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Abstract. My aim is to give, in this talk, some topics on the question of regularity of

Analytic-Gevrey vectors of partial differential operators (p.d.o.) with analytic-Gevrey

coefficients. Since the results obtained in the sixties on elliptic p.d.o’s, which are both

hypoelliptic (C∞ setting), analytic-Gevrey hypoelliptic (analytic-Gevrey setting) and

satisfy the so-called Kotake-Narasimhan property, a lot of works and articles were devoted

to these problems in case of non elliptic p.d.o’s under suitable hypotheses (for example

on the degeneracy of ellipticity). I will consider the third problem on analytic-Gevrey

vectors in the three cases of global (on compact manifolds), local (near a point in the

base-space), microlocal (near a point in the cotangent space), situations, and say few

words on the main two methods used in order to obtain positive (or negative) results.

Finally I will focus on some new microlocal results on degenerate elliptic (also called

sub-elliptic) p.d.o’s of second order, obtained in a common work with Gregorio Chinni.

Sunto. Il mio scopo è quello di trattare, in questo intervento, alcuni argomenti sulla re-

golarità dei vettori analitici-Gevrey di operatori differenziali alle derivate parziali (p.d.o.)

a coefficienti analitici-Gevrey. Nella parte finale mi concentrerò su alcuni nuovi risultati

microlocali relativi a p.d.o. degeneri ellittici (anche detti sub-ellittici) del secondo ordine,

ottenuti in un lavoro con Gregorio Chinni.
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1. Introduction

This work follows the one we did in [15], in the same subject, but concerning the case

of L. Hörmander’s operators of the first kind (or commonly known as “sums of squares of

vector fields”), with analytic coefficients and considered the case of analytic vectors. For

that we used the method by F.B.I. transform.

In the present paper we consider second order partial differential operators, with non-

negative characteristic form (first studied by O.A. Olĕınik and E.V. Radkevič in [37]),

Gevrey vectors (s ≥ 1) and use the method of a priori estimate, (as precised in my pre-

ceeding paper, [22]). This in order to get suitable estimates of what we call microlocalized

functions associated to the function under study (see details in the next sections).

Since the work T. Kotake and M. Narasimhan ([32], 1962) (where they proved the so

called “Kotake-Narasimhan property”, or “iterates property”, for elliptic operators with

analytic coefficients), an intensive investigation of this property was undertaken by many

mathematicians, along with its generalizations in different directions and the use of more

and more modern tools. In the case of elliptic operators, iterates property was extended

to the systems and for s-Gevrey vectors(s ≥ 1, s = 1 corresponding to the analytic case)

(see [9], [20], for surveys on this question, where there are many references).

In 1978, G. Métivier ([35]) showed that, in the case of s-Gevrey vectors with s > 1,

the ellipticity property is necessary for “iterates property” to hold (meaning: s-Gevrey

vectors are in s-Gevrey class). In the case of analytic vectors, M.S. Baouendi and G.

Métivier showed Kotake-Narasimhan property for hypoelliptic partial differential opera-

tors of principal type with analytic coefficients ([3], 1982).

In the case of system of vector fields with analytic coefficients, satisfying Hörmander’s

condition, we mention two papers appeared in 1980, where iterates property was showed

([17] in case of analytic vectors, and [25] in the case called “reduced analytic vectors”). In

the case of systems of complex vector fields R. Barostichi, P. Cordaro and G. Petronilho

([5]) studied analytic vectors in locally integrable structures in 2011.

Concerning the case of second order partial differential operators, the Hörmander opera-

tors were mostly studied, after the famous article on the hypoellipticity by L. Hörmander,
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[28]. As we are interested in iterates property, we do not write in other properties like

analytic or Gevrey hypoellipticity (local or microlocal). The first result, on Gevrey reg-

ularity of analytic vectors, we mention is in global context, for a subclass of “sums of

squares”. It appeared in 2016 ([11]) and have dealt with products of two tori. The local

version of that result and for general Hörmander’s operators was proved by me in two

articles ([21], [19]); shortly after, for operators with non-negative characteristic form I

proved an analogous result in ([22]), result for which we give in this paper the microlocal

version.

Let us finish this introduction with the mention of some results using intensively the

method of F.B.I. transform (and generalization of it as in [6] [7], [27], [26], [39]) and now

studying mainly operators in more and more classes of ultra-differentiable functions (see

[26], [23] where there are many references).

2. Some notations, definitions and preliminaries

We will be interested in the question of analytic-Gevrey regularity of partial differential

operators on a manifold (analytic or Gevrey), mainly on an open set in Rn, n ∈ N.

To be more explicit, we consider here, only analytic-Gevrey vectors of those operators.

Moreover we have to specify the notions of s-Gevrey vectors, s ≥ 1, we study. I will recall

some tools needed in order to attack our problem, in the different settings.

2.1. s-Gevrey vectors. ([35], [20], [10], [32], [33])

a) Global case: Let M , compact manifold of s-Gevrey class, s ≥ 1, and let P

be a partial differential of order m with Gs coefficients on M . We say that a

distribution u ∈ D ′(M ) is an s-L2-Gevrey vector of P , in the global sense, if for

every k ∈ N, P ku is in L2(M ) and there is a constant C > 0, independent of k,

such that

(2.1) ∥P ku∥L2(M ) ≤ Ck+1 (mk!)s .

Remark 2.2. We recall that the case s = 1 corresponds to the analytic case.

Moreover one may consider another norm.
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b) Local case: In this case, we take generally an open set Ω in Rn, or if we are inter-

ested by a study near one point, say x0 ∈ Rn, we consider a small neighborhood

(say Ω) of x0. We say that u ∈ D′(Ω) is s-Gevrey vector of P , a p.d.o. of order m

on Ω, if: for every compact set in Ω, K, there exists a constant CK such that: for

every k ∈ N, P ku is in L2(K), satisfying

(2.2) ∥P ku∥L2(K) ≤ Ck+1
K (mk!)s .

c) Systems: In the case of systems, we consider just the case of systems of smooth

vector fields (real or complex) on M or in Ω, say (X0, . . . , Xr). These vector fields

are also often considered as homogeneous p.d.o. of order 1. Let s ≥ 1. Then a

distribution u ∈ D ′(Ω) is an s-Gevrey vector of the system (X) = (X0, . . . , Xr), in

Ω if for every compact K ⋐ Ω, there exists CK > 0 such that for every multi-index

α = (α1, . . . , αN) one has
Xα1 · · ·XαN

u ∈ L2(K),

∥Xα1 · · ·XαN
u∥L2(K) ≤ CN+1

K N sN , αj ∈ {0, . . . , r}.
(2.3)

In the case when (X) = (∂x1 , . . . , ∂xn) in Ω ⊂ Rn, (2.3) can be written, with

α = (α1, . . . , αn), αj ∈ N

∥∂αu∥L2(K) ≤ C
|α|+1
K |α|s|α|; ∂α = ∂α1

x1
· · · ∂αn

xn
, |α| = α1 + · · · + αn.(2.4)

So, we see that the functions satisfying (2.4) are the s-Gevrey functions in Ω, as

such distributions are smooth.

