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Abstract. In this brief note we introduce Harnack-type inequalities, which are typical

in the context of singular nonlinear parabolic operators, and describe their state of art

in the context of anisotropic operators.

Sunto. In questa nota breve presentiamo alcune disuguaglianze integrali di Harnack

che sono tipiche di operatori parabolici nonlineari singolari, e descriviamo il loro stato

dell’arte nel contesto di operatori singolari che presentano anisotropie.
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1. Harnack inequalities for isotropic equations

The history of Harnack estimates for parabolic operators goes back to the fifties when

Hadamard [55] and Pini [64] extended the Harnack inequality to the heat equation, using

representation formulas. We refer to [7] and [57] for an historic insight on the origins of

inequalities bearing the name of Axel Von Harnack. In the 1960’s several authors gave

their important contributions to this topic, namely Moser [62] extended the theory to

linear parabolic equations with measurable coefficients; Ivanov [56] worked within the

setting of quasilinear second order parabolic equations, while Serrin [71] and Trudinger

[77] gave significant contributions within the nonlinear setting.
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ISSN 2240-2829.

56



A BRIEF NOTE ON HARNACK-TYPE ESTIMATES FOR SINGULAR PARABOLIC OPERATORS 57

The extension of Harnack estimates to nonlinear evolutionary equations such as the p-

Laplacian, where the prototype given by

(1) ut = div
(
|Du|p−2Du

)
, p > 1

and to the Porous Medium equations, whose prototype is

(2) ut = div
(
um−1Du

)
, m > 0

turned out be be much more involved. For these equations, the behavior of solutions is very

different when the equation (1) (and equation (2)) describes a slow diffusion (degenerate

case), i.e. for p > 2 (m > 1) or a fast diffusion (singular case), i.e. 1 < p < 2 (0 < m < 1).

In the case of slow diffusion, the disturbances have finite speed of propagation, meaning

that the support of an initial datum u0 ∈ Co(Br) evolves compactly along the flow, i.e.

supp u(·, t) ⊆ Br(t) for some radius r(t) > 0 depending on the initial datum; moreover,

the initial mass is conserved. On the other hand in the case of fast diffusion, solutions

can extinguish in finite time, meaning that there exists a time T ∗ > 0 such that for all

t > T ∗ we have u(·, t) ≡ 0. The extinction in finite time, when taken irrespective of the

size of the spatial domain, is clearly not compatible with the attainment of a pointwise

Harnack inequality (see for instance [30] Chap VII) and the total mass is obliged to decay

toward extinction too.

Within the fast diffusion range, equations (1) and (2) evolve in a: subcritical regime,

for 1 < p ≤ 2N/(N + 1) and 0 < m ≤ 1 − 2/N , respectively; supercritical regime, for

2N/(N + 1) < p < 2 and 1 − 2/N < m < 1, respectively. The aforementioned singular

equations and related estimates are the interest of this note.

Harnack-type estimates for nonlinear isotropic equations

In what follows we present, for both equations (1) and (2), several Harnack-type estimates.

We start by presenting a (pointwise) Harnack inequality, first obtained by DiBenedetto

and Kwong [36] within the supercritical range of the slow diffusion regime (see [33] for a

detailed study on this topic).
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Theorem 1.1. [(Pointwise) Harnack inequality] Let u be a continuous, nonnegative,

local weak solution to (1) in ΩT = Ω × (0, T ) ⊂ RN × (0,+∞) for, either p > 2 or

2N/(N + 1) < p < 2. Consider a point (xo, to) ∈ ΩT such that u(xo, to) := uo > 0. Then

there exists positive constants C and γ, depending on the data, such that for all cylinders

B4ρ(xo)× (to − C(4ρ)p u2−p
o , to + C(4ρ)p u2−p

o ) ⊂ ΩT

(3) γ−1 sup
Kρ(xo)

u( · , to − Cρp u2−p
o ) ≤ uo ≤ γ inf

Kρ(xo)
u( · , to + Cρp u2−p

o ).

