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Abstract. We present recent results regarding the regularity theory for degenerate sec-

ond order differential operators of Kolmogorov-type. In particular, we focus on Schauder

estimates for classical solutions to Kolmogorov equations in non-divergence form with

Dini-continuous coefficients obtained in [30] in collaboration with S. Polidoro and B.

Stroffolini. Furthermore, we discuss new pointwise regularity results and a Taylor- type

expansion up to second order with estimate of the rest in Lp norm, following the recent

paper [14] in collaboration with E. Ipocoana. The proofs of both results are based on a

blow-up technique.

Sunto. Vengono presentati alcuni risultati recenti riguardanti la teoria della regolarità

per operatori differenziali degeneri del secondo ordine di tipo Kolmogorov. In particolare,

concentreremo la nostra attenzione su stime di tipo Schauder per soluzioni classiche

di equazioni di Kolmogorov in forma di non divergenza con coefficienti Dini continui

ottenute in [30] in collaborazione con S. Polidoro e B. Stroffolini. Inoltre, discuteremo

nuovi risultati di regolarità puntuale e uno sviluppo in serie di tipo Taylor con stima

del resto in norma Lp, seguendo il recente articolo [14] ottenuto in collaborazione con

E. Ipocoana. Le dimostrazioni di entrambi i risultati si basano su una tecnica di tipo

blow-up.
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1. Introduction

In this note, we present the recent results obtained in [14, 30] about the local regularity

of solutions to the second order linear differential equation

(1.1) L u :=

m0∑
i,j=1

aij(x, t)∂
2
xixj

u+
N∑

i,j=1

bijxj∂xi
u− ∂tu = f,

where z = (x, t) = (x1, . . . , xN , t) ∈ RN+1 and 1 ≤ m0 ≤ N . Furthermore, matrices

A = (aij(x, t))i,j=1,...,m0 and B = (bij)i,j=1,...,N satisfy the following structural assumptions.

(H1) For every (x, t) ∈ RN+1, the matrix A(x, t) is symmetric and satisfies

λ|ξ|2 ≤
m0∑

i,j=1

aij(x, t)ξiξj ≤ Λ|ξ|2, ∀ξ ∈ Rm0

for some positive constants λ, Λ. The matrix B has constant entries.

We observe that, despite the degeneracy of L when m0 < N , its first order part might

induce a strong regularizing property. Indeed, it is known that, under suitable structural

assumptions on the matrix B (see (1.3) below), the operator obtained from L by freezing

the coefficients of A at some point (x0, t0) ∈ RN+1, i.e.

L0u :=

m0∑
i,j=1

aij(x0, t0)∂
2
xixj

u+
N∑

i,j=1

bijxj∂xi
u− ∂tu,(1.2)

is hypoelliptic, meaning that every distributional solution u to L0u = f defined in some

open set Ω ⊂ RN+1 belongs to C∞(Ω) and it is a classical solution whenever f ∈ C∞(Ω).

Hence, in the sequel, we rely on the following assumption.

(H2) The constant coefficients operator L0 in (1.2) is hypoelliptic and homogeneous of

degree 2 with respect to the family of dilations (δr)r>0 introduced in (1.8).

We remark that, if L0 is uniformly parabolic (i.e. m0 = N and B ≡ O), then assump-

tion (H2) is clearly satisfied, as in this case L0 is simply the heat operator. However,

in this note we are mainly interested in the genuinely degenerate setting. Moreover, [16,

Propositions 2.1 and 2.2] imply that assumption (H2) is equivalent to assume there exists
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a basis of RN with respect to which B takes the form

(1.3) B =



O O . . . O O

B1 O . . . O O

O B2 . . . O O
...

...
. . .

...
...

O O . . . Bκ O


,

where every Bj is a mj ×mj−1 matrix of rank mj, with j = 1, 2, . . . , κ,

m0 ≥ m1 ≥ . . . ≥ mκ ≥ 1 and
κ∑

j=0

mj = N.

Thus, in the sequel we shall always assume that B has the canonical form (1.3). When B

takes the form (1.3), the constant coefficients operator L0 in (1.2) belongs to the family

of hypoelliptic operators considered by Hörmander in his famous work [12]. To justify

this fact, let us set

Xi :=

m0∑
j=1

āij∂xi
, i = 1, . . . ,m0, Y :=

N∑
i,j=1

bijxj∂xi
− ∂t = ⟨Bx,D⟩ − ∂t,

whereA1/2 = (āij)i,j=1,...,m0
is a symmetric and positive constant matrix such thatA(x0, t0) =

A1/2A1/2, while ⟨·, ·⟩ and D denote the inner product and the gradient in RN , respectively.

Then operator L can be written as

L =

m0∑
i=1

X2
i + Y

and its hypoellipticity can be read in terms of the Hörmander’s condition (see [12])

rank Lie (X1, . . . , Xm0 , Y ) (x, t) = N + 1, ∀ (x, t) ∈ RN+1.

Here and in the sequel, Y u will be understood as the Lie derivative

(1.4) Y u(x, t) := lim
s→0

u(exp(sB)x, t− s)− u(x, t)

s
.

