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Abstract. In the setting of Carnot groups (connected, simply connected and stratified

Lie groups), we prove a density result for a BV-type space previously introduced in [3].

In addition, we relate the dual of this BV-type space with the dual of the well known

space of functions of intrinsic bounded variation. These results extend to the setting of

Carnot groups some properties studied by Phuc e Torres in [22] and [23] in the Euclidean

setting.

Sunto. Si prova un risultato di densità per uno spazio di tipo BV nell’ambito dei gruppi

di Carnot (gruppi di Lie connessi, semplicemente connessi e stratificati) già introdotto in

[3]. Come conseguenza di questo risultato di densità si mettono in relazione lo spazio delle

funzioni a variazione (intrinseca) limitata con il duale di questo spazio. Questi risultati

estendono al caso dei gruppi di Carnot alcune proprietà studiate in ambito euclideo da

Phuc e Torres in [22] and [23]
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1. Introduction

A Carnot group G of step κ is a connected, simply connected Lie group whose Lie

algebra g admits a step κ stratification, i.e. there exist linear subspaces V1, ..., Vκ such

that

(1) g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ ̸= {0}, Vi = {0} if i > κ,
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where [V1, Vi] is the subspace of g generated by the commutators [X, Y ] with X ∈ V1 and

Y ∈ Vi. We denote by Q the homogeneous dimension of G defined by

(2) Q :=
κ∑

i=1

i dimVi.

The integer Q turns out to be the Hausdorff dimension of G when seen as a metric space

(see precise definitions and properties of Carnot groups contained in Section 1).

In [3] the authors considered in the setting of Carnot groups the problem of studying

distributions F for which there exists a continuous horizontal vector field Φ, vanishing at

infinity, that solves the equation divHΦ = F . The analogous problem for the Euclidean

case has been considered by De Pauw and Torres in [10].

In [3] was introduced the space BV Q/Q−1(G), defined as the set of all functions in

LQ/Q−1(G) whose distributional gradient (regarded as a measure) has finite total varia-

tion. One of the main feature of this space is that the BV -space in Carnot groups, first

introduced e.g. by [14] and [16] and here denoted by BVH(G), is such that BVH(G) ↪→

BV
Q/Q−1
H (G) ⊂ BVH,loc(G) (see Section 2 below). In [3] it was also studied a closed sub-

space of the dual space of BV Q/Q−1(G), denoted by Ch0(G), and it was proved that its

dual is isomorphic to BV Q/Q−1(G) and that the equation divHΦ = F admits as a solution

a continuous horizontal vector field Φ vanishing at infinity if and only if F ∈ Ch0(G).

In Phuc-Torres [22] was shown that there is a connection between the problem of

characterizing the dual of BV and solving the equation divΦ = F . Since in [3] the

dual space of BV Q/Q−1(G) is connected with the study of the solvability of the equation

divHΦ = F in this note we want study some more properties of BV Q/Q−1(G). The main

results of this paper are contained in Section 3, were we prove that the spaces BVH(G)∗

and
(
BV

Q/Q−1
H (G)

)∗
are isometrically isomorphic.

The paper is organized as follows. In the Section 2 we recall some basic facts about

Carnot groups and in Section 3 we collect the main results concerning the space BV

in a Carnot group G. In addition we remind some result presented in [3] about space

BV Q/Q−1(G). The main result of this note is contained in Section 4, where we prove that

the space of bounded BV functions with compact support is dense in BV Q/Q−1. Thanks
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to this result we are able to prove that there exists an isometric isomorphism between the

dual of BV and the dual of BV Q/Q−1(G).

2. A few facts about Carnot groups

The definition of Carnot group G as already given above. With the same notation, the

exponential map is a one to one map from g onto G. Using exponential coordinates, we

identify a point p ∈ G with the N -tuple (p1, . . . , pN) ∈ RN and we identify G with (RN , ·)

where the explicit expression of the group operation · is determined by the Campbell-

Hausdorff formula (see, e.g., [11]). In exponential coordinates the unit element e of G is

e = (0, . . . , 0).

The first layer V1 will be called horizontal layer; a left-invariant vector field in V1,

identified with a differential operator, will be called an horizontal deerivative.