Theorem 1.2. [(Pointwise) Harnack inequality] Let u be a continuous, nonnegative,

local weak solution to (2) in ΩT = Ω × (0, T ) ⊂ RN × (0,+∞) for, either m > 1 or

1 − 2/N < m < 1. Consider a point (xo, to) ∈ ΩT such that u(xo, to) := uo > 0. Then

there exists positive constants C and γ, depending on the data, such that for all cylinders

B4ρ(xo)× (to − C(4ρ)2 u1−m
o , to + C(4ρ)2 u1−m

o ) ⊂ ΩT

(4) γ−1 sup
Kρ(xo)

u( · , to − Cρ2 u1−m
o ) ≤ uo ≤ γ inf

Kρ(xo)
u( · , to + Cρ2 u1−m

o ).

Both estimates (3) and (4) formally recover the estimate known for the heat equation

(take either p = 2 or m = 1), although being attained in a different time than to (see for

instance [6], [62], [77]). The main difference is related to the waiting time that depends

on uo itself. Notice also that for small uo, the time-shift reduces in the case of the singular

range, while it increases in the degenerate one. This precise attribute of the estimates in

the case of singular/degenerate equations is called intrinsic scaling. We refer to [78] for a

simple introduction to this subject and to [38] for an historical and technical overview of

the theory of Harnack inequalities for degenerate/singular operators in divergence form.

Adding to this, nonnegative solutions to singular operators behaving like (1) or like (2)

in their supercritical regimes, also satisfy some Harnack-type estimates, namely L1 − L1

estimates (also known in the literature as integral Harnack-type estimates) and Lr − L∞

estimates, for r ≥ 1.

Theorem 1.3. [Harnack-type estimates for (1)] Let u be a nonnegative, local weak

solution to (1) in ΩT , for 1 < p < 2. Let ρ > 0 and λ = N(p−2)+p. Then, there exists a

positive constant γ, depending only on p,N , such that for any cylinder K2ρ(y)×[s, t] ⊂ ΩT
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we have

(5) sup
s<τ<t

∫
Kρ(y)

u(x, τ) dx ≤ γ inf
s<τ<t

∫
K2ρ(y)

u(x, τ)dx+ γ

(
t− s

ρλ

) 1
2−p

.

If moreover for r ≥ 1 we assume λr = N(p− 2) + pr > 0 and u ∈ L∞
loc, then there exists

a constant γr = γr(N, p, r) > 0 such that

(6) sup
Kρ(y)×[(s+t)/2,t]

u ≤ γr(t− s)−
N
λr

(∫
K2ρ(y)

ur(x, s) dx

) p
λr

+ γr

(
t− s

ρp

) 1
2−p

.

Theorem 1.4. [Harnack-type estimates for (2)] Let u be a nonnegative, local weak

solution to (2) in ΩT , for 0 < m < 1. Let ρ > 0 and λ = N(m−1)+2. Then, there exists

a positive constant γ, depending only on N , such that for any cylinder K2ρ(y)× [s, t] ⊂ ΩT

we have

(7) sup
s<τ<t

∫
Kρ(y)

u(x, τ) dx ≤ γ inf
s<τ<t

∫
K2ρ(y)

u(x, τ)dx+ γ

(
t− s

ρλ

) 1
1−m

.

If moreover for r ≥ 1 we assume λr = N(m− 1) + 2r > 0 and u ∈ L∞
loc, then there exists

a constant γr = γr(N, r) > 0 such that

(8) sup
Kρ(y)×[(s+t)/2,t]

u ≤ γr(t− s)−
N
λr

(∫
K2ρ(y)

ur(x, s) dx

) 2
λr

+ γr

(
t− s

ρp

) 1
1−m

.

The constant γr blows up if either λr tends to zero or to infinity. From these estimates

one can obtain interesting results. In fact, by letting ρ ↑ ∞ inequalities (5) and (7)

show that the mass is non-increasing; these same integral Harnack-type estimates allow

to quantitatively understand the decay of the L1
loc-norm of nonnegative solutions to (1)

and (2) toward their extinction. Indeed, if in (5) one considers T ∗ > 0 a time of extinction

for a nonnegative solution u of (1), then the decay of the mass toward extinction is obliged

by (5) to follow the law

(9) ∥u(·, τ)∥1,Kρ ≤ γ

(
T ∗ − τ

ρλ

) 1
2−p

, λ = N(p− 2) + p

for a positive constant γ(N, p) depending only on the data. Hence the local mass ∥u(·, τ)∥L1(Kρ)

of the solution decays (to zero) as a power of the extinction time (T ∗−τ)1/(2−p). A similar
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reasoning can be applied to the nonnegative solutions to the fast diffusion equation (2)

and then get the decay of the mass

(10) ∥u(·, τ)∥1,Kρ ≤ γ

(
T ∗ − τ

ρλ

) 1
1−m

, λ = N(m− 1) + 2 .