2.2. Notations.

The space of distributions in Ω satisfying (2.1) or (2.2) (case M or Ω) are denoted

Gs(M or Ω, P ) (or Gevrey vectors of P in Ω).

Gevrey functions. In the case of system (∂x1 , . . . , ∂xn) one gets from (2.4), using rela-

tions between L2 and L∞ norms,

|∂αu|K ≤ C̃
|α|+1
K |α|s|α|, for some C̃K .(2.5)
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So, one has:

Gs(Ω) = Gs(Ω, (∂x1 , . . . , ∂xn)) = s-Gevrey functions.

If s > 1, it is also interesting to note that Gs(Ω) can be defined as follows: for every

φ ∈ D(Ω) ∩Gs = C∞
0 (Ω) ∩Gs, there exists Cφ > 0:

∥∂α(φu)∥L2 ≤ C̃ |α|+1
φ |α|s|α|; ∀α = (α1, . . . , αn).(2.6)

One uses in that case that, for every K, one can find φ ∈ Gs ∩ D(Ω) such that φ ≡ 1 on

K.

Generally, for s ≥ 1 (meaning working also for s = 1) one has a property replacing (2.6),

but less easy to work with

u ∈ Gs(Ω) ⇐⇒ for every open set ω, with ω ⋐ Ω,

there exists an open set ω′ with ω ⋐ ω′ ⊂ ω′ ⋐ Ω,

a sequence uN ∈ E ′(ω′), satisfying : uN |ω = u and :

∂αuN ∈ L2(ω′) and ∥∂αuN∥L2(ω′) ≤ C |α|+1N s|α|, |α| ≤ N, for some C > 0.

(2.7)

Remark 2.3. As one sees the formulation (2.7) is interesting only when one wants to

prove something for general s ≥ 1. In case s > 1, (2.6) is much easier to handle. Moreover

let us recall that one can replace |α|s|α| by |α|!s or even by α!s, s ≥ 1, in (2.6) or (2.7),

as we give it in (2.1). As I spoke about in 2.5, one can replace the norm L2 by the

Sup-Norm = L∞, in the considered open sets, or also, when needed, by L1-norm.

The interest of (2.6) or (2.7) is also in the fact that they have a traduction when taking

the Fourier transform of ∂αφu or ∂αuN , which are in E ′(Rn) ⊂ S ′(Rn). When using L1-

norm, as said in Remark 2.3, one may obtain L∞-norm of the functions ∂̂αφu or ∂̂αuN ,

precisely bounds of it. So the estimates in (2.6) and (2.7) are replaced by:

In (2.6) one has |ξαφ̂u| ≤ C̃ |α|+1
φ |α|s|α|, ∀α, some C̃φ > 0;

In (2.7) one has |ξαûN | ≤ C̃ |α|+1N s|α|, |α| ≤ N, some C̃ > 0.

Coming back, a moment, to the property (2.7), we recall that, here, one uses Ehrenpreis-

sequences, say ψ = (ψN) related to the couple of open sets in Ω, say (Ω1,Ω2), such that
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Ω1 ⊂ Ω1 ⋐ Ω2 ⊂ Ω2 ⋐ Ω, with the property:

ψN ∈ D(Ω2); ψN ≡ 1 on Ω1 and |∂αψN | ≤ C |α|+1N |α|, |α| ≤ N.

Usually the inequalities in the dual space above, are written|φ̂u(ξ)| ≤ ˜̃C
|α|+1
φ |α|s|α|(1 + |ξ|)−|α|, ∀α, s > 1, some ˜̃Cφ > 0

|ûN(ξ)| ≤ ˜̃C |α|+1N s|α|(1 + |ξ|)−|α|, |α| ≤ N, ξ ∈ Rn, some ˜̃C > 0.
(2.8)

Another interest of traduction in the dual space is that one can cut Rn, into cones, or

even take what is called a conic neighborhood of any ξ0 ∈ (Rn)∗ \{0}. For example, given

ξ0 ∈ Rn \ {0} and ε > 0, one takes as a conic neighborhood Vξ0,ε in (Rn)∗ \ {0}:{
ξ ∈ (Rn)∗ \ {0} :

∣∣∣∣ ξ|ξ| − ξ0
|ξ0|

∣∣∣∣ < ε

}
,

for ε small; it is an open, convex cone around ξ0. This opens a way to localize, not only

in the base space Ω but also in the cotangent space Ω× (Rn)∗ \ {0}. In particular a conic

neighborhood of (x0, ξ
0) ∈ Ω × (Rn)∗ \ {0} is a couple (ω, V ), with ω neighborhood of x0

in Ω, and V is a conic neighborhood of ξ0 in (Rn)∗ \ {0}.

2.3. Microlocal Gevrey functions - Gevrey wave front sets.

In the research of Gs-regularity of a distribution, one now can ask for Gs-regularity in

open sets of the form ω × V , with ω and V as above. So in the general case s ≥ 1, the

inequality (2.8) is written as

|ûN(ξ)| ≤ C |α|+1N s|α|(1 + |ξ|)−|α|, |α| ≤ N, ξ ∈ V,(2.9)

of course, when working with s > 1, it is simpler to use φ in Gs
0 = Gs(Ω) ∩ D(Ω), and

rewrite here:

|φ̂u(ξ)| ≤ C |α|+1
φ |α|s|α|(1 + |ξ|)−|α|, ∀α, ξ ∈ V.(2.10)

In order to study the set in Ω × (Rn)∗ \ {0} where u is Gs-regular, it is more suitable to

consider the set of points (x, ξ) which will be called Gs-singular or wave front set of u and

denoted by WFs(u):

WFs(u) = ∁
{

(x, ξ); ∃ conic neighborhood of (x, ξ) satisfyng (2.9) or (2.10) when s > 1
}
.