From now on, we shall denote by {X1, . . . , Xm} a basis of V1.

The N -dimensional Lebesgue measure LN , is the Haar measure of the group G. For

any λ > 0, the dilation δλ : G → G, is defined as

(3) δλ(x1, ..., xN) = (λd1x1, ..., λ
dNxN),

where di ∈ N is called the homogeneity of the variable xi in G (see [11] Chapter 1). The

homogeneous dimension of G is defined in (2) We shall assume that Q ≥ 3.

As customary, we also fix a smooth homogeneous norm ∥ · ∥ in G (see [25], p. 638) such

that the gauge distance d(x, y) := ∥y−1 · x∥ turns out to be a left invariant distance in G,

which is in fact equivalent to the “Carnot-Carathéodory distance” (see [1]). We set

B(x, r) := {y ∈ G; d(x, y) < r}

to denote the open r-ball centered at x ∈ G.

Following e.g. [11], we can define a group convolution in G: if, for instance, f ∈ D(G)

and g ∈ L1
loc(G), we set

(4) f ∗ g(p) :=
∫

f(q)g(q−1 · p) dq for q ∈ G.
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If f : G −→ R, we denote by vf the function given by vf(x) := f(x−1). We remind that,

if (say) g is a smooth function and P is a left invariant differential operator, then

P (f ∗ g) = f ∗ Pg.

We remind also that the convolution is again well defined when f, g ∈ D′(G), provided

at least one of them has compact support. In this case the following identities hold

(5) ⟨f ∗ g|ϕ⟩ = ⟨g|vf ∗ ϕ⟩ and ⟨f ∗ g|ϕ⟩ = ⟨f |ϕ ∗ vg⟩

for any test function ϕ, where we use the notation ⟨·|·⟩ for the duality between D′ and D

(remeber that if T ∈ D′(G), then vT is the distribution defined by ⟨vT |ϕ⟩ := ⟨T |vϕ⟩ for

any test function ϕ).

The subbundleHG of the tangent bundle TG spanned by the vector fields {X1, . . . , Xm}

is called the horizontal bundle.

A subriemannian structure is defined on G once one endows each fiber HxG of the

horizontal bundle HG with a scalar product. From now on, we shall assume that, at any

x ∈ G, the basis {X1(x), . . . , Xm(x)} is orthonormal (under the chosen scalar product).

Now, let f : G −→ R be a smooth function, say f ∈ C∞(G). The horizontal gradient of

f is the horizontal vector field DHf that can be written, with respect to the the horizontal

frame, as

DHf = (X1f, ..., Xmf).

Moreover, if Φ = (ϕ1, . . . , ϕm) is a smooth horizontal vector field, say Φ ∈ C∞(G, HG),

its horizontal divergence divH Φ is, by definition, the real valued function

(6) divH Φ :=
m∑
j=1

Xjϕj.

The same symbols DH and divH will be adopted later, when working with the weak

horizontal gradient and divergence operators (intended in the sense of distributions).

Let J : G −→ R be a mollifier (for the group structure), i.e., J ∈ C∞
c (G), J ≥ 0,

supp J ⊂⊂ B(e, 1), and
∫
G J(x) dx = 1. Note that, if one starts from a standard mollifier

J defined in (R,+), then the function J(∥x∥) turns out to be a mollifier in G. Now, given
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a mollifier J , we define a family of approximations to the identity {Jε}ε>0 by setting

Jε(x) := ε−QJ(δ1/εx) .

We remark explicitly that Jε(x) =
vJε(x) for every x ∈ G.

If 1 ≤ p < +∞ and f ∈ Lp(G), then Jε ∗ f −→ f in Lp(G) as ε → 0.

3. Some BV-type spaces in Carnot groups: BVH(G) and BV
Q/Q−1
H (G)

3.1. Definitions and some properties of the space BVH(G). First, we recall the

definition of functions of intrinsic bounded variation, below denoted by BVH-functions.

There is a wide letterature on BVH-functions in Carnot groups for which we refer, for

instance, to [14], [16], [27], and references therein. Here we limit ourselves to recall the

main results.