This approach, presented in [36], is only one of the possible ways to obtain the decay of

the mass (and even of the supremum of u that decays toward extinction) of the solutions

to (1) and (2). In [65], [66], [67], [68] Porzio shows that decay estimates of Lr-L∞ type

are indeed a consequence of evolutionary energy inequalities rather than a property of

being a solution to a particular PDE. Another possibility to obtain the aforementioned

decay estimates, that in nonlinear semigroup theory bear also the name of ultracontractive

bounds, relates to the use of a certain logarithmic Sobolev inequality. Being this latest

topic, the semigroup theory, out of the scope of this note we briefly refer to some works

in which the reader can get to know more about it [10], [11], [12], [13], [29], [76], [80], [81].

The years 2008-2011 have been very fruitful in terms of obtaining Harnack-type estimates

for general singular operators shaped upon (1) and (2). Indeed, in [34] DiBenedetto,

Gianazza and Vespri derived the singular pointwise Harnack estimate (3) for general

operators, with an approach that avoids the comparison principle; there, given the impos-

sibility (by the extinction phenomenon) of having a pointwise Harnack inequality as in

(4), Harnack-type estimates for the subcritical range 1 < p < 2N/(N + 1) were left as an

open problem. In the same year Bonforte, Iagar and Vázquez ([12] and [13]) presented,

for the prototype equations (2) and (1), the correct form of Harnack-type inequality for

the subcritical range; among various other interesting properties of the solutions to these

very singular equations. The Harnack estimate obtained is similar to (3), but with a

constant γ that depends on some ratio of the Lp-norm of u. Finally, in [35], DiBenedetto

Gianazza and Vespri showed the validity of the aforementioned Harnack-type inequality

for general operators, again with a technique that avoids the use of a comparison princi-

ple. Moreover, even if weaker than (3), the subcritical Harnack estimate derived implies

the Hölder continuity of the solutions (see [33], [35]).
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By working with a homogeneous quasi-linear equation

ut = divA(x, t, u,Du), (x, t) ∈ RN × R+
0

(whose prototype is equation (1)), within the supercritical range 2N/(N + 1) < p < 2,

Recalde and Vespri [69] obtained an estimate from below to its’ solutions by means of

the Barenblatt solution to a related Cauchy problem. In [70], the same authors improved

the previous result and showed how to adapt it to the solutions to the porous medium

type equation, for (N − 2)/N < m < 1. In a similar setting but now considering p > 2,

Bögelein, Ragnedda, Vernier and Vespri [8] obtained optimal kernel estimates and proved

existence and sharp pointwise estimates from above and from below for the fundamental

solutions.

Harnack-type estimates for doubly nonlinear equations

The singular equation

(11) ut − div
(
D lnu

)
= 0,

that can be seen as the limit case of the Porous Medium type equation when m → 0+, was

studied in [26] by Davis, DiBenedetto and Diller where they proved a priori estimates.

Some years later, DiBenedetto, Gianazza and Liao [31] proved an intrinsic Harnack-type

inequality to its weak solution. These same authors worked with a logarithmically singular

equation, which was treated as the limit of a family of porous medium equations, for

0 < |m| < 1 (see [32]). Equation (11) can also be seen as a special case of a wider

class of nonlinear evolutionary equations, the so called doubly nonlinear equations, whose

prototype is

(12) ut − div
(
|u|m−1|Du|p−2Du

)
= 0, p > 1,

once we take p = 2 and m = 0. These doubly nonlinear equations (12) were introduced

by Lions [60] and are a natural bridge between (1) and (2). The range of m and p (more

precisely of the sum m + p) brings specific properties to their solutions and characterize

(12) in two major categories: degenerate, when m+ p > 3; singular, when 2 < m+ p < 3.