(2.11)
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So one sees that WFs(u) is closed in ω × (Rn)∗ \ {0}, as it is defined as complementary

of an open set in ω × (Rn)∗ \ {0}.

Remark 2.4. In case s > 1, (2.10) may be rewritten:

|φ̂u(ξ)| ≤ Ce−c|ξ|1/s , ξ ∈ V, for some C, c > 0.(2.12)

2.4. Ehrenpreis sequence-Andersson sequence.

We told in subsection 2.2, in inequality (2.7), that one can take the sequence uN ∈ E ′(Ω),

as uN = ψNu, u given in D ′(Ω) where ψN is an Ehrenpreis sequence. Let us give precisions:

Proposition 2.1. ([24], [29], [41]) Let Ω1 and Ω2 two open sets in Rn such that Ω1 ⋐ Ω2

(compact in Ω2). There is a constant C > 0 a sequence (ψN), N ∈ N, N ≥ 1, such that

ψN ∈ D(Ω2), ψN = 1 on Ω1, |ψ(α)
N | ≤ C |α|+1N |α|, |α| ≤ N .

The sequence (ψN) is an Ehrenpreis sequence relative to (Ω1,Ω2).

When working microlocally, one needs an analogue of Ehrenpreis sequence which plays

a role of tool similar to that of Ehrenpreis sequence in local case. As we saw, we recall that

one uses Ehrenpreis sequence (ψN) in order to truncate a given distribution u ∈ D ′ (Ω),

precisely if Ω1 ⋐ Ω2 ⊂ Ω2 ⋐ Ω and (ψN) in Proposition 2.1, then uN = ψNu ∈ E ′(Ω2)

with uN = u on Ω1.

In order to localize on cones in the dual space, there are Andersson sequences (also called

Andersson-Hörmander sequences). We first precise some terms here. Let V1 and V2 two

open cones in (Rn)∗. We say that V1 is relatively compact in V2, if V 1 ∩ Sn is compact in

V2 ∩ Sn, and we note V1 ⋐ V1. So

Proposition 2.2. ( [29], [10]) Let V1 and V2 two open cones in (Rn)∗ \ {0}, V1 ⋐ V2.

There exist C > 0 and a sequence (ΘN) of smooth functions in (Rn)∗ such that:
supp ΘN ⊂ V2 ∩ {ξ ∈ (Rn)∗ : |ξ| ≥ N

2
},

ΘN(ξ) = 1 for ξ ∈ V1 ∩ {ξ ∈ (Rn)∗ : |ξ| ≥ N},

|Θ(α)
N (ξ)| ≤ C |α|+1N |α| (1 + |ξ|)−|α| , |α| ≤ N, N ∈ N∗.

(2.13)

The sequence (ΘN) is an Andersson sequence.
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Remark 2.5. There is a refined version of Ehrenpreis or Andersson sequences; we used

heavily in [16], that version. The refinement consists on the precision on estimates of

derivatives: 

•Case of Ehrenpreis sequence: One gives Ω1 ⋐ Ω2, and M ∈ N.

Then one has, for (ψN) :

ψN = 1 on Ω1 and |ψ(α)
N | ≤ C |α|+1N (|α|−M)+ , |α| ≤ N.

•Case of Andersson sequence: One gives V1 ⋐ V2, and M ∈ N.

Then one has, for (ΘN) :

ΘN(ξ) = 1 for ξ ∈ V1 ∩ {ξ ∈ (Rn)∗ : |ξ| ≥ N},

and |Θ(α)
N | ≤ C |α|+1N (|α|−M)+ (1 + |ξ|)−|α| , |α| ≤ N,

where (|α| −M)+ = 0 if |α| ≤M, = |α| −M if |α| > M.

(2.14)

Now, some definitions are in order to introduce properties on partial differential operators

(p.d.o.) on an open set Ω in Rn (or even on compact manifold M ). Let P be a p.d.o.:

P =
∑
|α|≤m

aαD
α, aα ∈ C∞ (Ω) , m being the order of P ; D =

1

i
∂.

The symbol p(x, ξ) of P is a function on Ω × (Rn)∗, defined by:

p(x, ξ) =
∑
|α|≤m

aαξ
α. The principal symbol is pm(x, ξ) =

∑
|α|=m

aαξ
α.

Definition 2.1. Let (x, ξ) ∈ Ω × (Rn)∗ \ {0}. P is said elliptic in (x, ξ) if pm(x, ξ) ̸= 0.

The characteristic set of P is:

Char(P ) = {(x, ξ) ∈ Ω × (Rn)∗ \ {0} : pm(x, ξ) = 0}.

The operator P is said elliptic at the point x0 ∈ Ω, if P is elliptic at all points (x0, ξ),

ξ ∈ (Rn)∗ \ {0}. P is said elliptic in ω ⊂ Ω, if P is elliptic at any point in ω.

Now in order to study the characteristic set of P , we recall the notion of bracket or

Poisson bracket.
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Definition 2.2. The Poisson bracket of two functions, smooth on Ω× (Rn)∗ \{0}, f(x, ξ)

and g(x, ξ) is defined by

(2.15) {f, g}(x, ξ) =
n∑

j=1

(
∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj

)
.

The following properties are easy to see:

a) if X1 and X2 are two smooth vector fields, with symbols X̃1(x, ξ) =
∑n

j=1 aj(x)ξj,

X̃2(x, ξ) =
∑n

j=1 bj(x)ξj, then {X̃1, X̃2}(x, ξ) is also a symbol of degree one and it

is the symbol of the bracket of X1 and X2 as p.d.o. [X1, X2] = X1X2 −X2X1;

b) from a), one deduces that the linear space of vector fields with smooth coefficients

is an algebra, with the Poisson bracket as inner product on that space.

It is not our subject to recall the theory of pseudodifferential operators, but in order to

explain some notions like subellipticity, it is sufficient to look at homogeneous symbols

p(x, ξ) of real degree σ; meaning

p(x, λξ) = λσp(x, ξ), λ > 0, x ∈ Ω, ξ ∈ (Rn)∗ \ {0}.

