0 such that

(10) f(0) = 0, |f(u)− f(v)| ≤ C |u− v| (|u|+ |v|)pc−1 µ(|u|+ |v|)

for |u| ≤ ε and |v| ≤ ε, where pc is the critical exponent in (2), and µ is an increasing

function verifying the following integral condition:

(11)

∫ 2ε

0

µ(τ)

τ
dτ < ∞.

It is clear that if µ is continuous at τ = 0, then µ(0) = 0 as a consequence of (11).

Remark 2.1. If µ is C1 and 0 ≤ τµ′(τ) ≤ µ(τ) for τ ∈ [0, ε], then assumption (10) holds

for f(u) = |u|pcµ(|u|), provided that pc > 1. Indeed,

f(u)− f(v) =

∫ 1

0

∂ρf(v + ρ(u− v)) dρ = (u− v)

∫ 1

0

f ′(v + ρ(u− v)) dρ,

so that

|f(u)− f(v)| ≤ |u− v|
∫ 1

0

|f ′(v + ρ(u− v))| dρ

≤ |u− v| (pc + 1)

∫ 1

0

|v + ρ(u− v)|pc−1 µ(|v + ρ(u− v)|) dρ

≤ |u− v| (pc + 1) (|u|+ |v|)pc−1 µ(|u|+ |v|).
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This idea to use µ(|u|) to provide sharp conditions for the global existence of small data

solutions, has been originally developed in [28] for the classical damped wave equation

(see also [26]).

In particular, the integral condition in (11) allows us to obtain

(12)

∫ ∞

0

(1 + s)−1 µ(c(1 + s)−a) ds =

∫ ∞

1

s−1 µ(cs−a) ds =
1

a

∫ c

0

τ−1 µ(τ) dτ,

for any a > 0, where we used the change of variable 1+s 7→ s first and τ = cs−a later. The

latter integral is finite for c ≤ 2ε, thanks to (11). Estimate (12) will be crucial to prove

the contraction argument which leads to the existence of the global small data solution

to (1) and (9). It replaces a classical argument used to apply the contraction mapping

principle for nonlinear problems which goes back (at least) to [50].

The integral condition (11) on µ is optimal, in the sense that if (11) is not satisfied, then

any solution to (1) and (9), with f(u) = |u|pcµ(|u|), blows up in finite time, under suit-

able sign assumptions on the initial data. This latter result can be proved following the

approach used in [28], and it will be included in a forthcoming paper, concerning nonex-

istence results for more general nonlinear evolution equations with Fujita type critical

exponent, with nonlinearities f satisfying conditions similar to (10).

Example 2.1. We recall that any function µ ∈ C([0,∞), increasing and concave, with

µ(0) = 0 is also called modulus of continuity. As an example, (11) is verified for a modulus

of continuity defined for a sufficiently small τ by (− log τ)−γ, and, more in general, by

µ(s) =
(
− log τ

)−1(
log(− log τ)

)−1

· · ·
(
log[k](− log τ)

)−γ

, k ∈ N,

where log[k] denotes the composition of k log, if, and only if, γ > 1.

In the following we state our main result about the global existence of small data

solutions for problems (1) and (9), with f as in (10), assuming space dimension n < 2σ;

for problem (9), thanks to the presence of the damping, we can prove a similar result in

higher space dimension, following as in [14].

Theorem 2.1. Assume that 1 < σ < n < 2σ. Then, there exists ε1 > 0 such that for any

u1 ∈ L1 ∩ L2, with ∥u1∥L1∩L2 < ε1,
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where ∥ · ∥L1∩L2 = ∥ · ∥L1 + ∥ · ∥L2, there exists a uniquely determined solution

u ∈ C([0,∞), Hσ) ∩ C1([0,∞), L2),

to (1) and (9) with θ ∈ [1, 2], with f as in (10) and µ satisfying (11). Moreover, the

solution satisfies the estimate

(13) ∥u(t, ·)∥Lp ≤ C(1 + t)1−
n
σ
(1− 1

p
) ∥u1∥L1∩L2 , ∀p ∈ [2,∞],

and the energy estimate

E(t) = ∥ut(t, ·)∥2L2 + ∥A
1
2u(t, ·)∥2L2 ≤ C ∥u1∥2L1∩L2 .