In the case m+ p = 3 this equation is known as Trudinger’s equation (it was introduced
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by Trudinger in [77]) while finally, when m+ p = 2, we are in the logarithmic case.

Regarding Trudinger’s equation, and apart from his work [77], Gianazza and Vespri in [50]

proved a Harnack inequality, for p > 2, by combining DeGiorgi’s methods with Moser’s

logarithmic estimates; in [58] Kinnunnen and Kuusi, by means of Moser’s approach and

for p > 1, obtained a Harnack inequality considering a more general measure setting

(general Borel measure).

Both pointwise Harnack estimates and Harnack-type estimates to the prototype doubly

nonlinear equation (12) were obtained by Vespri [79] working within the singular setting

3−p/N < m+p < 3; Fornaro and Sosio [45] considered the degenerate range (correspond-

ing to m + p ≥ 3, p ≥ 2 and m ≥ 1); DiBenedetto, Gianazza and Vespri [33] presented

a new way to approach the topic; Fornaro, Sosio and Vespri working for 2 < m + p < 3,

obtained an integral Harnack estimate [46] and a pointwise Harnackype estimate [47] (see

also [48]). More recently, in [9] Bögelein, Heran, Schätzler and Singer proved a Harnack

inequality for the full range of the slow diffusion case, i.e. m > 0, p > 1 and m(p−1) > 1.

As for Harnack estimates for doubly nonlinear logarithmic equations, corresponding to

m + p = 2 and p > 1 (aside from [31]), we refer to the works of Fornaro, Henriques and

Vespri [44]. These same authors (see [42] and [43]) went further on the study of Harnack

estimates by working within the very singular range 3− p < m + p < 2; the logarithmic

case m+ p = 2 seems not to be a threshold anymore.

2. Harnack (type) inequalities for anisotropic equations

All the works presented in the previous section shared a common feature: the parabolic

equations under study were considered in an isotropic framework. By isotropic framework

we address the property of the energy to be homogeneous. When considering (1), and

roughly speaking, this amounts to consider this formulation as the gradient flow of an

energy E : W 1,p(Ω) → R+, such as

u̇+∇E(u) = 0, E(u) = 1

p

∫
Ω

|∇u|p dx, p > 1, Ω ⊂⊂ RN ,

then, E is homogeneous with respect of some power, as in this case E(λu) = λpE(u) can be

easily checked. The formulation of the porous medium diffusion (given by equation (2))
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as a gradient flow requires a more abstract approach (we refer to [1] or [63] for another

interpretation) that uses a different underlying differential structure.

When describing the mathematical physics of a flow through nonhomogeneous media (see

for instance the last chapters of [2] and [16]), the energy E usually loses the above property:

the nonlinearity tangles in a competitive, mixed behavior of the solutions, and much of

the simplest local regularity theory fades into darkness (see for instance [14], [23], [40],

[41]). As an example, consider the sum of energies

E∗(u) =
N∑
i=1

1

pi

∫
Ω

|uxi
|pi dx, pi > 1.

Even for stationary solutions, the nonhomogeneity of E∗ results in minimizers that are

unbounded if the gap between min{pi : i = 1, . . . , N} and max{pi : i = 1, . . . , N} is

too wide (see for instance [49], [61]). To our knowledge, the first to introduce E∗ as sum

of monotone operators was Lions in [60], in the context of well-posedness for abstract

evolution equations.

The study of evolutionary anisotropic equations - equations modeling diffusion processes

which take different forms within each single space direction (e.g. water motion in an

anisotropic porous medium) - has known recent developments in several different topics

and under different settings (such as the definition of solution under taken). For a com-

prehensive insight on the topic of existence of solutions to partial differential equations in

anisotropic Musielak-Orlicz spaces (and some applications) we invite the reader to con-

sult the recent book [16]. Regarding existence and uniqueness we refer to [3], [5], [72] and

[73]; as for qualitative (and quantitative) properties of the solutions apart for what is also

presented in the previous works we refer to [17], [18], [23], [25], [37], [39], [51], [52], [53],

[54], [74], [75], [28] and the references therein.