Let Ω ⊆ G be an open set. Recall that a function f : Ω −→ R is said to have intrinsic

bounded variation in Ω, and in this case we write f ∈ BVH(Ω), if f ∈ L1(Ω) and

∥DHf∥(Ω) := sup

{∫
Ω

f divHΦ dx : Φ ∈ D(Ω, HΩ), ∥Φ∥∞ ≤ 1

}
< +∞,

where ∥Φ∥∞ = sup{|Φ(x)|x : x ∈ Ω}.

The quantity ∥DHf∥(Ω) represents the total horizontal variation (or, H-variation) of

the distributional horizontal gradient DHf in Ω. Unless otherwise stated, we shall hence-

forth assume that Ω = G. In this case, the total H-variation of DHf in G will be simply

denoted as ∥DHf∥.

This definition can easily be localized. To this aim, let f ∈ L1
loc(Ω) and assume that

∥DHf∥(V ) < +∞ for every open subset V ⊂⊂ Ω. In this case, we set f ∈ BVH,loc(Ω) to

denote the space of functions of locally bounded H-variation in Ω.

The (total) H-variation is lower semicontinuous with respect to the L1
loc-convergence

and follows because the map f 7→ ∥DHf∥(·) is the supremum of a family of L1-continuous

functionals. Hence, if Ω ⊆ G is an open set and {fk}k∈N be a sequence in BVH(Ω) such

that fk −→ f in L1
loc(Ω) as k → +∞. Then

∥DHf∥(Ω) ≤ lim inf
k→+∞

∥DHfk∥(Ω).
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If E ⊆ G is a Borel set, we set PH(E) := ∥DHχE∥, where χE is the characteristic

function of E. More generally, if Ω ⊆ G is an open set, we set PH(E,Ω) := ∥DHχE∥(Ω).

The quantities just defined are the H-perimeter of E in G and in Ω, respectively.

The next result is the coarea formula for functions of bounded H-variation (see, e.g.,

[14], [16]).

Theorem 3.1 (Coarea formula). Let f ∈ BVH(Ω) and set Et := {x ∈ Ω : f(x) > t}.

Then, Et has finite H-perimeter in Ω for a.e. t ∈ R and the following formula holds

(7) ∥DHf∥(Ω) =
∫
R
PH(Et,Ω) dt.

Conversely, if f ∈ L1(Ω) and
∫
R PH(Et,Ω) dt < +∞, then f ∈ BVH(Ω).

Remark 3.1. Let f ∈ BVH(Ω), t ∈ R, and consider the function gt := max{f, t}. As in

the Euclidean case (see, e.g., [17], p. 340), a useful consequence of the coarea formula is

that gt ∈ BVH(Ω) and that ∥DHgt∥(Ω) = ∥DHf∥(Et).

Finally, we have to recall the following fundamental inequality already discussed in

Remark 2.11 of [3].

Remark 3.2 (Gagliardo-Nirenberg inequality). As is well-known, the classical Gagliardo-

Nirenberg inequality has been generalized to Carnot groups by many authors (and with

different aims); see, e.g., [9], [12], [13], [16], [19], [21]. More precisely, if f ∈ D(G), the

inequality states that there exists a “geometric” constant C
GN

= C
GN

(Q,G) such that

(8) ∥f∥LQ/Q−1 ≤ C
GN

∥DHf∥L1 .

The inequality (8) extends to functions in BVH(G) having compact support.

By adapting the classical Riesz representation theorem to our setting, one can prove

the following “structure theorem”.

Theorem 3.2. If f ∈ BVH(G), then ∥DHf∥(·) is a Radon measure on G. In addition,

there exists a bounded ∥DHf∥-measurable horizontal section σf : G → HG such that

|σf (x)|x = 1 for ∥DHf∥-a.e. x ∈ G, and the following holds

(9)

∫
G
f divHΦ dx = −

∫
G
⟨Φ, σf⟩ d∥DHf∥ ∀Φ ∈ D(G, HG).
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Moreover, µ = σf ∥DHf∥ is a vector measure in HG (see Section 2 in [3] for more

details). Writing σf with respect to the horizontal frame as σf =
∑m

i=1 σf,iXi, where the

components σf,i : G −→ R (i = 1, . . . ,m) are bounded measurable functions, we have

µ = (σf,1, . . . , σf,m)∥DHf∥. We shall set [DHf ] := µ. Thus, (9) becomes

(10)

∫
G
f divHΦ dx = −

∫
G
⟨Φ, d [DHf ]⟩.