Moreover, as it is customary in the heat operator framework, we regard the time derivative,

here generalized by the Lie derivative Y in (1.4), as a second order operator.
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Degenerate operators like the one in (1.1) have applications in research areas as diverse

as kinetic theory, probability theory and finance. The simplest equation of the kind (1.1)

was introduced by Kolmogorov [15] in the following form

(1.5) K u :=

m0∑
j=1

∂2
xj
u−

m0∑
j=1

xj∂xm0+j
u− ∂tu = ∆vu− ⟨v,Dy⟩u− ∂tu = 0

to describe the density u of particles having position y ∈ Rm0 and velocity v ∈ Rm0 at time

t. We observe that operator K can be written in the form (1.1) with κ = 1,m1 = m0,

and

A =

Im0 O

O O

 , B =

 O O

−Im0 O


where Im0 denotes the m0 × m0 identity matrix. Equation (1.5) is usually referred to

as kinetic Kolmogorov equation or frictionless Fokker-Planck equation in the kinetic lit-

erature. It is derived from Langevin dynamics, as it is the partial differential equation

satisfied by the transition density of the stochastic process solving dPt =
√
2 dWt,

dYt = Pt dt,

where (Wt)t≥0 denotes an m0−dimensional Wiener process. Equations of the form (1.1)

arise in mathematical finance as well. In particular, the following linear equation

S2∂SSV + log(S)∂AV + ∂tV = 0, (S,A, t) ∈ R+ × R×]0, T [

appears in the Black & Scholes theory when considering the problem of the pricing of

geometric average asian options, and takes the form (1.5) as we change the variable

(S,A, t) = (ex, y, T − t). For the applications of operators in the form L to finance and

to stochastic theory we refer the interested reader to the monograph [29] by Pascucci.

We eventually refer to the survey articles [2, 1] for a more exhaustive description of the

mathematical properties of Kolmogorov operators and of their applications, in the context

of classical and weak solutions, respectively.
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The aim of this paper is to extend a fundamental result of the classical regularity theory,

namely Schauder estimates, meaning that we want to quantify the gain of regularity

stemming from the equation. More precisely, we aim at establishing the regularity of the

second order derivatives involved in equation (1.1) under very mild regularity assumptions

on the right-hand side f . The precise statements of the estimates proved in [14, 30] will

be given in Theorem 2.1 and Theorem 3.1, after introducing the needed objects coming

into play. Moreover, as the proofs of both results rely on a blow-up argument, we will

explain the core idea of the argument in the forthcoming sections.

1.1. Lie Group invariance. In this subsection, we focus on the non-Euclidean structure

associated to hypoelliptic Kolmogorov operators of the form (1.2). Indeed, it is known that

the natural geometry when studying operator L0 is determined by a suitable homogeneous

Lie group structure on RN+1. More precisely, as first observed by Lanconelli and Polidoro

in [16], operator L0 is invariant with respect to left translation in the groupK = (RN+1, ◦),

where the group law is defined by

(1.6) (x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t+ τ), (x, t), (ξ, τ) ∈ RN+1,

and

(1.7) E(s) = exp(−sB), s ∈ R.

Then K is a non-commutative group with zero element (0, 0) and inverse

(x, t)−1 = (−E(−t)x,−t).

For a given ζ ∈ RN+1 we denote by ℓζ the left traslation on K = (RN+1, ◦) defined as

follows

ℓζ : RN+1 → RN+1, ℓζ(z) = ζ ◦ z.

Then operator L0 is left invariant with respect to the Lie product ◦, i.e.

L0 ◦ ℓζ = ℓζ ◦ L0 or, equivalently, L0 (u(ζ ◦ z)) = (L0u) (ζ ◦ z) ,

for every u sufficiently smooth.
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Another remarkable property of operator L0 is its dilation invariance. More precisely,

the second assertion in assumption (H2) reads as follows

L0 (u ◦ δr) = r2δr (L0u) , for every r > 0,

where δr denotes the family of dilations

(1.8) δr := diag(rIm0 , r
3Im1 , . . . , r

2κ+1Imκ , r
2), r > 0.

The homogeneous dimension of RN+1 with respect to (δr)r>0 is the integer Q+2, where

Q is the so called spatial homogeneous dimension of RN+1, namely

(1.9) Q := m+ 3m1 + . . .+ (2κ+ 1)mκ.

Owing to (1.8), we recall the notion of homogeneous function in a homogeneous group.

Definition 1.1. We say that a function u defined on RN+1 is homogeneous of degree

α ∈ R if

u(δr(z)) = rαu(z) for every z ∈ RN+1.

We next introduce a homogeneous norm of degree 1 with respect to the dilations (δr)r>0

and a corresponding quasi-distance which is invariant with respect to the group operation

in (1.6). We first rewrite the matrix δr with the equivalent notation

(1.10) δr := diag(rα1 , . . . , rαN , r2),

where α1, . . . , αm0 = 1, αm0+1, . . . , αm0+m1 = 3, αN−mκ , . . . , αN = 2κ+ 1.