In what follows we consider two prototypes of these nonhomogeneous equations: the

anisotropic p-Laplacian equation

(13) ut =
N∑
i=1

(
|uxi

|pi−2uxi

)
xi

, pi > 1
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and the anisotropic porous medium equation

(14) ut =
N∑
i=1

(
umi−1uxi

)
xi

, mi > 0,

The quest of deriving Harnack estimates to these particular equations modelling anisotropic

processes proved itself to be very demanding and challenging, thereby several questions

remain unanswered. For instance, to the extent of our knowledge, a pointwise Harnack

inequality as (3) is known only for nonnegative solutions to (13) in the degenerate case

that allows finite propagation of disturbances (2 < pi < p(1 + 1/N), for all i = 1, . . . , N

and p = N(
∑N

i=1 1/pi)
−1, see [23]), and takes the following form

(15)
1

γ
sup

Kρ(xo,M)

u( · , to −M2−p (C2 ρ)
p) ≤ u(xo, to) ≤ γ inf

Kρ(xo,M)
u( · , to +M2−p (C2 ρ)

p)

being M = (u(xo, to)/C1) and γ, C1, C2 positive constants depending only on {N, pi} and

where the space geometry considered reflects the anisotropy of the operator (intrinsic

scaling)

Kρ(xo,M) =
N∏
i=1

{
|xi − xoi| < ρ

p
piM

pi−p

pi

}
.

Observe that in (15) when u(xo, to) is close to zero also the space geometry shrinks in

some directions and expands in the other ones. In the anisotropic case, the aforemen-

tioned intrinsic scaling plays a role (a distinct one) in every single space direction (see for

instances [19], [22], [40]). Although typically parabolic, this method of intrinsic scaling

has also found interests in elliptic problems, see for instance [24] and [59] for a singular

case and [37] for a degenerate case. This same method allowed to prove that solutions

to (13), within the finite propagation range, are Hölder continuous and, when solving the

equation in RN×(−∞, T ), enjoy some interesting properties of rigidity that recall the the-

orem of Liouville in the case of harmonic functions ([18]). Therefore, and in accordance to

the available literature for the isotropic case of (3) and (4), it seems reasonable to expect

that solutions to the singular equations (13) and (14) satisfy a Harnack estimate. This,

however, is still a major open problem. Nevertheless some steps were already taken on

that direction. In [27], Degtyarev and Tedeev proved L1-L∞ estimates for the solutions

of a Cauchy problem evolving the doubly nonlinear degenerate anisotropic equations, for
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β ∈ (0, 1] and pi > 1 + β,

(16)


∂t
(
|u|β−1u

)
−

N∑
i=1

(
|uxi

|pi−2uxi

)
xi
= 0, x ∈ RN , t > 0

|u|β−1u(x, 0) = |uo|β−1uo(x), x ∈ RN .

More recently, in [25] the authors worked with a more general setting than the one pre-

sented above (but whose prototype is precisely the one given above) and, within a standard

geometry, determined (among other estimates) ultra contractive bounds. Feo, Volzone and

Vazquez [40], among other topics such as existence and uniqueness of self-similar funda-

mental solutions, proved symmetrization results (together with a comparison principle)

by which they derived L1-L∞ estimates for the solution of the Cauchy problem (16), with

β = 1, considering all 1 < pi < 2 (fast diffusion). The same authors obtained analogous

results [41] for the solutions of the Cauchy problem

(17)


ut −

N∑
i=1

(
umi−1uxi

)
xi
= 0, x ∈ RN , t > 0,

u(x, 0) = uo(x), x ∈ RN .

within the fast diffusion range 0 < mi < 1, for all i = 1, · · · , N . In [20] the present au-

thors proved several results related to Harnack-type inequalities, namely integral Harnack

type inequalities and L1-L∞ estimates, together with extinction profile toward singular

anisotropic porous medium type equations, for anisotropic evolution operators of the kind

(18) ut − div A(x, t, u,Du) = B(x, t, u,Du) , Ω× (0, T ] ⊂ RN × R+, N > 2

being A = (A1, · · · , AN) and B measurable functions satisfying the structure conditions