In the case θ = 1, Theorem 2.1 may be easily extended to any space dimension n. In

particular, when n ≥ 2σ, we assume small initial data in L1 ∩ L
n
σ and we construct the

solution in the space u ∈ C([0,∞), L1 ∩ Hσ ∩ L∞) ∩ C1([0,∞), L2). The property that

u(t, ·) ∈ L∞ is particularly useful to deal with µ in (10).

Theorem 2.2. Assume that σ ≥ 1 and n ≥ 2σ. Then, there exists ε1 > 0 such that for

any

u1 ∈ L1 ∩ L
n
σ , with ∥u1∥L1∩L

n
σ
< ε1,

where ∥ · ∥
L1∩L

n
σ
= ∥ · ∥L1 + ∥ · ∥

L
n
σ
, there exists a uniquely determined solution

u ∈ C([0,∞), L1 ∩Hσ ∩ L∞) ∩ C1([0,∞), L2),

to (9) with θ = 1, with f as in (10) and µ satisfying (11). Moreover, the solution satisfies

the estimate

(14) ∥u(t, ·)∥Lp ≤ C(1 + t)1−
n
σ
(1− 1

p
) ∥u1∥L1∩L

n
σ
, ∀p ∈ [1,∞],

and the energy estimate

E(t) = ∥ut(t, ·)∥2L2 + ∥A
1
2u(t, ·)∥2L2 ≤ C (1 + t)−

n
σ ∥u1∥2L1∩L

n
σ
.

In a forthcoming paper, the authors will investigate the possibility to assume condi-

tion (10) in presence of a nonlinear memory term for which the critical exponent is not

obtained by scaling arguments (see [1], see also [3, 4, 8, 18, 25, 30, 34]).
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3. Proof of Theorem 2.1

For a given R > 0, we introduce the solution space

X = {u ∈ C([0,∞), Hσ) ∩ C1([0,∞), L2) : ∥u∥X ≤ R}, where

∥u∥X = sup
s∈[0,∞)

{
(1 + s)−1+ n

2σ ∥u(s, ·)∥L2 + (1 + s)−1+n
σ ∥u(s, ·)∥L∞ + ∥(ut, A

1
2u)(t, ·)∥L2

}
.

In [29], it is proved that when σ > 1 and n < 2σ in (4), the estimate

(15) ∥u(t, ·)∥Lp ≤ C (1 + t)1−
n
σ (1−

1
p) ∥u1∥L1∩L2 ,

holds for any p ∈ [2,∞] (the L2 assumption for the data is used to avoid singular power

as t → 0, since Hσ ↪→ Lp for any p ∈ [2,∞], thanks to the assumption n < 2σ). Under

the same assumptions, in [13] it is proved that the solution to (8) also verifies (15). It

is also clear that E(t) = E(0) for the solution to (4), and E(t) ≤ E(0) for the solution

to (8).

Let K = K(t, ·) be the fundamental solution to (4) or (8). Thanks to (15) and to the

energy estimate E(t) ≤ E(0) = ∥u1∥2L2 , we find

(16) ∥u lin ∥X ≤ C1∥u1∥L1∩L2 , where u lin (t, x) = K(t, ·) ∗(x) u1

is the solution to the linear problem (4) or (8), for some constant C1 > 0 independent on

u1. A function u ∈ X is a solution to (1) or (9) if, and only if, it satisfies

(17) u(t, x) = u lin (t, x) + Fu(t, x), in X,

where F is the nonlinear integral operator defined by

Fu(t, x) =

∫ t

0

K(t− s, ·) ∗(x) f(u(s, ·)) ds.

We will prove that there exists C2 > 0 such that

(18) ∥Fu− Fv∥X ≤ C2∥u− v∥X(∥u∥pc−1
X + ∥v∥pc−1

X ),

for any u, v ∈ X. Due to the definition of ∥·∥X , for any u ∈ X and s ≥ 0 we may estimate

∥u(s, ·)∥L2 ≤ (1 + s)1−
n
2σ ∥u∥X ,

∥u(s, ·)∥L∞ ≤ (1 + s)1−
n
σ ∥u∥X ,
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so that, by interpolation, we get

(19) ∥u(s, ·)∥Lp ≤ (1 + s)1−
n
σ (1−

1
p)∥u∥X , p ∈ [2,∞].

Thanks to (15), for any u, v ∈ X and p ∈ [2,∞], we may estimate

∥(Fu− Fv)(t, ·)∥Lp ≤ C

∫ t

0

(1 + t− s)1−
n
σ (1−

1
p)∥f(u(s, ·))− f(v(s, ·))∥L1∩L2 ds.