Definition 1.2. For every (x, t) ∈ RN+1 we set

(1.11) ∥(x, t)∥K = |t|
1
2 + |x|, |x|K =

N∑
j=1

|xj|
1
αj

where the exponents αj, for j = 1, . . . , N , were introduced in (1.10)

Owing to (1.11), we now definde the quasi-distance dK by setting

(1.12) dK((x, t), (ξ, τ)) := ∥(ξ, τ)−1 ◦ (x, t)∥K, (x, t), (ξ, τ) ∈ RN+1.
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1.2. Outline of the paper. This paper is structured as follows. In Section 2 we first

introduce a new definition of Dini continuity naturally associated to the Lie Group struc-

ture that leaves operator (1.1) invariant. Furthermore, we present the Schauder estimates

contained in [30] and the blow-up technique we rely on, together with an intrinsic Taylor

formula for classical solutions to (1.1) under minimal regularity assumptions on u. Sec-

tion 3 is devoted to the results contained in [14] and to the presentation of some possible

further developments.

2. Dini continuity

In this section, we consider solutions to (1.1) with Dini continuous diffusion coefficients

and Dini continuous right-hand side. In this setting, we derive Schauder estimates that

extend the classical ones, where intrinsic Hölder continuous functions are considered.

Moreover, we establish an instrinsic Taylor formula for solutions to L u = f , which,

besides being a key step in proving our Schauder estimates, is of independent interest,

since it is derived under minimal regularity assumptions on u. In particular, we show

that, in order to be approximated by its intrinsic Taylor polynomial of degree 2, u needs

to satisfy the following requirements.

Definition 2.1. Let Ω be an open subset of RN+1. We say that a function u belongs

to C2
L (Ω) if u, its derivatives ∂xi

u, ∂xixj
u (i, j = 1, . . . ,m0) and the Lie derivative Y u

defined in (1.4) are continuous functions in Ω. We also require, for i = 1, . . . ,m0, that

(2.1) lim
s→0

∂xi
u(exp(sB)x, t− s)− ∂xi

u(x, t)

|s|1/2
= 0,

uniformly for every (x, t) ∈ K, where K is a compact set K ⊂ Ω.

Let f be a continuous function defined in Ω. We say that a function u is a classical

solution to L u = f in Ω if u belongs to C2
L (Ω), and the equation L u = f is satisfied at

every point of Ω.

In order to expose our main result concerning the regularity of the second order deriva-

tives in equation (1.1), we first need to introduce some preliminary notation. As a first
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step, we introduce the sets where our local results hold true. To this end, we take advan-

tage of the invariant structure of the constant coefficients operator L0 (see Subsection

1.1) in the study of the regularity of L . Indeed, this is a standard procedure in the study

of uniformly parabolic operators. In particular, owing to the quasi-distance introduced in

(1.12), we define the boxes

(2.2) Qr(x0, t0) := {(x, t) ∈ RN+1 | dK((x, t), (x0, t0)) < r}.

We now a provide a new definition of modulus of continuity and Dini continuity which

are suitable for operator L . More precisely, we define the modulus of continuity of a

function f defined on any set H ⊂ RN+1 as follows

(2.3) ωf (r) := sup
(x,t),(ξ,τ)∈H

dK((x,t),(ξ,τ))<r

|f(x, t)− f(ξ, τ)|.

Definition 2.2. A modulus of continuity ω is said Dini if it satisfies the following integral

condition ∫ 1

0

ω(r)

r
dr < +∞.

Accordingly, a function f is said to be Dini continuous in H if∫ 1

0

ωf (r)

r
dr < +∞.

Throughout this section, we assume that the diffusion coefficients aij’s are Dini contin-

uous functions in the sense of Definition 2.2 and, to simplify the notation, we write

(2.4) ωa(r) := max
i,j=1,...,m0

sup
(x,t),(ξ,τ)∈H

dK((x,t),(ξ,τ))<r

|aij(x, t)− aij(ξ, τ)|.

We are now in a position to state our main result.

Theorem 2.1 (See Theorem 1.7 in [30]). Let L be an operator in the form (1.1) satisfying

hypotheses (H1) and (H2). Let u ∈ C2
L (Q1(0, 0)) be a classical solution to L u = f .

Suppose that f and the coefficients aij, i, j = 1, . . . ,m0, are Dini continuous. Then for
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any points (x, t) and (ξ, τ) ∈ Q 1
2
(0, 0) the following holds:

|∂2u(x, t)− ∂2u(ξ, τ)| ≤c
(
d sup

Q1(0,0)

|u|+ d sup
Q1(0,0)

|f |+
∫ d

0

ωf (r)

r
dr + d

∫ 1

d

ωf (r)

r2
dr
)

+c

( m0∑
i,j=1

sup
Q1(0,0)

| ∂2
xixj

u|
)(∫ d

0

ωa(r)

r
dr + d

∫ 1

d

ωa(r)

r2
dr
)
.

where d = dK((x, t), (ξ, τ)) and ∂2 stands either for ∂2
xixj

,i, j = 1, . . . ,m0, or for Y .

Remark 2.1. We observe that Theorem 2.1 was derived in [30] under the less restrictive

assumption that operator L0 is only hypoelliptic and not dilation-invariant. However,

in order to provide a coherent presentation, we here restrict ourselves to the dilation-

invariant case and we refer the reader to [30] if interested in the more general case.

As observed above, in order to prove the Schauder estimates presented in Theorem 2.1,

we rely on an intrinsic Taylor formula that we derived for the first time in [30]. We recall

that the nth-order intrinsic Taylor polynomial of a function u (differentiable up to order

n) around the point z is defined as the unique polynomial function P n
z u of order n such

that

u(ζ)− P n
z u(ζ) = o(dK(ζ, z)

n) as ζ → z,

where dK denotes the quasi-distance defined in (1.12).