(for given constants Co, C1 > 0 and C ≥ 0), for 0 < m1 ≤ · · · ≤ mN < 1,

(19)



A(x, t, u,Du) ·Du ≥ Co

N∑
i=1

miu
mi−1|uxi

|2 − C2

N∑
i=1

umi+1;

|A(x, t, u,Du)| ≤ C1

N∑
i=1

miu
mi−1|uxi

|+ C
N∑
i=1

umi ;

|B(x, t, u,Du)| ≤ C

N∑
i=1

miu
mi−1|uxi

|+ C2

N∑
i=1

umi .
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In [21] the authors and Skrypnik worked with singular anisotropic equations of the form

(18) but now considering a generalization of the anisotropic p-Laplacian equation whose

coefficients satisfy, for all 1 < pi < 2 and given constants Co, C1 > 0 and C ≥ 0,

(20)


Ai(x, t, s, ξ) ξi ≥ Co|ξi|pi − Cpi ;

|Ai(x, t, s, ξ)| ≤ C1|ξi|pi−1 + Cpi−1;

|B(x, t, s, ξ)| ≤
N∑
i=1

C(|ξi|pi−1 + Cpi−1) .

Although different, and for that requiring distinct approaches, these two general cases

(18)-(19) and (18)-(20), treated in [20] and [21] respectively, enjoy the common feature

of being inspired by the techniques and the procedures presented in [33]. The derived

estimates were obtained in three different topological settings: L1
loc(Ω), L

1
loc(Ω)-L

∞
loc(Ω)

and Lr
loc(Ω)-L

r
loc(Ω) backwards in time, and the choice of working within a standard or an

intrinsic geometry, meaning a geometry for which time tangles within the cube’s radius,

played a significant role along the proofs (with an inherent price to be paid). In order

to describe the results, a specification of the geometry is in force: let ρ and t be fixed

positive numbers and define

(21) Kρ =
N∏
i=1

{
|xi| < ρ

p
pi

}
and Kρ(t) =

N∏
i=1

{
|xi| < ρ

p
pi

(
t

ρp

) p−pi
(2−pi)pi

}
.

The set Kρ is referred to the standard anisotropic cube, while Kρ(t) is the intrinsic

anisotropic cube. Notice that when pi ≡ p both cubes correspond to the classical cube

Kρ = {|x| < ρ} of edge 2ρ; all the cubes, regardless their geometry, has volume (2ρ)N .

With these two definitions at hand, the following L1-L1 Harnack-type inequalities were

found, respectively in the two geometries described in (21).

Theorem 2.1. [L1-L1 Harnack-type estimates] Let u be a nonnegative local weak

solution to (1) in ΩT and let ρ, t be positive fixed numbers. Then, the following two

estimates hold true in their respective space configurations.
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1 Let Kρ(t) be defined as in (21). Then, there exists a constant γ(N, pi) > 1 such

that

sup
0<τ<t

∫
Kρ(t)

u(x, τ) dx ≤ γ inf
0<τ<t

∫
2Kρ(t)

u(x, τ) dx+ γ

(
t

ρλ

) 1
2−p

.

2 Let Kρ be defined as in (21). Then, there exists a constant γ(N, pi) > 1 such that

sup
0<τ<t

∫
Kρ

u(x, τ) dx ≤ γ inf
0<τ<t

∫
2Kρ

u(x, τ) dx+
N∑
i=1

(
t

ρλi

) 1
2−pi

.

The main interesting feature is the trade-off between geometry and estimates: if the

standard anisotropic geometry Kρ is taken into account, then the estimate is affected by a

nonhomogeneous right-hand side; if the intrinsic anisotropic geometry Kρ(t) is considered,

the estimate is the same as the p-Laplacean one (5). The price to be paid here is the fact

that as soon as t ↓ 0 the cube Kρ(t) becomes unbounded along some directions, while

shrinking to its centre along the other ones. One consequence of these estimates relates

to the decay of the L1
loc-norm of u: being T ∗ an extinction time for nonnegative solutions

u to (1), within the standard anisotropic geometry one gets

∫
Kρ

u(x, τ) dx ≤ γ
N∑
i=1

(
T ∗ − τ

ρλi

) 1
2−pi

,

while, within the intrinsic anisotropic geometry, the decay is given by∫
Kρ(T ∗−τ)

u(x, τ) dx ≤ γ

(
T ∗ − τ

ρλ

) 1
2−p

.

