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GIOVANNI CUPINI AND ERMANNO LANCONELLI

Abstract. In this article we present some of the main aspects and the most recent results related

to the following question: If the surface mean integral of every harmonic function on the boundary of

an open set D is “almost” equal to the value of these functions at x0 in D, then is D “almost” a ball

with center x0? This is the stability counterpart of the rigidity question (the statement above, without

the two “almost”) for which several positive answers are known in literature. A positive answer to the

stability problem has been given in a paper by Preiss and Toro, by assuming a condition that turns out

to be sufficient for ∂D to be geometrically close to a sphere. This condition, however, is not necessary,

even for small Lipschitz perturbations of smooth domains, as shown in our recent paper, in which a

stability inequality is obtained by assuming only a local regularity property of the boundary of D in at

least one of its points closest to x0.

Sunto. In questo articolo presentiamo alcuni degli aspetti principali e i risultati più recenti relativi

al seguente quesito: Se la media integrale di superficie di ogni funzione armonica sulla frontiera di un

insieme aperto D è “quasi” uguale al valore di queste funzioni in x0 in D, allora D è “quasi” una palla

con centro x0? Questa è la controparte di stabilità del quesito di rigidità (la frase sopra senza i due

“quasi”) per il quale diverse risposte affermative sono note in letteratura. Una risposta affermativa

al problema di stabilità è stata data in un articolo di Preiss e Toro, assumendo una condizione che si

rivela sufficiente per ∂D ad essere geometricamente vicino a una sfera. Questa condizione, tuttavia,

non è necessaria, anche per piccole perturbazioni Lipschitziane di domini lisci, come dimostrato nel

nostro recente articolo, in cui si ottiene una disuguaglianza di stabilità assumendo solo una proprietà di

regolarità locale del bordo di D in almeno uno dei suoi punti più vicini a x0.

2020 MSC. Primary 35B05; Secondary 31B05, 35B06.

Keywords: Surface Gauss mean value formula, stability, harmonic functions, rigidity

Bruno Pini Mathematical Analysis Seminar, Vol. 14, No. 2 (2023) pp. 129–138

Dipartimento di Matematica, Università di Bologna
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1. Introduction: past and recent history

Let D ⊆ Rn, n ≥ 2, be a bounded open set such that |∂D| < ∞. We say that ∂D is a

harmonic pseudosphere with center x0 ∈ D if

u(x0) =

 
∂D

u dσ ∀u ∈ H(D) ∩ C(D),

where H(D) denotes the set of harmonic functions in D.

By the classical Gauss Theorem on the mean value property of the harmonic functions,

every Euclidean sphere is a harmonic pseudosphere. In general the viceversa is not true.

Indeed, in 1937, Keldysch and Lavrentieff proved the existence of a harmonic pseudosphere

in R2 which is not a circle. Many years later - in 1991 - Lewis and Vogel proved that

in every Euclidean space Rn, n ≥ 3, there exist harmonic pseudospheres which are not

Euclidean spheres, see [6].

Then the following question arises: when is a harmonic pseudosphere a Euclidean

sphere, or, equivalently, is it possible to characterize the Euclidean spheres in terms of

the surface mean value formula for harmonic functions?

Several authors, under different hypotheses, have proved that the answer is yes (see

[3], [2], [7]). The most general result, proved by Lewis and Vogel in 2002 (see [8]), is the

following one:

Let D ⊆ Rn be open and bounded and let |∂D| < ∞. Suppose ∂D is a harmonic

pseudosphere centered at x0 ∈ D. Then D is a Euclidean sphere centered at x0 if D and

∂D have the following properties:

(i) D is Dirichlet regular, i.e. the boundary value problem∆u = 0 in D

u|∂D = φ

has a classical solution u ∈ H(D) ∩ C(D) for every φ ∈ C(∂D);

(ii) the (n−1)-Hausdorff measure Hn−1 restricted to ∂D has at most Euclidean growth,

i.e.,

sup
x∈∂D
0<r<1

Hn−1(∂D ∩ B(x, r))

rn−1
< ∞.
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In 2007 Preiss and Toro [9] proved a stability result for Lewis-Vogel’s rigidity Theorem.