To such a symbol, it is associated a linear operator on D(Ω)

Pv(x) = (2π)−n

∫
p(x, ξ) eixξv̂(ξ) dξ

where p(x, ξ) ∈ C∞ (Ω × (Rn)∗ \ {0}) and when the integral exists (under some bounds

for p). When p and q are homogeneous of order 1, then {p, q} is homogeneous of order 1.

So one can consider all Poisson brackets in the space of such symbols. So if one considers a

finite family of such symbols p′ = {p1, . . . , pk}, then for any multi-index I = (i1, . . . , iℓ),

the symbol pI defined by: pI = {pi1 , {. . . {piℓ−1
, piℓ} . . . }}, is homogeneous of order 1.

Let now (x, ξ) ∈ Ω × (Rn)∗ \ {0} and call |I| = ℓ, the length of I, we say that the system

is subelliptic at (x, ξ) if there exists a multi-index I such that pI(x, ξ) ̸= 0. We call index

of subellipticity of p′ at (x, ξ): σ = sup{|I|−1 ; pI(x, ξ) ̸= 0} (this is in [30], [37], see in the

following section).
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3. The case of elliptic operators

a) The case with analytic coefficients: The iterates property for elliptic operators

is due to T. Kotake and M. Narasimhan, [32]. So such property is also called “Kotake-

Narasimhan property”.

Theorem 3.1. if P is an elliptic operator with analytic coefficients in Ω, then G1 (Ω, P ) ⊂

G1 (Ω).

There is also another proof of this theorem by K. Komatsu [33]. The above theorem was

generalized for systems of elliptic operators by P. Bolley, J. Camus: Gs (Ω, P1, . . . , Pℓ) ⊂

Gs(Ω), with s-Gevrey coefficients hypothesis ([10]).

After the celebrated theorem of L. Hörmander on hypoellipticity of second order p.d,o,

with real coefficients (particularly sums of squares), appeared in 1967 ([28]), the question

of further regularity properties of such operators raised and many mathematicians worked

on. There are many papers which appeared in the seventies and eighties about analytic-

Gevrey regularity of solutions or of analytic-Gevrey vectors (see survey [10]). There was a

result of G. Métivier (1978) opening a new window of research about non-elliptic operators

[35]:

Theorem 3.2. Let P be a p.d.o. with s-Gevrey coefficients in ω, s > 1 , then there is

u ∈ Gs (ω, P ), ( x0 ∈ ω where P is not elliptic), such that u /∈ Gs(ω).

This result gave rise to two kinds of questions: what about the case s = 1?, and, in the

case s > 1, what is the best s′ such that Gs (ω, P ) ⊂ Gs′(ω)?

Researching p.d.o’s, non elliptic, with analytic coefficients which satisfy the Kotake-

Narasimhan property, M. S. Baouendi and G. Métivier proved, in 1982, the following

theorem:

Theorem 3.3. ([3]) Let P a p.d.o. in Ω, open set in Rn, with analytic coefficients,of

principal type, meaning:

|pm(x, ξ)| + |dξpm(x, ξ)| ≠ 0, (x, ξ) ∈ Ω × (Rn)∗ \ {0}.

Then G1 (Ω, P ) = G1(Ω), if P is hypoelliptic.
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Remark 3.2. The inclusion G1(Ω) ⊂ G1 (Ω, P ) is the easy part, as it is common with

many other operators. The inclusion G1 (Ω, P ) ⊂ G1(Ω) is a consequence of the two hy-

potheses above (principal type and hypoellipticity) We recall that for a differential operator

P of principal type to be hypoelliptic in Ω, it is necessary and sufficient that the following

condition holds for all (x0, ξ0) ∈ T ∗Ω \ {0}: if either pm(x0, ξ0) ̸= 0 or pm(x0, ξ0) = 0

and for all z ∈ C such that dξℜ (zpm) (x0, ξ0) ̸= 0, the function ℑ (zpm), restricted to the

bicharacteristic strip of ℜ (zpm) through (x0, ξ0) has a zero of finite order at that point.

In fact they gave, in the case s > 1, a precise s′ such that Gs (Ω, P ) ⊂ Gs′(Ω), with

s′ related to s, via a relation depending on the order m, and the even order of vanishing

evoked above, relation giving the equality for s = 1 as known from Theorem 3.3 above,

but s′ > s, which is in line with G. Métivier result (Theorem 3.2).

Of course, when one works on, say a compact manifold, analytic or Gevrey, M, with a

p.d.o. elliptic with analytic-Gevrey coefficients, one may ask for global regularity or for

a local regularity, for an analytic or Gevrey vector. It is immediate from the definitions

that the local regularity implies the global one. But there are operators, in case of non

ellipticity, where it is much easier to prove global analytic or Gevrey regularity but very

hard to do the same in the local case.

Now, let us look at a finer notion, the microlocal one; it is finer as we look the regularity on

conic neighborhoods of points in Ω× (Rn)∗ \{0} of the form ω×V , x0 ∈ ω, ξ0 ∈ V , where

V can be assumed, moreover, convex (a useful property). More precisely we examine the

behavior, the rapidly decreasing, of the Fourier transform of the Gevrey vector u in V ,

i.e. we ask if the inequalities in (2.8) are true only for ξ ∈ V and not for any ξ ∈ Rn (we

recall that in the case s > 1 we consider φ̂u, with φ ∈ Gs
0(ω), and in the case s = 1 we

consider the suitable sequence ûN , where uN are in D (ω̃), uN = u in ω, ω ⋐ ω̃ ⋐ Ω.)

Definition 3.1. Let u ∈ D ′(Ω), Ω open subset of Rn, we shall say that u ∈ Gs(ω, V ),

s ≥ 1, ω open subset strictly in Ω, ω ⋐ Ω and V convex cone in (Rn)∗ \ {0}, if and only

if (2.8) is valid for the sequence uNE ′(Ω), which is equal to u in ω, for some constant C

and for all ξ ∈ V .