We are now in a position to state our result concerning the intrinsic second order Taylor

polynomial.

Theorem 2.2 (See Theorem 1.3 in [30]). Let L be an operator of the form (1.1) satisfying

hypothesis (H1) and (H2). Let Ω be an open subset of RN+1 and let u be a function in

C2
L (Ω). For every z := (x, t) ∈ Ω we define the second order Taylor polynomial of u

around z as

T 2
z u(ζ) := u(z) +

m0∑
i=1

∂xi
u(z)(ξi − xi)

+
1

2

m0∑
i,j=1

∂2
xixj

u(z)(ξi − xi)(ξj − xj)− Y u(z)(τ − t),

(2.5)
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for any ζ = (ξ, τ) ∈ Ω. Indeed, we have

u(ζ)− T 2
z u(ζ) = o(dK(ζ, z)

2) as ζ → z.(2.6)

2.1. Blow-up. The approach we follow in [30] to prove Theorem 2.1 has the advantage

of being quite elegant and relying on elementary properties of equation (1.1). For this

reason, we here outline the proof of our main result and we refer the reader to [30] for de-

tailed computation. We first remark that our proof of Theorem 2.1 is based on the method

introduced by Safonov in [32] for the parabolic case. The core idea of Safonov’s argument

was adopted by Wang [33] for the study of the Poisson equation with Dini continuous

right-hand side and by Imbert and Mouhot [13] for the study of kinetic Fokker–Planck

equations with Hölder continuous coefficients. As we also work under the assumption of

Dini continuity, we sketch the proof contained in [33] as a first step in the next para-

graph, and thereafter continue with an explanation of the necessary modifications that

we introduced in [30] for the study of our setting.

Specifically, Wang considered in [33] a solution u to the equation ∆u = f in some open

set Ω. Without loss of generality, he assumed that the unit ball B1(0) is contained in Ω

and he considered a sequence of Dirichlet problems defined as follows. We let Bk = Bϱk(0)

be the Euclidean ball centered at the origin and of radius ϱk, with ϱ = 1
2
, and we let uk

be the solution to the Dirichlet problem

∆uk = f(0), in Bk, uk = u in ∂Bk.

As uk is a solution to the equation with constant right-hand side, quantitative informa-

tion on the derivatives of every uk is obtained by means of elementary properties of the

Laplace equation, namely the weak maximum principle, and standard a priori estimates

of the derivatives, that are derived in [33] via mean value formulas. The bounds for the

derivatives of u are obtained as the limit of the analogous bounds for uk. The Taylor

expansion in this step is crucial to conclude the proof. More precisely, following Safonov’s

argument, the idea is to show that the oscillation of the remainder of the second-order

Taylor polynomial of the solution decays at rate ϱ2k in a ball of radius ϱk.
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In [30] we apply the method described above to the Kolmogorov operator L in (1.1), by

adapting Wang’s approach to the non-Euclidean structure defined in (1.6). In particular,

the ball Bϱk(0) is replaced by the box Qϱk(0, 0) defined in (2.2) through the dilation δϱk

in (1.8). Then our main objective is to estimate the quantity

|∂2u(z)− ∂2u(0)| ≤ |∂2uk(z)− ∂2uk(0)|+ |∂2uk(0)− ∂2u(0)|+ |∂2u(z)− ∂2uk(z)|

=: I1 + I2 + I3,

where z is a point sufficiently close to the origin and, as usual, ∂2 stands either for

∂2
xixj

,i, j = 1, . . . ,m0, or for Y . It is clear that terms I2 and I3 need to be estimated

similarly, as we are evaluating the functions u and uk at the same point. For this reason

we focus on I2 and, as a first step, we prove the following estimates, for i, j = 1, . . . ,m0,

∥u− uk∥∞ ≤ 4ϱ2k∥f − f(0)∥∞ ≤ 4ϱ2kωf (ϱ
k),(2.7)

∥∂2
xixj

(uk − uk+1)∥L∞(Qk+2) ≤ Cϱ−2k−4 sup
Qk+1

|uk − uk+1|,(2.8)

by means of a maximum principle (see [30, Lemma 5.1]) and a priori estimates for the

derivatives of a solution to (1.1) with right-hand side equal to 0 (see [30, Propositions

3.1 and 3.2]). We remark that, in contrast to [33], we proved the a priori estimates

contained in [30, Propositions 3.1 and 3.2] by taking advantage of representation formulas

and properties of the fundamental solution. Hence, we obtain

(2.9)
∞∑
l=k

|∂2ul(0)− ∂2ul+1(0)| ≤ C

∞∑
l=k

ωf (ϱ
l) ≤ C

∫ ∥z∥K

0

ωf (r)

r
dr.

Keeping in mind (2.9), we next identify the sum of the series
∑∞

l=k (∂
2ul(0)− ∂2ul+1(0))

as

(2.10)
∞∑
l=k

(
∂2ul(0)− ∂2ul+1(0)

)
= ∂2uk(0)− ∂2u(0).