Let us assume that R ≤ ε, so that for any u ∈ X, it holds

|u(s, x)| ≤ ∥u(s, ·)∥L∞ ≤ (1 + s)1−
n
σ ∥u∥X ≤ R ≤ ε,

due to n > σ. We first consider ∥f(u(s, ·))− f(v(s, ·))∥L1 . Using (10), we get

∥f(u(s, ·))− f(v(s, ·))∥L1 ≤ ∥(u− v)(s, ·) (|u|+ |v|)pc−1(s, ·)∥L1 ∥µ((|u|+ |v|)(s, ·))∥L∞ .

By Hölder inequality, using (19) with p = pc (we stress that pc > 3 ≥ 2, due to n < 2σ,

so that we may use (19)), the first term may be estimated by

∥(u− v)(s, ·) (|u|+ |v|)pc−1(s, ·)∥L1 ≤ ∥(u− v)(s, ·)∥Lpc ∥(|u|+ |v|)pc−1(s, ·)∥Lp′c

≤ C (1 + s)−1 ∥u− v∥X
(
∥u∥pc−1

X + ∥v∥pc−1
X

)
,

due to the equality

pc

(
1− n

σ

(
1− 1

pc

))
= −1.

On the other hand, using (19) with p = ∞, and recalling that µ is increasing, we may

estimate

∥µ((|u|+ |v|)(s, ·))∥L∞ ≤ µ((∥u∥X + ∥v∥X) (1 + s)1−
n
σ ) ≤ µ(2R (1 + s)1−

n
σ ).

We now estimate

I1(t) =

∫ t

0

(1 + t− s)1−
n
σ
(1− 1

p
) (1 + s)−1 µ(2R (1 + s)1−

n
σ ) ds.

We split the integral in two parts. On the one hand,∫ t

t/2

. . . ds ≤ µ(2R) (1 + t/2)−1

∫ t

t/2

(1 + t− s)1−
n
σ
(1− 1

p
) ds

≤ C µ(2R) (1 + t/2)−1 (1 + t)2−
n
σ
(1− 1

p
) ≤ C ′ (1 + t)1−

n
σ
(1− 1

p
).
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On the other hand, using again that R ≤ ε, thanks to (12), we get∫ t/2

0

. . . ds ≤ (1 + t/2)1−
n
σ
(1− 1

p
)

∫ t/2

0

(1 + s)−1 µ(2R (1 + s)1−
n
σ ) ds

≤ C ′t1−
n
σ
(1− 1

p
)

∫ ∞

0

(1 + s)−1 µ(2R (1 + s)1−
n
σ ) ds = C ′′ (1 + t)1−

n
σ
(1− 1

p
) .

Summarizing,

I1(t) ≤ C (1 + t)1−
n
σ (1−

1
p).

Now we consider ∥f(u(s, ·))− f(v(s, ·))∥L2 . Using (10), we get

∥f(u(s, ·))− f(v(s, ·))∥L2 ≤ ∥(u− v)(s, ·) (|u|+ |v|)pc−1(s, ·)∥L2 ∥µ((|u|+ |v|)(s, ·))∥L∞ .

By Hölder inequality, using (19) with p = 2pc, the first term may be estimated by

∥(u− v)(s, ·) (|u|+ |v|)pc−1(s, ·)∥L2 ≤ ∥(u− v)(s, ·)∥L2pc ∥(|u|+ |v|)pc−1(s, ·)∥L(2pc)′

≤ C (1 + s)−1− n
2σ ∥u− v∥X

(
∥u∥pc−1

X + ∥v∥pc−1
X

)
,

since

pc

(
1− n

σ

(
1− 1

2pc

))
= −1− n

2σ
.

Now it is not necessary to employ (11) and split the integral in two parts, since

I2(t) = µ(2R)

∫ t

0

(1 + t− s)1−
n
σ
(1− 1

p
)(1 + s)−1− n

2σ ds ≤ µ(2R)C (1 + t)1−
n
σ (1−

1
p),

due to

−1− n

2σ
< −1 < 1− n

σ

(
1− 1

p

)
.

This concludes the proof of the desired estimate

∥(Fu− Fv)(t, ·)∥Lp ≤ C (1 + t)1−
n
σ
(1− 1

p
) ∥u− v∥X

(
∥u∥pc−1

X + ∥v∥pc−1
X

)
,

for any p ∈ [2,∞]. Now we consider the energy estimate. In this case,

∥(∂t, A
1
2 )(Fu− Fv)(t, ·)∥L2 ≤ C

∫ t

0

∥f(u(s, ·))− f(v(s, ·))∥L2 ds.