Preiss and Toro’s starting point is the following remark. Let D and x0 as in Lewis-Vogel

2002’s Theorem and let h be the Poisson kernel of D with pole at x0, i.e.,

u(x0) =

ˆ
∂D

h(x)u(x) dσ(x) ∀u ∈ H(D) ∩ C(D).

Then, obviously, ∂D is a harmonic pseudosphere centered at x0 if

h(x) =
1

|∂D|
∀x ∈ ∂D.

Hence, Lewis-Vogel’s Theorem can be rephrased as follows:

if D and ∂D satisfy (i) and (ii) then |∂D|h ≡ 1.

Roughly speaking, Preiss and Toro proved that if

|∂D|h is close to 1

then ∂D is close to a Euclidean sphere centered at x0.

Precisely:

Theorem 1.1 (Preiss-Toro [9]). Let D be a bounded open set satisfying (i) and (ii) and

let x0 ∈ ∂D. Then there exists ε0 > 0 such that, if 0 < ε < ε0 and

1− ε < |∂D|h < 1 + ε,

then

e−2ε ≤ |∂B|
|∂D|

≤ |∂B∗|
|∂D|

≤ e2ε,

where B is the biggest Euclidean ball centered at x0 and contained in D, while B∗ is the

smallest Euclidean ball centered at x0 and containing D.

This theorem can be rephrased in terms of what we call Gauss gap of ∂D w.r.t. x0,

which we define as follows:

G(∂D, x0) =Gauss gap of ∂D w.r.t. x0

:= sup
u∈H(D)∩C(D)

u̸≡0

∣∣∣∣u(x0)−
 
∂D

u dσ

∣∣∣∣ 
∂D

|u| dσ
.
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Then one has:

G(∂D, x0) = sup
∂D

||∂D|h− 1|,

(see (6.1) in the Appendix of [1]).

It can be easily proved that the condition of Preiss and Toro’s stability Theorem is

equivalent to the following statement:

If G(∂D, x0) is sufficiently small, then

(1) G(∂D, x0) ≥ c
|∂D| − |∂B|

|∂D|

and

G(∂D, x0) ≥ c
|∂B∗| − |∂D|

|∂D|

where c > 0 is an absolute constant,

(see [1, Appendix] for the details).

It is noteworthy to remark that Preiss and Toro’s stability result requires the smallness

of the Gauss gap. On the other hand, in general, even for C1-domains this gap is not finite.

Then one can expect that the smallness of G(∂D, x0) implicitly implies some regularity

properties of ∂D. As a matter of fact Preiss and Toro, in their paper [9], proved that for

every δ > 0 there exists ε = ε(δ) > 0 such that if G(∂D, x0) < ε then ∂D is δ-Reifenberg

flat. Hence, by a quite classical Reifenberg’s Theorem, ∂D is homeomorphic to ∂B(0, 1).

Moreover, by a result by Kenig and Toro [4], one can define a generalized normal map

x 7→ ν(x), x ∈ ∂D,

which is VMO (Vanishing Mean value Oscillation).

Preiss and Toro’s stability result gives a sufficient condition for the boundary of an open

set to be close to a Euclidean sphere. This condition, however, is not necessary, even for

small Lipschitz perturbation of smooth domains. Indeed, we have proved the following

theorem.

Theorem 1.2 ([1], Theorem 1.2). There exists a family (Dε)0<ε<ε0 of equi-Lipschitz do-

mains, small perturbations of the Euclidean ball B(0, 1), such that, for every ε, 0 < ε < ε0,

(i) B(0, 1) ⊆ Dε ⊆ B(0, 1 + ε)
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(ii) 1
c
εn−1 ≤ |∂Dε| − |∂B(0, 1)| ≤ c εn−1

(iii) lim inf
ε→0

G(∂Dε, 0) > 0,

where c is an absolute constant. Moreover B(0, 1) is the biggest ball centered at 0 and

contained in Dε.