Equivalently we shall say that u ∈ Gs(ω, V ), s ≥ 1, if and only if there are (ψN), an
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Ehrenpreis sequence relative to the couple (ω,Ω), Proposition 2.1, and (ΘN), an Andersson

sequence relative to the couple (V, V1), V ⋐ V1, Proposition 2.2, such that

|ΘN(D)DαψN(x)u(x)| ≤ C |α|+1N s|α|, ∀α ∈ Nn with |α| ≤ N.

Then the Theorem 3.1 is true, microlocally as follows:

Theorem 3.4. Let (x0, ξ0) ∈ Ω×(Rn)∗\{0} and P elliptic at (x0, ξ0) with G
s coefficients,

s ≥ 1, near x0. Then there exists a conic neighborhood of (x0, ξ0), ω × V , such that

Gs(ω, P ) ⊂ Gs(ω, V ).

Let us just mention that there is, moreover, a finer notion of Gevrey vectors microlocally

defined, leading to the notion of Gs-wave front set of a distribution u, with respect to a

p.d.o. P (see [10]), and some results are given in that setting. Before going further we

recall some operators defined with association to functions given on Ω × (Rn)∗ \ {0} by:

(Pv) (x) = (2π)−n

∫
eixξp(x, ξ)v̂(ξ) dξ, v ∈ D(Ω),

if say |p(x, ξ)| ≤ C|ξ|M ( in that case , Pv(x) is well defined as v ∈ S (Rn)). In the case

p = ξj is the derivative of v with respect to xj. More generally, if p(x, ξ) is the symbol of

a partial differential operator: p(x, ξ) =
∑
|α|≤m

aα(x)ξα, then

(2π)−n

∫
eixξp(x, ξ)v̂(ξ) dξ = (2π)−n

∫
eixξ

∑
|α|≤m

aα(x)ξαv̂(ξ) dξ

=
∑
|α|≤m

aα(x)(2π)−n

∫
eixξD̂αv(ξ) dξ =

∑
|α|≤m

aα(x)
(
F−1FDαv

)
(x) = Pv(x).

4. The case of systems of smooth vector fields

There are two cases to distinguish, the real and the complex case.

a) The case of real vector fields: we introduce that case in the subsection 2.1.c)

i.e. (X0, X1, . . . , Xr) with Xj real, j = 0, . . . , r, defined on Ω ⊂ Rn. We saw that

in case (X) = (∂x1 , . . . , ∂xn) in Ω then, clearly: Gs (Ω, (X)) = Gs (Ω), s ≥ 1. The

first less clear fact is that if the smooth vector fields Xj, j = 0, . . . , r, span all

tangent space at every point of ω ⊂ Ω and if the coefficients are in Gs, s ∈ [1,+∞],
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then one has Gs (ω, (X)) = Gs (ω): this is a direct consequence of the fact that

any ∂xk
is a linear combination of the Xj’s in a neighborhood U at any given point

in ω, with Gs(U)-coefficients. Then one uses that Gs (ω) =
⋃
U

Gs(U).

We recall that, in this last case (X) is clearly elliptic. We saw in subsection 2.4,

Definition 2.2, the Poisson bracket of two functions (smooth) in Ω × (Rn)∗ \ {0}.

To any vector field Xj, j = 0, . . . , r, is associated the function X̃j(x, ξ), defined by

replacing ∂xℓ
by ξℓ in the expression of Xj =

∑
ajℓ∂xℓ

, so X̃j(x, ξ) =
∑

ℓ ajℓ(x)ξℓ.

But it is easy to see here that {X̃j, X̃k}(x, ξ) = ˜[Xj, Xk](x, ξ). So, in view in what

we saw in Subsection 2.4, about the functions X̃I , I = (i1, . . . , ip) can be expressed

by the repeated brackets of the vector fields Xj, [Xj, Xk], . . . .

Definition 4.1. The system (X) is of finite type at x0 if, for every ξ ̸= 0 there is

Iξ, such that X̃Iξ(x0, ξ) ̸= 0, with |Iξ| minimal.

As all X̃I are homogeneous of degree 1 with respect to ξ, and using the compactness

of the unit sphere Sn, for any point x at which (X) is of finite type, one may define

the type at x by τx (X) = sup
∥ξ∥=1

|Iξ|. The type of ω ⊂ Ω, with respect to (X) is

τ (ω, (X)) = sup{τx (X) ; x ∈ ω}, finite or infinite.

Theorem 4.1. ([28]) Assume τ (ω, (X)) finite, (X) as above, then

(4.1) ∥v∥σ ≤ C

(
r∑

j=0

∥Xjv∥ + ∥v∥

)
, v ∈ D (ω) ,

with σ = (τ (ω, (X)))−1, C = C (ω, (X)), ω ⋐ Ω.

This is a subelliptic estimate for the system (X). The Theorem was proved by

J.J. Kohn for σ greater in ([31]).

Such estimate gives, after some work the following corollary

Corollary 4.1. Assume moreover that the coefficients of the system (X) are in

Gs (ω). Then Gs (ω, (X)) ⊂ Gσs (ω).

But the question is also: Gs (ω, (X)) = Gs (ω)?

We saw, when we began this section that if the system (X) span Rn, at every
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point of ω, it is true. Otherwise, the known result is the following proved by M.

Damlakhi-B. Helffer and B. Helffer-C. Mattera ([17], [25]):

Theorem 4.2. Assume that (X) is with analytic coefficients in ω and that τ (ω, (X))

is finite. Then G1 (ω, (X)) = G1 (ω).

Remark 4.2. One of the two above references gave a finer version where the

hypothesis on the notion of Gevrey vectors of (X) is refined.

b) The case of complex vector fields: Generally in that case the vector fields are

denoted Lj’s. Here we cite two papers, concerning those dealing with involutive

structure. As we are interested mainly on the p.d.o. side of that structures we

give the form of system (L1, . . . , Lr) defining the structure locally in Rn, we cite

precisely a simple case, (studied in [13]) of tubular structure of corank 1, meaning

that there are coordinates near 0, say (x, t), with x = (x1, . . . , xn−1) such that
Lj = ∂

∂xj
− i ∂φ

∂xj
(x) ∂

∂t
, j = 1, . . . , n− 1, t ∈ R,

φ : ω → R, φ ̸≡ 0; φ(0) = 0; dφ(0) = 0,

ω, neighborhood of 0 in Rn−1
x ; φ : ω → R is open map.