To this end, for i, j = 1, . . . ,m0, we aim at proving

lim
k→+∞

∂2
xixj

uk(0) = ∂2
xixj

T 2
0 u(0),(2.11)
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where T 2
0 u(ζ) is the intrinsic second-order Taylor polynomial of u around the origin com-

puted at ζ = (ξ, τ) ∈ Qk, as defined in (2.5). We now observe that, in virtue of the very

definition of the Taylor polynomial in (2.5), the following holds true

L T 2
0 u(ζ) = L u(0) = f(0) = L uk(ζ)

and therefore T 2
0 u − uk is a solution to (1.1) with 0 right hand-side and we can apply

again the a priori estimates contained in [30, Propositions 3.1 and 3.2]. Furthermore,

from (2.6), it follows

sup
ζ∈Qk

|u− T 2
0 u| = o(ϱ2k).(2.12)

Estimates (2.12) and (2.8) finally yield

|∂2
xixj

(uk − T 2
0 u)(0)| ≤ Cϱ−2k sup

Qk

|uk − T 2
0 u|+O(ϱk) ≤ Cϱ−2ko(ϱ2k) +O(ϱk) = o(1),

where, as usual, the indexes i and j range from 1 to m0. Thus, for any i, j = 1, . . . ,m0

we have showed that (2.11) holds true. Repeating the same argument for the vector field

Y , and using again Theorem 2.2, we obtain

I2 ≤
∞∑
l=k

|∂2ul(0)− ∂2ul+1(0)| ≤ C

∫ ∥z∥K

0

ωf (r)

r
dr,

for k ≥ 1 such that ϱk+4 ≤ ∥z∥K ≤ ϱk+3. We now briefly explain how to take care of the

term I1. As in I1 we are evaluting u and uk in two different points, we take advantage of

a mean value formula, that we derived ad hoc in [30, Proposition 3.5], to obtain

|∂2
xixj

(uk+1 − uk)(z)− ∂2
xixj

(uk+1 − uk)(0)| ≤
C

ϱk
∥z∥K∥∂2

xixj
(uk+1 − uk)∥L∞(Qk+1)

≤ C∥z∥Kϱ−kωf (ϱ
k),

(2.13)

for i, j = 1, . . . ,m0. We observe that, in the passage from the first to the second line in

(2.13), we used once again (2.8). We repeat the same argument for the vector field Y and

we infer

|Y (uk+1 − uk)(z)− Y (uk+1 − uk)(0)| ≤
C

ϱk
∥z∥K∥Y (uk+1 − uk)∥L∞(Qk+1) ≤ C∥z∥Kϱ−kωf (ϱ

k).
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Hence, since uk(z) − uk(0) = u0(z) − u0(0) +
∑k−1

j=0 ((uj+1 − uj)(0)− (uj+1 − uj)(z)), we

have

I1 ≤ |∂2u0(z)− ∂2u0(0)|+
k−1∑
j=0

|∂2(uj+1 − uj)(z)− ∂2(uj+1 − uj)(0)|

≤ C∥z∥K
(
∥u0∥L∞(Q0) + C

k−1∑
j=0

ϱ−jωf (ϱ
j)
)

≤ C∥z∥K
(
∥u∥L∞(Q1(0)) + ∥f∥L∞(Q1(0)) + C

∫ 1

∥z∥K

ωf (r)

r2
)
.

These are the main steps of the blow-up technique, and for more specific details we refer

the reader to the proof of [30, Theorem 1.6].

2.2. Comparison with existing results. We compare our main findings with the cur-

rent literature on this subject. As in the parabolic case, the classical theory regarding

Schauder estimates for degenerate Kolmogorov operators is developed for spaces of Hölder

continuous functions. Since we rely on the non-Euclidean structure defined in (1.6), we

need to consider functions which are Hölder continuous with respect to the quasi-distance

in (1.12), i.e. functions which are Hölder continuous intrinsically. More precisely, we say

that a function f defined on H ⊂ RN+1 is Hölder continuous with respect to the distance

(1.12) if

(2.14) |f(x, t)− f(ξ, τ)| ≤ M dK((x, t), (ξ, τ))
α, for every (x, t), (ξ, τ) ∈ H,

for some constants M > 0 and α ∈ (0, 1]. In this case we write f ∈ C0,α
L (H) and we let

∥f∥C0,α
L (H) = sup

H
|f |+ inf

{
M ≥ 0 | (2.14) holds

}
.

When α < 1 we write Cα
L(H) instead of C0,α

L (H). Finally, in the same spirit of (2.4), we

set

∥a∥Cα
L(H) = max

i,j=1,...,m0

∥aij∥Cα
L(H).

Then, as a direct consequence of Theorem 2.1, we have the following corollary.
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Corollary 2.1. Let u ∈ C2
L (Q1(0, 0)) be a classical solution to L u = f . Suppose that f

and the coefficients aij’s, i, j = 1, . . . ,m0, belong to C0,α
L (Q1(0, 0)). Then for any points

(x, t) and (ξ, τ) ∈ Q 1
2
(0, 0) the following holds:

|∂2u(x, t)− ∂2u(ξ, τ)| ≤c dα
(

sup
Q1(0,0)

|u|+
∥f∥Cα

L(Q1(0,0))

α(1− α)

+

m0∑
i,j=1

sup
Q1(0,0)

| ∂2
xixj

u|
∥a∥Cα

L(Q1(0,0))

α(1− α)

)
, if α < 1,

|∂2u(x, t)− ∂2u(ξ, τ)| ≤c d

(
sup

Q1(0,0)

|u|+ ∥f∥C0,1
L (Q1(0,0))

| log d|

+

( m0∑
i,j=1

sup
Q1(0,0)

| ∂2
xixj

u|
)
∥a∥C0,1

L (Q1(0,0))
| log d|

)
, if α = 1.