Remark 3.3 (product rule: a particular case). Let f ∈ BVH,loc(G) and ϕ ∈ D(G). Then,

we claim that

(11) DH(ϕf) = ϕDHf + fDHϕ

as measures.

Proof. We first show that the equality holds in the sense of distribution. To prove this

claim, we argue exactly as in [28], Proposition 5.3.2. We consider the mollifier Jε and we

set fε = Jε ∗ f . Since ϕ fε ∈ D(G) it holds

DH(ϕfε) = ϕDHfε + fεDHϕ .

Since fε → f in L1, in particular fε tends to f as distributions therefore alsoDHfε → DHf

in D′(G). Since ϕ ∈ D(G), also ϕDHfε → ϕDHf in D′(G) and DHϕ fε → DHϕ f

in D′(G). Finally, with the observation that ϕfε → ϕf in D′(G) which implies that

DH(ϕfε) → DH(ϕf) in D′(G), the conclusion of the first claim follows. To conclude

the proof we need just to notice that the right and the left hand side of (11) are two

distribuition of order 0 that concide on D(G), hence they concide as measures as well.

□

3.2. The space BV
Q/Q−1
H (G). We introduce another intrinsic BVH-type space, which is

a subspace of LQ/Q−1(G). In the Euclidean setting this space was introduced and studied

in [10] and in the setting of Carnot groups it has been introduced in [3].

Definition 3.1. The space BV
Q/Q−1
H (G) is the set of functions f ∈ LQ/Q−1(G) whose

distributional gradient DHf is a finite vector measure, i.e.,

∥DHf∥ := ∥DHf∥(G) = sup

{∫
G
f divHΦ dx : Φ ∈ D(G, HG), ∥Φ∥∞ ≤ 1

}
< +∞.
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The space BV
Q/Q−1
H (G) is a Banach space when endowed with the norm

∥f∥LQ/Q−1 + ∥DHf∥.

Note also that BV
Q/Q−1
H (G) ⊂ BVH,loc(G).

In [3] several properties of BV
Q/Q−1
H (G) have been proved. Among them, the lower

semicontinuity of the H-variation with respect to the weak convergence in LQ/Q−1(G)

(see [3], Theorem 3.2): if {fk}k∈N is a sequence in BV
Q/Q−1
H (G) such that fk ⇀ f in

LQ/Q−1(G) as k → +∞, then

(12) ∥DHf∥ ≤ lim inf
k→+∞

∥DHfk∥.

Also an approximation result for BV
Q/Q−1
H (G) is proved in [3] (Theorem 3.3 threin) which

enable to obtain as a consequence the following inequality

Proposition 3.1 (see Corollary 3.4 in [3]). Let f ∈ BV
Q/Q−1
H (G). Then

(13) ∥f∥LQ/Q−1 ≤ C
GN

∥DHf∥.

By (13), if f ∈ BV
Q/Q−1
H (G) it follows that the H-variation ∥DHf∥ is an equivalent

norm to ∥f∥LQ/Q−1 + ∥DHf∥. For this reason, in the sequel the H-variation will be taken

as a norm and we shall set

∥f∥
BV

Q/Q−1
H

:= ∥DHf∥.

Note also that (13) immediatly implies the continuous embedding

(14) BVH(G) ↪→ BV
Q/Q−1
H (G).

4. Main results

This section contains the main result of this note which is a new density result related

to the space BV
Q/Q−1
H . As a corollary, we deduce a duality property of the space BVH(G):

we prove that the spaces BVH(G)∗ and
(
BV

Q/Q−1
H (G)

)∗
are isometrically isomorphic.