(4.2)

Let us remark that when dφ(0) ̸= 0, the system is elliptic. So the interesting case,

is when dφ(0) = 0, as we assumed. Moreover if φ ≡ 0 in a neighborhood ω of 0,

(L) is not even hypoelliptic, as Lju = 0, for every function of t, u = u(t) in ω. In

the case φ real analytic, we know (S.  Lojasiewicz, [34]) thatthere exists θ ∈ [1
2
, 1[, and a small neighborhood ω of 0 such that:

|φ(x)|θ ≤ C|dφ(x)|, for some C > 0, ∀x ∈ ω.
(4.3)

Then in [13], the authors proved the following, but here the used norm is not the

L2-norm; the one used is L∞
t (L1

x) : ∥|v∥| = sup
t

∥v(x, t)∥
L1
x
, v ∈ D .

Theorem 4.3. Let (L) as in (4.2) and (4.3). Then, given s ≥ 1, there exists a

neighborhood ω × I of (0, 0) in Rn = Rn−1
x × Rt such that

Gs (ω × I, (L)) ⊂ Gs/(1−θ) (ω × I) .

For general involutive structures see [13] and [41].
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5. Second order partial differential operators

The first result, at my knowledge, in this question of analytic-Gevrey vectors, I know

concerning p.d.o.’s of second order, outside elliptic ones, was in the case of global result

by N. Braun Rodrigues, G. Chinni, P. D. Cordaro, and M. R. Jahnke, result which is a

part of a paper they published in [11]. They considered on a product of two tori Tm×Tn,

a special subclass of the class of Hörmander’s operators.

5.1. The local case.

We recall that in an open set Ω ⊂ Rn, a Hörmander operator is associated to the smooth

real vector fields (Xj):

(5.1) P =
r∑

j=1

X2
j +X0 + c,

where (Xj), j = 0, . . . , r, given in Section 4, a), and c is a smooth complex function on

Ω. Then

Theorem 5.1. (L. Hörmander, [28]) For any ω ⊂ Ω, if τ (ω,X) is finite, then P is

hypoelliptic in ω.

There was, in the years following the publication of L. Hörmander, an explosion of articles

in many fields in Mathematics concerning the operators (5.1). Let us come back to the

asking for analytic-Gevrey vectors of such operators, more precisely the result I spoke

about for a subclass of operators (5.1) defined on the product Tm
x ×Tn

t = T(x,t) of dimension

m+ n. In [11], the authors considered (globally) on T(x,t) the following real vector fields,

with analytic coefficients:
Xj =

n∑
ℓ=1

ajℓ(t)
∂

∂tℓ
+

m∑
p=1

bjp(t)
∂

∂xp
, j = 1, . . . , r, ajℓ, bjp ∈ G1 (Tn

t ) ;

P =
r∑

j=1

X2
j .

(5.2)
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Theorem 5.2. ([11]) Let P as in (5.2). Assume that the vector fields
n∑

ℓ=1

ajℓ(t)
∂

∂tℓ
,

j = 1, . . . , r, span Tt (Tn
t ), ∀ t ∈ Tn and τ

(
T(x,t); (X)

)
is finite, denoted by ρ, (X) =

(X1, . . . , Xr). Then, for any s ≥ 1, Gs
(
T(x,t), P

)
⊂ Gρs

(
T(x,t)

)
.

After that, I worked on the Gs-vectors, s ≥ 1, for general Hörmander’s operators, in local

context, in two articles, the second one [19] giving precisions in the case of what I called

Hörmander’s operators of first kind, and [21] in which I proved the following theorem

Theorem 5.3. Let P as in (5.1) such that X0 =
r∑

j=1

ajXj, and τ (ω; (X1, . . . , Xr)) = ρ,

with Xj and aj in Gs (ω), s ≥ 1. Then Gs (ω, P ) ⊂ Gρs (ω).

Remark 5.2. So Theorem 5.3 generalizes Theorem 5.2 in two directions: first for a class

of Hörmander’s operators containing in particular “Sums of squares”, and secondly as the

result is local (we saw before that the local case implies the global one).

5.2. The microlocal case for operators as in Theorem 5.1.

By the microlocal case here, we mean that if P is such that τ ((x0, ξ0); (X)) = ρ, then

what about Gs (ω, (X)), with ω small neighborhood of x0?

Now, as the type-hypothesis is microlocal, the hope is to obtain s′-Gevrey regularity in a

conic neighborhood of (x0, ξ0). In a work published in 2022, [15], G. Chinni and I obtained

the following

Theorem 5.4. Let P as in (5.1) such that X0 =
r∑

j=1

ajXj, with Xj’s and aj’s in G
1 (ω).

Assume τ ((x0, ξ0); (X)) = ρ, x0 ∈ ω, ξ0 ̸= 0. Then there exists a conic neighborhood

ω0 × V0 of (x0, ξ0) such that G1 (ω0, P ) ⊂ Gρ (ω0, V0).

For the proof of Theorem 5.4, we used heavily the F.B.I. transform, introduced by J. Bros

and D. Iagolnitzer ([12]) and generalized in many papers ([6], [7], [8], [41]). Moreover we

used the trick relating analytic hypoellipticity with regularity of analytic vectors: more

precisely, let P =
∑
X2

j for example and assume that u = u(x) is an analytic vector of P

in ω ⊂ Rn
x. Introduce Q = D2

t + P on I × ω, Iε = (−ε, ε). Define U on I × ω by:

U(t, x) =
∑
k≥0

t2k

(2k)!
P ku(x).
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Using the fact that ∥P ku∥ω ≤ Ck+1(2k)!, one sees that the series converges in Iε × ω

for ε small enough. The distribution U satisfies QU = 0 and U(0, x) = u(x), as U is

continuous in t. Assuming analytic hypoellipticity of Q, we get U analytic in I × ω. So

we get analyticity of u. But this assumption is not always true: in general this is false [2]

(For example P = ∂2x1
+ x21∂

2
x2

, P is analytic hypoelliptic). Our proof consists to relate

the two properties (x0, ξ0) /∈ WFρ(u) and (0, x0; 0, , ξ0) /∈ WFρ(U).