We remark that, for α < 1, Corollary 2.1 restores the Schauder estimates previously

proved by Manfredini in [22, Theorem 1.4] for the dilation-invariant case, and then by

Di Francesco and Polidoro in [9, Theorem 1.3] for the not dilation-invariant case. We

also recall that Schauder estimates in the framework of semigroups have been proved by

Lunardi [21], Lorenzi [19], Priola [31]. Theorem 2.1 improves the ones contained in the

aforementioned papers in two directions. First of all, we weaken the regularity assumption

on f and on the coefficients aij’s. Second, we are able to establish Schauder estimates for

α = 1, extending the results of the aforementioned articles, where α < 1.

More recently, partial Schauder estimates for the second order derivatives of u, to-

gether with local Hölder continuity in the joint variables, were proved by Biagi and Bra-

manti in [4]. We also quote the recent paper [20] by Lucertini, Pagliarani and Pascucci,

where the authors established Schauder estimates for Kolmogorov equations with coef-

ficients that are Hölder continuous in space, and only measurable in time. As far as

Dini continuity assumptions are concerned, we recall that partial continuity estimates

on ∂2
xixj

u,i, j = 1, . . . ,m0, and Y u were proved in [5] by Biagi, Bramanti and Stroffolini

under the assumption that the coefficients aij’s and f are bounded and Dini continuous

in the spatial variables, but only measurable and bounded in time. Partial Schauder

estimates for degenerate Kolmogorov-Fokker-Planck operators with coefficients lying in
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suitable anisotropic Hölder spaces were studied also in the recent paper [7] by Chaudru

de Raynal, Honorè and Menozzi.

With regards to kinetic Schauder estimates, we recall that in the case of one commutator

and Hölder continuous coefficients and right-hand side, Imbert and Mouhot proved in [13]

Schauder estimates for linear kinetic Fokker– Planck equations, as well as well for a toy

nonlinear kinetic model. Schauder estimates for kinetic equations (and in particular for

linear kinetic Fokker-Planck equations in trace-form) were also obtained by Henderson

and Snelson in [11], where they are crucial in deriving a C∞-smoothing estimate for

the inhomogeneous Landau equation. Finally, we quote the recent paper [18] by Loher,

who established quantitative Schauder estimates for a general class of local hypoelliptic

operators and non-local kinetic equations, in either non-divergence or divergence form.

Concerning the Taylor expansion, we recall the results due to Bonfiglioli [6] and the

ones proved by Pagliarani, Pascucci and Pignotti [26] for dilation-invariant Kolmogorov

operators and subsequently by Pagliarani and Pignotti [27] for the corresponding not

dilation-invariant case. We emphasize that the authors of the above articles assume that

the second order derivatives of the function u are Hölder continuous, while we only require

that u belongs to the space C2
L (Ω) introduced in Definition 2.1. As the regularity of the

second order derivatives of u is the very subject of this chapter, we do not assume extra

conditions on them and we prove in Theorem 2.2 the Taylor approximation under the

minimal requirement that u ∈ C2
L (Ω). We eventually quote the very recent preprint [23]

by Manfredini, Pagliarani and Polidoro, where the authors proved an intrinsic Taylor

formula for non local kinetic Kolmogorov operators.

3. Pointwise estimates

In this section, we assume the coefficients aij’s to be constant but we relax the regularity

of the right-hand side, allowing it to be in Lp. Specifically, we study the pointwise

regularity of solutions u belonging to the Sobolev space Sp(Ω) (see Definition 3.1) to
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the following Cauchy problem

(3.1)

L0u = f in Q−
1

f ∈ Lp(Q−
1 ) and f(0) = 0,

where L0 is the operator defined in (1.2), 1 < p < ∞ and Q−
r = Br × (−r2, 0) is the

past cylinder defined through the open ball Br = {x ∈ RN : |x|K ≤ r}, with | · |K being

the semi-norm introduced in (1.11). Moreover, we suppose that the origin is a Lebesgue

point of f , so that we are able to define f(0) if necessary. In this setting, we show that

if the modulus of Lp-mean oscillation of f at the origin is Dini in the sense of Definition

2.2, then the origin is a Lebesgue point of continuity in Lp average for the second order

derivatives ∂2
xixj

u, i, j = 1, . . . ,m0, and the Lie derivative Y u (see Theorem 3.1 below).

In order to introduce the main results of [14], we define a class of polynomials that are

homogeneous of degree 2 with respect to the dilations in (1.8). According to Definition

1.1, it is clear that the polynomials which are homogeneous of degree two with respect

to dilation (1.8) are those of degree two in the first m0 spatial variables and one in time.

For this reason, it is natural to define the following class of polynomials, which will be

greatly used in the sequel. Namely,

P̃ = {P : polynomials of degree less or equal to two in x1, . . . , xm0

and less or equal to one in t} .(3.2)

(3.3) P : =
{
P ∈ P̃ : L0P = 0

}
.