Again, it is not necessary to employ (11) and split the integral in two parts, since

µ(2R)

∫ t

0

(1 + s)−1− n
2σ ds ≤ µ(2R)

∫ ∞

0

(1 + s)−1− n
2σ ds = C.
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This concludes the proof of the desired estimate

∥(∂t, A
1
2 )(Fu− Fv)(t, ·)∥L2 ≤ C ∥u− v∥X

(
∥u∥pc−1

X + ∥v∥pc−1
X

)
.

Therefore, we proved (18). The proof of the small data global existence now follows from

a classic contraction argument. We define

R = 2C1 ∥u1∥L1∩L2 ,

where C1 is as in (16). For sufficiently small R, we get 2C2R
pc−1 ≤ 1/2, where C2 is as

in (18). Namely, we assume ε1 sufficiently small to obtain the desired smallness of R.

By (16) and (18), it follows that the operator u lin (t, x) + F maps X into itself. Due

to (18), it is a contraction.

For any arbitrarily large T > 0, we may replace X by X(T ), where

X(T ) = {u ∈ C([0, T ], Hσ) ∩ C1([0, T ], L2) : ∥u∥X(T ) ≤ R},

and ∥ · ∥X(T ) is as ∥ · ∥X , but supt∈[0,∞) is replaced by maxt∈[0,T ]. Since X(T ) is a Banach

space, there is a unique fixed point for u lin (t, x) + F in X(T ), that is, a unique solution

to (17) in X(T ). Being T arbitrary, we find a unique solution in X. Moreover,

∥u∥X ≤ R = 2C1 ∥u1∥L1∩L2 ,

so that we get estimate (13) and the energy estimate E(t) ≤ C ∥u1∥L1∩L2 .

This concludes the proof.

4. Proof of Theorem 2.2

For a given R > 0, we introduce the solution space

X = {u ∈ C([0,∞), L1 ∩Hσ ∩ L∞) ∩ C1([0,∞), L2) : ∥u∥X ≤ R} where

∥u∥X = sup
s∈[0,∞)

{
(1 + s)−1∥u(s, ·)∥L1 + (1 + s)−1+n

σ ∥u(s, ·)∥L∞ + (1 + s)
n
2σ ∥(ut, A

1
2u)(t, ·)∥L2

}
.

It is easy to check that, thanks to the homogeneity, the solution to (8) with θ = 1 satisfies

the following estimate (see, for instance, [5, 27]):

(20) ∥u(t, ·)∥Lp ≤ C t1−
n
σ (

1
q
− 1

p) ∥u1∥Lq , 1 ≤ q ≤ p ≤ ∞,
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from which one easily derive the desired estimate for u lin (the assumption L
n
σ for the

initial data guarantees that the L∞ estimate is not singular as t → 0):

∥u lin (t, ·)∥L1 ≤ C t ∥u1∥L1 ,

∥u lin (t, ·)∥L∞ ≤ C (1 + t)1−
n
σ (1−

1
p) ∥u1∥L1∩L

n
σ
.

Moreover,

(21) ∥(∂t, A
1
2 )u(t, ·)∥L2 ≤ C (1 + t)−

n
2σ ∥u1∥L1∩L2 .

Following the proof of Theorem 2.1, now (16) is replaced by

(22) ∥u lin ∥X ≤ C1∥u1∥L1∩L
n
σ
,

and for any u ∈ X and s ≥ 0 we may estimate

(23) ∥u(s, ·)∥Lp ≤ (1 + s)1−
n
σ (1−

1
p)∥u∥X , p ∈ [1,∞].

We now employ a slightly different approach with respect to the one employed in Theo-

rem 2.1 to estimate ∥(Fu− Fv)(t, ·)∥Lp .