In [1] we have also proved that a stability inequality like (1) can be obtained only

assuming a regularity property of the ∂D in at least one of its points closest to x0. In

particular, our result applies to the domains of the family (Dε)0<ε<ε0 of the previous

theorem.

Our method is direct and does not require the profound real and harmonic analysis

techniques used by Preiss and Toro and by Lewis and Vogel in the papers quoted above.

Our idea is to measure the gap between

u(x0) and

 
∂D

u dσ

for a particular family of u ∈ H(D) ∩ C(D) constructed with the Poisson kernel of balls

close to the biggest one centered at x0 and contained in D.

Acknowledgment: The first author is member of the Gruppo Nazionale per l’Analisi

Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale

di Alta Matematica (INdAM).

2. The Kuran’s function

For α ∈ Rn, α ̸= 0, we define

hα(x) := |α|n−2 |x|2 − |α|2

|x− α|n
, x ̸= α

and

kα(x) = 1 + hα(x), x ∈ Rn \ {α}.

We call kα the α-Kuran’s function: it was introduced by Kuran in [5]. The function

hα|B(0,|α|) is, up to a multiplicative constant, the Poisson kernel of the Euclidean ball

B(0, |α|). In particular, it is harmonic in B(0, |α|). As a consequence, being hα real

analytic in Rn \ {α}, one has

hα ∈ H(Rn \ {α}).
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Since hα(0) = −1 the Kuran function kα has the following properties which are crucial

for our aims:

kα ∈ H(Rn \ {α}), kα(0) = 0.

Then, if D is a pseudosphere centered at 0, by the Gauss Mean Value Theorem,

0 = kα(0) =

 
∂D

kα dσ ∀α /∈ D.

Hence, if  
∂D

kα dσ ̸= 0 for some α /∈ D,

then ∂D is not a pseudosphere.

3. The Kuran gap

Let D be a bounded open set with |∂D| < ∞ and let x0 ∈ D. Our aim in this section

is to introduce a new parameter, that we call Kuran gap of ∂D w.r.t. x0. Basically, when

x0 = 0, our new parameter is defined similarly to the Gauss gap, by using instead of the

general family H(D) ∩ C(D) its subclass {kα : α /∈ D}.

To begin with, denoting by B the biggest ball centered at x0 and contained in D, we

define

T (∂D, x0) =regular touching set of ∂D w.r.t. x0

:={z ∈ ∂D ∩ ∂B : ∂D is Lyapunov-Dini regular at z}.

When we say that ∂D is Lyapunov-Dini regular at z ∈ ∂D, we mean that there exists a

neighborhood V of z s.t.

∂D ∩ V is a C1-manifold

and the outward normal map

∂D ∩ V ∋ x 7→ ν(x)

is Dini-continuous at z.

Then, we define K(∂D, x0), the Kuran gap of ∂D w.r.t. x0, as follows.

If x0 ̸= 0, we simply let

K(∂D, x0) := K(∂(−x0 +D), 0).
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If x0 = 0 and T (∂D, 0) = ∅, we put

K(∂D, 0) = ∞,

while, if T (∂D, 0) ̸= ∅, we define

K(∂D, 0) := inf
z∈T (∂D,0)

L(z)

where

L(z) :=lim inf
α↘z

α/∈D

∣∣∣∣kα(0)−  
∂D

kα dσ

∣∣∣∣
=lim inf

α↘z

α/∈D

∣∣∣∣ 
∂D

kα dσ

∣∣∣∣ .
Here, with the notation α ↘ z we mean that α radially goes to z from Rn \D, i.e.,

α = tz, t > 1, t ↘ 1.

The Kuran gap has the following properties:

K(∂D, x0) < ∞ if T (∂D, x0) ̸= ∅,

K(∂D, x0) is invariant w.r.t. Euclidean translations, rotations and dilations.

K(∂D, x0) = 0 if T (∂D, x0) ̸= ∅, and ∂D is a harmonic pseudosphere centered at

x0.