From the point of view of L1-L∞ Harnack-type estimates one has

Theorem 2.2. [L1-L∞ Harnack-type inequalities] Let u be a nonnegative, locally

bounded, local weak solution to (1) in ΩT , and suppose p is in the supercritical range, i.e.

λ = N(p− 2) + p > 0.

Then, the following two estimates hold true in their respective space configurations.



68 E. HENRIQUES AND S. CIANI

1 Let Kρ be defined as in (21). Then, there exists a constant γ(N, pi) > 0 such that

sup
Kρ/2×[t/2 , t]

u ≤ γt
−N
λ

(
inf

0≤τ≤t

∫
K2ρ

u(x, τ) dx

) p
λ

+

+ γ

N∑
i=1

(
t

ρp

) λi
(2−pi)λ

+ γ

N∑
i=1

(
t

ρp

) 1
2−pi

,

for λi = N(pi − 2) + p that can be of either sign.

2 Let Kρ be defined as in (21). Then, there exists a constant γ(N, pi) > 1 such that

sup
Kρ/2(t)×[t/2 , t]

u ≤ γ t
−N
λ

(
inf

0≤τ≤t

∫
K2ρ(t)

u(x, τ) dx

) p
λ

+ γ

(
t

ρp

) 1
2−p

.

Here, the first estimate has a more evolved expression and can have both negative or

positive powers on its right hand side. Once again, one can derive a decay of the solution

toward extinction: consider T ∗ > 0 to be a time of extinction of a nonnegative solution

u and p in the supercritical range. Then we can evaluate the decay toward extinction

of the whole solution: in the standard anisotropic geometry the decay rate has the more

complex form, being λi = N(pi − 2) + p and λ = N(p− 2) + p,

∥u(·, t)∥∞,Kρ ≤ γ
N∑
i=1

(
T ∗ − t

ρp

) λi
(2−pi)λ

+ γ
N∑
i=1

(
T ∗ − τ

ρp

) 1
2−pi

,

being clear that the extinction rate depends on the smallness of T ∗− t and the maximum

of the exponents in the sum. On the other hand, in the intrinsic anisotropic geometry the

decay profile of extinction is the same as the one to the p-Laplacian,

∥u(·, t)∥∞,Kρ(T ∗−t) ≤ γ

(
T ∗ − t

ρp

) 1
2−p

.

A similar path can be followed for the class of anisotropic fast diffusion equations (18)-

(19). We start by fixing two positive number ρ and t for which we consider two distinct

space geometries (a > 0):

• intrinsic anisotropic geometry

Kaρ =
N∏
i=1

{
|xi| <

(
t

ρ2

) mi−m

2(1−m)

aρ

}
, m =

∑N
i=1mi

N
,

• standard geometry Kaρ = {|x| < aρ}
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Theorem 2.3. [Harnack-type estimates: intrinsic anisotropic geometry] Let u

be a nonnegative, local weak solution to (18)-(19) in ΩT and λ = N(m− 1) + 2.

(i) L1-L1 estimate. There exists a positive constant γ, depending on N,Co, C1,mN ,

such that

(22) sup
0≤τ≤t

∫
Kρ

u(x, τ) dx ≤ γ

{
inf

0≤τ≤t

∫
K2ρ

u(x, τ) dx+

(
t

ρλ

) 1
1−m

}
.

(ii) L1-L∞ estimate. Consider in addition u to be locally bounded and m > N − 2/N .

Then, there exists a positive constant γ, depending on N,Co, C1,mi, such that

(23) sup
Kρ/2×[t/2,t]

u ≤ γ t−
N
λ

(
inf

0≤τ≤t

∫
K2ρ

u(x, τ) dx

)2/λ

+ γ

(
t

ρ2

) 1
1−m

.