First assume that t ≥ 2. Inside the integral term in F , we use estimate L1−Lp estimate

(q = 1 in (20)) for s ∈ [0, t/2] and Lp − Lp estimate (q = p in (20)) for s ∈ [t/2, t]. For

the first term, we use that

∫ t/2

0

(t− s)1−
n
σ (1−

1
p)∥f(u(s, ·))− f(v(s, ·))∥L1 ds

≤ (t/2)1−
n
σ

∫ t/2

0

∥f(u(s, ·))− f(v(s, ·))∥L1 ds,

then we estimate the latter integral by a constant as in the proof of Theorem 2.1, assuming

that R ≤ ε. We stress that it is not necessary to verify that pc ≥ 2, since (23) holds for

any p ≥ 1. For the second term, we use (20) to get

∥f(u(s, ·))− f(v(s, ·))∥Lp ≤ C µ(2R) (1 + s)−1−n
σ (1−

1
p) ∥u− v∥X

(
∥u∥pc−1

X + ∥v∥pc−1
X

)
,
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so that ∫ t

t/2

(t− s) ∥f(u(s, ·))− f(v(s, ·))∥Lp ds

≤ C (1 + t)−1−n
σ (1−

1
p)

∫ t

t/2

(t− s) ds ∥u− v∥X
(
∥u∥pc−1

X + ∥v∥pc−1
X

)
≤ C (1 + t)1−

n
σ (1−

1
p)∥u− v∥X

(
∥u∥pc−1

X + ∥v∥pc−1
X

)
For t ∈ [0, 2], we use Lp − Lp estimates in the whole integral to get the obvious estimate∫ 2

0

(t− s) ∥f(u(s, ·))− f(v(s, ·))∥Lp ds ≤ C ∥u− v∥X
(
∥u∥pc−1

X + ∥v∥pc−1
X

)
.

We proceed in a similar way for the energy, using

∥(∂t, A
1
2 )(f(u(t, ·))− f(v(t, ·)))∥L2 ≤

∫ t/2

0

(t− s)−
n
2σ ∥(f(u(s, ·))− f(v(s, ·)))∥L1ds

+

∫ t

t/2

∥(f(u(s, ·))− f(v(s, ·)))∥L2ds.

This concludes the proof of (18). The end of the proof is as in the proof of Theorem 2.1.
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[37] L. Hörmander. Estimates for translation invariant operators in Lp spaces. Acta Mathematica, 104

(1960) 93-140.

[38] R. Ikehata, K. Tanizawa, Global existence of solutions for semilinear damped wave equations in RN

with noncompactly supported initial data. Nonlinear Anal., 61 (2005) 1189–1208.

[39] H. Jiao, Z. Zhou. An elementary proof of the blow-up for semilinear wave equation in high space

dimensions. J.Differential Equations, 189 (2003) 355–365.

[40] F. John. Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta

Math., 28 (1979) 235–268.

[41] J. Lin, K. Nishihara, J. Zhai. Critical exponent for the semilinear wave equation with time-dependent

damping. Discrete and Continuous Dynamical Systems, 32 (2012) 4307-4320.

[42] K. Nishihara. Asymptotic behavior of solutions to the semilinear wave equation with time-dependent

damping. Tokyo J. of Math., 34 (2011) 327-343.

[43] P. Marcati, K. Nishihara. The Lp − Lq estimates of solutions to one-dimensional damped wave

equations and their application to the compressible flow through porous media. J. Differ. Equ., 191

(2003) 445–469.

[44] A. Matsumura. On the asymptotic behavior of solutions of semi-linear wave equations. Publ. Res.

Inst. Math. Sci., 12 (1976) 169–189.

[45] A. Miyachi. On some singular Fourier multiplier. Journal of the Faculty of Science, the University

of Tokyo. Sect. 1 A, Mathematics, 28 (1981) 267-315.

[46] T. Narazaki. Lp − Lq estimates for damped wave equations and their applications to semilinear

problem. J. Math. Soc. Japan, 56 (2004) 586-626.

[47] K. Nishihara. Lp −Lq estimates for solutions to the damped wave equations in 3-dimensional space

and their applications. Math. Z., 244 (2003) 631-649.

[48] J. Peral. Lp estimates for the Wave Equation. J. Funct. Anal., 36 (1980) 114-145.



280 MARCELLO D’ABBICCO AND GIOVANNI GIRARDI

[49] J. Schaeffer. The equation utt − ∆u = |u|p for the critical value of p. Proc. Roy. Soc. Edinburgh

Sect. A, 101 (1985) 31–44.

[50] I.E. Segal. Quantization and dispersion for nonlinear relativistic equations. Mathematical Theory

of Elementary Particles, M. I. T. Press, Cambridge, Mass., 1966, 79-108.

[51] Y. Shibata. On the rate of decay of solutions to linear viscoelastic equation. Math. Meth. Appl. Sci.,

23 (2000) 203-226.

[52] T.C. Sideris. Nonexistence of global solutions to semilinear wave equations in high dimensions. J.

Differential Equations, 52 (1984) 378–406.
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