Moreover, if (Dε)0<ε<ε0 is the family of domains in Theorem 1.2, there exists an absolute

constant c > 0 such that

(2)
1

c
εn−1 ≤ K(∂Dε, 0) ≤ c εn−1

for every ε ∈]0, ε0[.

4. Main Theorem and some of its consequences

The main result proved in our paper [1] is the following one.

Theorem 4.1. Let D ⊆ Rn be a bounded open set such that |∂D| < ∞ and let x0 ∈ D.
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Then, if B denotes the biggest Euclidean ball centered at x0 and contained in D, we

have

(3) K(∂D, x0) ≥
|∂D| − |∂B|

|∂D|
.

We immediately remark that inequality (3) is sharp, in the following sense.

Let (Dε)0<ε<ε0 be the family of domains in Theorem 1.2. Then, by (2),

1

c
≤ K(∂Dε, 0)

εn−1
≤ c ∀ε ∈]0, ε0[,

where c > 0 is an absolute constant, independent of ε ∈]0, ε0[. Moreover by (i) and (ii) in

Theorem 1.2,
1

c′
≤ 1

εn−1

|∂Dε| − |∂B|
|∂Dε|

≤ c′

where c′ > 0 only depends on n. Then, on the family (Dε)0<ε<ε0 , inequality (3) is basically

an equality.

By using the isoperimetric inequality the right hand side of (3) can be estimated from

below as follows
|∂D| − |∂B|

|∂D|
≥ c(n)

|D \B|
|D| 1n ||∂D|

where c(n) denotes the isoperimetric constant in Rn.

Then we have the following corollary of Theorem 4.1.

Corollary 4.1. Let D ⊆ Rn be a bounded open set with |∂D| < ∞ and let x0 ∈ D. Then,

if B denotes the biggest Euclidean ball centered at x0 and contained in D we have

(4) K(∂D, x0) ≥ c(n)
|D \B|
|D| 1n |∂D|

.

Thanks to Theorem 4.1 and Corollary 4.1 we can therefore say that if

K(∂D, x0) is small

then

D is close to B

and

|∂D| is close to |∂B|.
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From Corollary 4.1 one obtains a new sufficient condition for a harmonic pseudosphere to

be a Euclidean sphere.

Theorem 4.2. Let ∂D be a harmonic pseudosphere centered at x0. If

T (∂D, x0) ̸= ∅,

then D is a Euclidean sphere centered at x0.

Proof. The assumption implies K(∂D, x0) = 0. Then, if B is the biggest ball contained

in D and centered at x0, by Corollary 4.1 we have

0 ≤ |D \B| ≤ |D| 1n |∂D|
c(n)

K(∂D, x0) = 0,

so that D = B and ∂D = ∂B. □

From our stability result we obtain a new answer to a rigidity problem raised by the

following property of the spheres.

Let B ⊆ Rn be a Euclidean ball centered at x0 and let Γ be the fundamental solution

of the Laplacian ∆. Since y 7→ Γ(y−x) is a harmonic function in Rn \{x}, by the surface

Gauss mean value theorem one has

Γ(x0 − x) =

 
∂B

Γ(y − x) dσ(y) ∀x ∈ Rn \B.

Then, the following question naturally arises: is this property characteristic of the Eu-

clidean spheres?

Several positive answers to this question are present in literature: to the best of our

knowledge the most general one is implicitly contained in the paper [2] by G. Fichera,

which reads as follows:

Let D ⊆ Rn be a C1-bounded open set. Assume that

Γ(x0 − x) =

 
∂D

Γ(y − x) dσ(y) ∀x ∈ Rn \D.

Then D is a Euclidean ball B centered at x0, so that

∂D = ∂B.
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From our main Theorem 4.1 we obtain the following result which partially improves

Fichera’s Theorem.

Theorem 4.3. Let D ⊆ Rn be a bounded open set such that |∂D| < ∞ and let x0 ∈ D.

Assume that

Γ(x0 − x) =

 
∂D

Γ(y − x) dσ(y) ∀x ∈ Rn \D.

If T (∂D, x0) ̸= ∅, then D is a Euclidean ball B centered at x0 and, consequently,

∂D = ∂B.
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