This last Harnack-type inequality leads to the decay toward extinction. In fact, let m >

(N − 2)/N and T ⋆ be the finite time of extinction (proved to exist in [20]); from (23) one

gets

(24) ||u(·, t)||L∞(Kρ) ≤ γ

(
T ⋆ − t

ρ2

) 1
1−m

, for all T ⋆/2 < t < T ⋆.

Although estimate (24) is analogous to the one obtained for the (isotropic) porous medium

type equation, which per se is a quite interesting and (at first) important feature, there is

again a setback. When t grows closer to the extinction time T ⋆ the intrinsic anisotropic

cube changes its shape: in some directions it flattens while in the other directions it

becomes larger. Similar results were derived when working with standard cubes.

Theorem 2.4. [Harnack-type estimates: standard geometry] Let u be a nonnega-

tive, local weak solution to (18)-(19) in ΩT , λ = N(m− 1) + 2 and λi = N(mi − 1) + 2,

i = 1, · · · , N .

(i) L1-L1 estimate. There exists a positive constant γ, depending on N,Co, C1,m1,

such that

(25) sup
0≤τ≤t

∫
Kρ

u(x, τ) dx ≤ γ

{
inf

0≤τ≤t

∫
K2ρ

u(x, τ) dx+
N∑
i=1

(
t

ρλi

) 1
1−mi

}
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(ii) L1-L∞ estimate. Consider in addition u to be locally bounded and m > N − 2/N .

There exists a positive constant γ, depending on N,Co, C1,mi, such that

(26)

sup
Kρ/2×[t/2,t]

u ≤ γ t−
N
λ

(
inf

0≤τ≤ρ

∫
K2ρ

u(x, τ) dx

)2/λ

+ γ

N∑
i=1

(
t

ρ2

) 1
1−mi

+ γ

N∑
i=1

(
t

ρ2

) λi
λ(1−mi)

.

From this L1-L∞ estimate and when considering m1 > (N − 2)/N , we get the decay rate

of extinction (for all T ⋆/2 < t < T ⋆), distinguishing the cases

(a) when (T ⋆ − t)/ρ2 ≤ 1,

||u(·, t)||L∞(Kρ) ≤ γ

(
T ⋆ − t

ρ2

) λ1
λ(1−m1)

;

(b) if otherwise (T ⋆ − t)/ρ2 ≥ 1,

||u(·, t)||L∞(Kρ) ≤ γ

(
T ⋆ − t

ρ2

) λN
λ(1−mN )

.

3. Final Remarks and Open problems

The curtains close on the scenario of the basic regularity (such as Hölder continuity and

Harnack inequality) for anisotropic operators as (13)-(14) with many unsolved questions.

The Hölder continuity for the bounded solutions and the pointwise Harnack inequality

for nonnegative solutions are still open problems.

The solutions to equations such as (13)-(14), even if possessing a modest degree of reg-

ularity, describe very interesting phenomena. For instance, consider the aforementioned

phenomenon of the finite speed of propagation. The novelty related to the anisotropic

phenomenon (13) is that, when the initial datum u0 is such that its support is compact

only along some coordinates, i.e. suppu0 ⊂ RN−M × {(xN−1, . . . , xN) : |xi| < R0}, with

M < N , the evolution of u0 along the flow keeps the property of being compactly sup-

ported along theses M components (see [39] for more details). Moreover, as claimed in

[4], a very interesting feature is that the phenomenon of extinction in finite time pertains

to the whole range 1 < p < 2, meaning that some pis may be in the degenerate range. As

specified there, the alternative finite speed of propagation/ vanishing in a finite time as
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linked to degenerate/singular equations is no longer valid, while being replaced by con-

ditions more similar to those known for diffusion–absorption evolution. This property is

also enjoyed by the solutions to equations like (14), where the existence of a finite time

of extinction is verified in the full range 0 < m < 1, being m =
∑N

i=1 mi/N (see [20]).

Another interesting feature related to (14) is that bounded solutions are continuous (as

shown in [52]), however an estimate on the modulus of continuity is missing, leaving again

an open door to future investigation.

One possible approach to cope with these (and even other) difficulties and constraints

might be to look for new methods in the theory of regularity that dispense with the

dichotomy singular/degenerate, as in the case of elliptic equations.
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