6. Second order p.d.o. with non negative characteristic form

These operators are more general and are as follows:

P (x,D) =
n∑

j,ℓ=1

aj,ℓDjDℓ +
n∑

j=1

ibjDj + c, with smooth and real coefficients

p(x, ξ) =
n∑

j,ℓ=1

aj,ℓ(x)ξjξℓ +
n∑

j=1

ibj(x)ξj + c(x), Dj =
1

i

∂

∂xj
.

The matrix (ajℓ) ≥ 0

(
i.e.

n∑
j,ℓ=1

aj,ℓ(x)ξjξℓ ≥ 0 ∀ ξ ∈ Rn

)
.

(6.1)

The operator of the form (6.1) cannot always be written of the form (5.1), in the preceding

section. In order to give a similar hypothesis to one given in the case of Hörmander

operators, O.A. Olĕinik and E.V. Radkevič who introduced and studied hypoellipticity of

such operators, defined it as follows. Let p0(x, ξ) be the principal symbol, and define
p0(x, ξ) =

n∑
j,ℓ=1

aj,ℓ(x)ξjξℓ, q(x, ξ) =
n∑

j=1

ibj(x)ξj,

pj(x, ξ) = ∂
∂ξj
p0(x, ξ), pj(x, ξ) = Djp0(x, ξ), j = 1, . . . , n.

(6.2)

The functions pj are homogeneous of order 1 with respect to ξ. The functions pj are

homogeneous of order 2 with respect to ξ. We consider now the following new system of

pseudodifferential operators homogeneous of order 1 with respect to ξ.

(6.3) pn+j is the principal symbol of Λ−1pj, j = 1, . . . , n.

So we have the following system of 2n+ 1 pseudodifferential operators of order 1

(6.4) {p1, . . . , p2n, q}.
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Our hypothesis less general than that Olĕinik-Radkevič, will be based only on the symbols

{p1, . . . , p2n}.

(6.5) If (p) = {p1, . . . , p2n}, we assume that τ ((x0, ξ0), (p)) = ρ < +∞.

In [22] I proved the local result assuming that

τ(ω) = sup{τ ((x0, ξ0), (p)) ; (x0, ξ0) ∈ ω × (Rn)∗ \ {0}} = ρ < +∞.

Recently G. Chinni and I proved the following microlocal version of the Gevrey regularity

for the Gevrey vectors of P given in (6.1):

Theorem 6.1. Let P as in (6.1) with coefficients in Gs(ω). We assume that τ ((x0, ξ0), (p)) =

ρ, where (p) is defined in (6.5) and (x0, ξ0) ∈ ω×(Rn)∗\{0}, then Gs (ω, P ) ⊂ Gρs (ω̃, V ),

where ω̃ × V is some conic neighborhood of (x0, ξ0).

Sketch of the proof: it is composed in several parts:

i) Adapted basic estimate for operators in (6.1), I gave in [22]

Proposition 6.1. Let P as in (6.1) on Ω. Let Ω1, with Ω1 ⋐ Ω, Λ−1 elementary

pseudodifferential operators with symbol (1 + |ξ|2)−1/2
, ψ ∈ D (Ω), ψ = 1 on Ω1

and Em = DmψΛ−1, E0 = I, m = 1, . . . , n. Then there exists a constant C > 0

such that

(6.6)
n∑

j=1

(
∥P jv∥2 + ∥Pjv∥2−1

)
≤ C

(
n∑

m=0

|(EmPv,Emv)| + ∥v∥2
)
, ∀v ∈ D (Ω1) ,

where the norms ∥ · ∥t are norms in Sobolev spaces H t, t ∈ R.

ii) Microlocal subelliptic estimate of P. Bolley, J. Camus and J. Nourrigat

Proposition 6.2. ([9]) Let P as in (6.1). Assume τ ((x0, ξ0), (p)) = ρ ∈ N∗. Let

ω̃0 be an open neighborhood of ξ0, ω̃0 ⊂ Rn, then there exist a pseudodifferential

operator of order 0 elliptic in (x0, ξ0), q(x,D) with q(x,D) ≡ 0 for x /∈ ω0, ω0

neighborhood of x0 such that ω0 ⋐ ω̃0, and C > 0, such that:

(6.7) ∥qv∥ 1
ρ
≤ C

(
2n∑
j=1

∥pjv∥ + ∥v∥

)
∀v ∈ D (ω̃0) , |q| ≥ c0 on ω0 × V0,
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where V0 conic neighborhood of ξ0.

One remarks that it is sufficient to say: there exists q, with q(x0, ξ0) ̸= 0, which

implies the existence of ω̃0×V0, conic around (x0, ξ0). We also recall here that the

pseudodifferential q(x,D) is defined by

(6.8) q(x,D)v(x) = (2π)−n

∫
eixξq(x, ξ)v̂(ξ) dξ, v ∈ D (ω0) .

In order to use (6.6), (6.7), we first proved the following proposition:

Proposition 6.3. Let P as in Proposition 6.2, with all notations ω̃0, V0. Let now

ψ ∈ D(ω0) and Θ = Θ(ξ), with support in V1, with V 1 ⋐ V0, 0 ≤ Θ ≤ 1. Then,

there exist C0, C1 such that

(6.9) ∥ψΘ(D)v∥21
ρ
≤ C0

(
2n∑
j=1

∥pjv∥2 + ∥v∥2
)

≤ C1

(
n∑

m=0

|(EmPv,Emv)| + ∥v∥2
)
, ∀ v ∈ D (ω̃0) .

iii) Microlocal sequences associated to an analytic-Gevrey vector:

Given s-Gevrey vector u, s ≥ 1, in ω ⋐ Ω, x0 ∈ ω, our goal is to show

that it is in Gρs(ω̃, Ṽ ), where ω̃ × Ṽ is some conic neighborhood of (x0, ξ0), with

τ ((x0, ξ0), (p)) = ρ ∈ N∗.

In that way, we consider two Ehrenpreis sequences (φN) and (ψN), N ∈ N∗, as-

sociated to couples (ω0, ω1), (ω1, ω2), with ω0 ⋐ ω1, ω1 ⋐ ω2, ω2 ⋐ ω̃0, ω̃0 as in

Proposition 6.2, and an Andersson sequence (ΘN) associated to the couple (V1, V2),

V 1 ⋐ V2, V 2 ⋐ V0, where V0 is as in (6.7), and the couples seen in Proposition 2.1,

(2.13), with the precision in (2.14).