(3.4) Pc : =
{
P ∈ P̃ : L0P = c

}
.

In particular, we take P∗ such that L0P∗ = 1 and set Pc = cP∗ + P .

We now give an appropriate definition of modulus of continuity. Indeed, the previous

results in literature, including the ones contained in the former section, were derived

assuming a modulus of continuity defined on some open set Q− ⊂ RN+1 (see (2.3)).
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On the other hand, we here introduce a pointwise modulus of mean oscillation.

To be more precise, following [14], for p ∈ (1,+∞), we define the following modulus of

Lp-mean oscillation for the function f at the origin as

(3.5) ω̃(f ; r) := inf
c∈R

( 1

|Q−
r |

∫
Q−

r

|f(x, t)− c|p
) 1

p
.

We now set

(3.6) Ñ(u; r) := inf
P∈P̃

( 1

rQ+2+2p

∫
Q−

r

|u− P |p
) 1

p
,

where Q is the homogeneous dimension defined in (1.9) and P̃ is the class of polynomials

introduced in (3.2). We observe that the exponent Q+2+2p in (3.6) is the one obtained

when comparing the Lp-norm of a polynomial P ∈ P̃ on a cylider of radius r and on the

unit cylider (see [14, Lemma 3.1]).

Owing to (3.5) and to [17], we let cr be the unique constant such that

ω̃(f ; r) = inf
c∈R

( 1

|Q−
r |

∫
Q−

r

|f(x, t)− c|p
) 1

p
=
( 1

|Q−
r |

∫
Q−

r

|f(x, t)− cr|p
) 1

p
.

If u is a solution of (3.1), we let

N̂(u, f ; r) = inf
P∈Pcr

( 1

rQ+2+2p

∫
Q−

r

|u− P |p
) 1

p
.

Moreover, for 0 < a < b, we define

N̂(u, f ; a, b) = sup
a≤ϱ≤b

N̂(u, f ; ϱ)

ω̃(f ; a, b) = sup
a≤ϱ≤b

ω̃(f ; ϱ)

In the sequel, we will also make use of the following notation. For a given λ ∈ (0, 1), we

set

N(r) = N̂(u, f ;λr, r),

ω(r) = ω̃(f ;λ2r, r).
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Before stating the main result of this section, Theorem 3.1, we eventually recall the

following definition.

Definition 3.1. For Ω open set in RN+1, p ∈ (1,+∞), we define the Sobolev space

Sp(Ω) = {u ∈ Lp(Ω) : ∂xi
u, ∂2

xixj
u, Y u ∈ Lp(Ω), i, j = 1, . . . ,m0}

and we set

∥u∥pSp(Ω) = ∥u∥pLp(Ω) +

m0∑
i=1

∥∂xi
u∥pLp(Ω) +

m0∑
i,j=1

∥∂2
xixj

u∥pLp(Ω) + ∥Y u∥pLp(Ω).

We are now in a position to state our main result concerning the pointwise regularity

of a solution to (3.1).

Theorem 3.1 (See Theorem 1.3 in [14]). Let p ∈ (1,∞). Then there exist constants

β, r∗ ∈ (0, 1], λ ∈ (0, 1) and C > 0, such that the following holds. If u ∈ Lp(Q−
1 ) satisfies

(3.1) with the associated ω̃ defined in (3.5), then we have

i) Pointwise BMO estimate

sup
r∈(0,1]

Ñ(u; r) ≤ C


(∫

Q−
1

|u|p
) 1

p

+

(∫
Q−

1

|f |p
) 1

p

+ sup
r∈(0,1]

ω̃(f ; r)

 .(3.7)

ii) Pointwise VMO estimate(
ω̃(f ; r) → 0 as r → 0+

)
⇒

(
Ñ(u; r) → 0 as r → 0+

)
.(3.8)

iii) Dini continuity of Ñ(u; ·)

If ω̃(f ; ·) is Dini in the sense of Definition 2.2, then Ñ(u; ·) is Dini. In particular,

for every ϱ ∈ (0, λ
4
), the following holds∫ 4ϱ

0

Ñ(u; r)

r
dr ≤

C

{(
4ϱ

λ

)β (
Ñ(u; 1) + ω̃(f ; 1)

)
+

∫ 4ϱ

0

ω̃(f ; r)

r
dr + ϱβ

∫ 1

4ϱ

ω̃(f ; r)

r1+β
dr

}
.

where C is a constant that does not depend on f , u and ϱ.
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iv) Pointwise control on the solution

Let ω̃(f ; ·) be Dini in the sense of Definition 2.2. Then there exists a unique

polynomial P0 ∈ P, namely a solution to equation L0P0 = 0, with

P0(x, t) = a+ ⟨b, x⟩+ 1

2
⟨cx, x⟩+ d t,

where b is a vector in RN such that bj = 0 when j > m and c is a N ×N matrix

such that cij = 0 when i > m ∨ j > m, such that for every r ∈ (0, r∗
4
] there holds

(
1

|Q−
r |

∫
Q−

r

∣∣∣∣∣u(x, t)− P0(x, t)

r2

∣∣∣∣∣
p) 1

p

≤ C

{
M̃0

(
4r

λ

)β

+

∫ 4r

0

ω̃(f ; s)

s
ds+ rβ

∫ 1

4r

ω̃(f ; s)

s1+β
ds

}
,

(3.9)

with

M̃0 =

∫ 1

0

ω̃(f ; s)

s
ds+

(∫
Q−

1

|u|p
) 1

p

+

(∫
Q−

1

|f |p
) 1

p

.