Our microlocal sequences are defined as follows. For any multiple (αβ, γ, δ, k,N) ∈

(Nn)4 × N× N∗, we consider ψ
(β)
N Θ

(γ)
N Dαφ

(δ)
N P ku, u given above; of course the in-

teresting case is when |α| ≤ N , |β| ≤ N , |γ| ≤ N , |δ| ≤ N , as the estimates in

(2.14) are valid in that case it will be the case in all the paper other more precise

relations between the parameters α, β , γ, δ, k and N will be given later. Now
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(αβ, γ, δ, k) ∈ (Nn)4 × N, we consider the sequence:

N ∈ N∗ → ψ
(β)
N Θ

(γ)
N Dαφ

(δ)
N P ku.

The goal is to give suitable estimates of the L2-norms of the terms of the sequence,

which will imply the needed result.

Remark 6.1. The operator ψ
(β)
N Θ

(γ)
N Dα is a pseudodifferential operator of or-

der |α| − |γ|, whose symbol is ψ
(β)
N (x)Θ

(γ)
N (ξ)ξα. Moreover, from the choice of

(ω0, ω1, ω2), ψ
(β)
N Θ

(γ)
N Dαφ

(δ)
N P ku ∈ D (ω̃0).

iv) Application of the estimate (6.9) to the functions ψ
(β)
N Θ

(γ)
N Dαφ

(δ)
N P ku = v (From

the last line in Remark 6.1, as v ∈ D (ω̃0) we can apply (6.9)):

(6.10) ∥ψΘ(D)ψ
(β)
N Θ

(γ)
N Dαφ

(δ)
N P ku∥21

ρ

≤ C1

(
n∑

m=0

∣∣∣(EmPψ
(β)
N Θ

(γ)
N Dαφ

(δ)
N P ku,Emψ

(β)
N Θ

(γ)
N Dαφ

(δ)
N P ku

)∣∣∣
+∥ψ(β)

N Θ
(γ)
N Dαφ

(δ)
N P ku∥2

)
.

Now if we know a bound for the last term, and one for the sum in the second

member we get a bound of the norm in H1/ρ. So we gain 1
ρ

step. The idea

is to make a suitable manipulation of the term EmPψ
(β)
N Θ

(γ)
N Dαφ

(δ)
N P ku in order

to get the term Emψ
(β)
N Θ

(γ)
N Dαφ

(δ)
N P k+1u, modulo good terms, precisely terms in

[P, ψ
(β)
N Θ

(γ)
N Dαφ

(δ)
N ], which is a bracket of two pseudodifferential operators.

a) As Em’s are n+ 1 pseudodifferential operators of order 0, then the L2-norms

of Emv are dominated by ∥ψ(β)
N Θ

(γ)
N Dαφ

(δ)
N P k+1u∥, which is quite a good term

in the induction process we will use.

b) The last term, the bracket, will be handled by using expansions of brackets of

pseudodifferential operators, at a suitable order, which depends on the order

|α|−|γ| of the pseudodifferential operator in Remark 6.1: so there are A(α, γ)

terms in the sum in the expansion, and a remainder of order |α| − |γ|+ 1 (as

the bracket is of order |α| − |γ| + 1). If R|α|−|γ|+1 is such a remainder, then

∥R|α|−|γ|+1g∥ ≤ C(α, β, γ, δ)∥g∥L2(ω1), where g = P ku.
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The goal is to estimate all L2-norms in the sum, the number A(α, γ) and the

constant C(α, β, γ, δ).

Once this (quite long) step is done, we do the same for the other steps,

gaining 1
ρ

in the Sobolev norms at each step. We apply estimate (6.9) to

suitable function at each of the ρ steps, finally getting a bound of H1-norm.

From this process we get estimates of ∥ψ(β)
N Θ

(γ)
N Dαφ

(δ)
N P ku∥ ℓ

ρ
for ℓ = 1, . . . , ρ.

A crucial theorem we obtain is

Theorem 6.2. Under all above notations and hypotheses, there exist two

constants A and B such that if:

(1)0


∥ψ(β)

N Θ
(γ)
N Dαφ

(δ)
N P ku∥ ≤ A

|σ|+1
1 B

2ρm+|γ|+1
1 N s[ρm+|γ|+σ],

for 2ρ|α| − (2ρ− 1)|γ| + σ ≤ N, where σ = |β| + |δ| + 2k,

m = |α| − |γ| and |γ| ≤ |α|.

(6.11)

Then one has, for 1 ≤ ℓ ≤ ρ

(1)p


∥ψ(β)

N Θ
(γ)
N Dαφ

(δ)
N P ku∥ ℓ

r
≤ A

|σ|+ℓ+1
1 B

2ρm+|γ|+ℓ+1
1 N s[ρm+|γ|+σ+ℓ],

for 2ρ|α| − (2ρ− 1)|γ| + σ ≤ N − 2ℓ and |γ| ≤ |α|.
(6.12)

Corollary 6.1. There exist two constants A and B such that the property

(6.11) is true.

Finally, using the Corollary we deduce the following:

Theorem 6.3. Given (φN), (ΘN) as above, there exists a constant A such

that:

(6.13) ∥ΘND
αφNu∥v ≤ A|α|+1Nρs|α| |α| ≤ N.

This implies that u ∈ Gρs(ω̃, Ṽ ) and then (x0, ξ0) /∈ WFρs(u).
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[23] S. Fürdös The Kotake-Narasimhan Theorem in general ultradifferentiable classes (Preprint)

https://arxiv.org/abs/2212.11905.

[24] L. Ehrenpreis, Solution of Some Problems of Division. Part IV. Invertible and Elliptic Operators,

Amer. J. Math. 82(3) (1960), 522–588.

[25] B. Helffer and CI. Mattera, Analyticite et iteres reduits d’un systeme de champs de vecteurs,

Commun. Partial Diff. Eq. 5, No. 10 (1980), 1065–1072.

[26] G. Hoepfner and R. Medrado, The FBI transforms and their use in microlocal analysis, J.

Funct. Anal. 275(5) (2018), 1208–1258.

[27] G. Hoepfner and A. Raich, Global Lq Gevrey Functions, Paley-Weiner Theorems, and the FBI

Transform, Indiana Univ. Math. J. 68(3) (2019), 967—1002.
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