Moreover, we have

|a|+ |b|+ |c|+ |d| ≤ CM̃0.

3.1. Idea of the proof and comparison with previous results. The proof of The-

orem 3.1 is based on decay estimates, which we achieve by contradiction, blow-up and

compactness results. Local a priori estimates for functions in the Sobolev space Sp and

a Caccioppoli-type estimate which we obtained ad hoc for our problem (see [14, Lemma

2.3]) are also fundamental tools in proving Theorem 3.1. However, the proof of Theorem

3.1 is very technical and therefore we here omit the details. We refer the reader to [14,

Section 3] for complete computation. We just want to remark that, like in the previous

section (and thus in [30]), the proof of Theorem 3.1 is based on a blow-up techique, even

though the estimates we establish here are completely pointwise and we are working in a

weaker setting. More precisely, the core idea in [14] is to study the behaviour as ϵ → 0 of

the rescaled functions

vϵ(x, t) =
u(δϵ(x, t))

ϵ2
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and

wϵ(x, t) =
u(δϵ(x, t))− P (δϵ(x, t))

ε2

where P ∈ P̃ (see (3.2)). In particular, we focus on how operator L0 acts on the rescaled

functions vϵ and wϵ and we study its Lp-norm as we let ϵ → 0. For a detailed description of

the blow-up technique exploited in [14], we refer the reader in particular to [14, Proposition

3.3, Lemma 3.7 and Theorem 1.3].

We finally emphasize that, although we consider the regularity problem for weak so-

lutions to Kolmogorov operators in the framework of Sobolev spaces, our procedure is

basically pointwise. Indeed, we consider some Lp norm of the function u − P0 on a past

cylinder of radius r and we obtain our result by letting r going to zero. Thus, this ap-

proach follows the lines of regularity theory for classical solutions rather than the ones

for weak solutions, which does not seem to be usual when dealing with Kolmogorov-type

operators.

A straightforward consequence of Theorem 3.1 iv) (inequality (3.9)) is the following

corollary.

Corollary 3.1. If the modulus of Lp-mean oscillation of f at the origin is Dini in the

sense of Definition 2.2, then the origin is a Lebesgue point of continuity in Lp average for

the second order derivatives ∂2
xixj

u, i, j = 1, . . . ,m0, and the Lie derivative Y u.

As with Theorem 2.1, it follows straightforwardly from Theorem 3.1 that the second

order derivatives ∂2
xixj

u, i, j = 1, . . . ,m0, and the Lie derivative Y u are Hölder continuous

in some open set Ω ⊂ RN+1, when f is Hölder continuous with respect to the distance

introduced in (1.12). Moreover, let us remark that Theorem 3.1 provides us with a Taylor-

type expansion up to second order with an estimate of the rest in Lp norm and therefore

can be seen as a generelization of Theorem 2.2 in this weaker setting.

The results contained in Theorem 3.1 may be seen as a generalization of [24] and [17],

where this kind of results are obtained respectively for elliptic and parabolic equations.

However, up to our knowledge, the case of Kolmogorov-type operators was investigated

for the first time in [14].
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The main difficulty with respect to the previous literature lies in the fact that the regu-

larity properties of the Kolmogorov equations on RN+1 depend strongly on the geometric

Lie group structure introduced in (1.6). In particular, this reflects on the family of dila-

tions we consider in the blow-up argument. Furthermore, according to (1.1), we here take

into account also the case where m0 < N and therefore L0 is strongly degenerate. We

emphasize that when m0 = N and B ≡ O, our result recovers the one contained in [17].

3.2. Further developments: the obstacle problem. The method we follow in [14]

has the advantage of being quite flexible, as shown in [24, 17], where it was applied to

study new regularity results for the obtacle problem for the Laplace equation and the

heat equation. Thus, it would be of interest to study the obstacle problem associated to

(1.1), namely

(3.10)



L u = f(x) · 1{u>0} in Q−
1

u ≥ 0 in Q−
1

u, f ∈ Lp(Q−
1 ) and f(0) = 1

0 ∈ ∂{u > 0},

where 1{u>0} is the characteristic function of the set {u > 0}. The obstacle problem in

(3.10) is not only fascinating for theoretical purposes but also for multiple applications.

For example, this comes as an interest in mathematical finance to determine the arbitrage

free price of options of American-type (see [28]). In recent years, many attempts have

been made to study the existence and regularity of solutions to the obstacle problem in

the framework of PDE (see [8, 10, 25] and the references therein). However, in the promis-

ing aforementioned results, they could only deal with classical solutions and continuous

obstacles. For this reason, the results established in [14] aim at constituting an important

step towards developing the weak regularity theory for solutions to the obstacle problem

associated to Kolmogorov-type equations. We eventually recall that a very recent devel-

opment is contained in the paper [3], which deals with the existence of the solution of an

obstacle problem possibly equivalent to (3.10) in a functional setting.
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