First, we consider the space of bounded functions with compact support that are in

BVH(G), namely

BV ∞
H,c(G) := BVH,c(G) ∩ L∞(G),
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where BVH,c(G) denotes the set of functions in L1
c(G) (i.e., the space of functions in L1(G)

with compact support) with bounded H-variation.

The result below extends Theorem 3.1 in [23] (compare also with [22], Lemma 3.4).

Theorem 4.1. The space BV ∞
H,c(G) is dense in BV

Q/Q−1
H (G).

Proof. We will show that for any f ∈ BV
Q/Q−1
H (G) there is a sequence of functions

{fk}k∈N ⊂ BV ∞
H,c(G) such that

lim
k→+∞

∥fk − f∥
BV

Q/Q−1
H

= 0.

Step 1. We claim that the space BVH,c(G) is dense in BV
Q/Q−1
H (G), with respect to the

topology induced by the norm ∥ · ∥
BV

Q/Q−1
H

.

Let {gk}k∈N ⊂ D(G) be a sequence of cut-off functions such that:

(15) χB(e,k) ≤ gk ≤ χB(e,2k), |DHgk| ≤
C

k
∀ k ∈ N.

Clearly gk has compact support and gk(x) −→ 1 as k → +∞ for every x ∈ G.

Let f ∈ BV
Q/Q−1
H (G) (and note that fgk −→ f in LQ/Q−1(G) as k → +∞).

Since BV
Q/Q−1
H (G) ⊂ BVH,loc(G), by applying the formula in Remark 3.3 we have

DH(ϕf) = ϕDHf + fDHϕ (in the distributional sense and as measures). Thus,

we get that fgk ∈ BVH(G) ⊂ BV
Q/Q−1
H (G). Now, if Φ ∈ D(G, HG), ∥Φ∥∞ ≤ 1,

we can estimate the functional
∫
G⟨Φ, d[DH(fgk − f)]⟩ as follows:∣∣∣∣∫

G
⟨Φ, d[DH(fgk − f)]⟩

∣∣∣∣ ≤ ∫
G
|gk − 1||Φ|d∥DHf∥+

∫
supp(DHgk)

|Φ||f ||DHgk|dx

≤
∫
G
|gk − 1|d∥DHf∥+

C

k

∫
B(e,2k)\B(e,k)

|f |dx (by (15))

≤
∫
G
|gk − 1|d∥DHf∥+

C

k

(∫
B(e,2k)\B(e,k)

|f |Q/Q−1dx

)Q−1/Q

|B(e, 2k) \B(e, k)|1/Q

≤
∫
G
|gk − 1|d∥DHf∥+ C

(∫
B(e,2k)\B(e,k)

|f |Q/Q−1dx

)Q−1/Q

.

By the arbitrariness of Φ, taking the supremum on the left-hand side we obtain

∥DH(fgk − f)∥ ≤
∫
G
|gk − 1|d∥DHf∥+ C

(∫
B(e,2k)\B(e,k)

|f |Q/Q−1dx

)Q−1/Q

.
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Finally, since f ∈ LQ/Q−1(G), by the dominated convergence theorem both terms

on the right-hand side vanish as k → +∞. Hence

(16) lim
k→+∞

∥DH(fgk − f)∥ = 0,

which shows the initial claim.

Step 2. We claim that the space BV ∞
H,c(G) is dense in BVH,c(G), with respect to the topology

induced by the norm ∥ · ∥
BV

Q/Q−1
H

.

Let h ∈ BVH,c(G) and let us first assume that h ≥ 0. In order to prove the

claim, we consider the truncation of h defined, for any x ∈ G, by

hj(x) :=

 j if h(x) > j

h(x) if 0 ≤ h(x) ≤ j
∀ j ∈ N.

By the coarea formula (7), we have

∥DH(h− hj)∥ =

∫ +∞

0

PH({x ∈ G : h(x)− hj(x) > t}) dt

=

∫ +∞

0

PH({x ∈ G : h(x)− j > t}) dt

=

∫ +∞

0

PH({x ∈ G : h(x) > j + t}) dt

=

∫ +∞

j

PH({x ∈ G : h(x) > s}) ds.

But since h ∈ BVH,c(G), we have
∫
R PH({x ∈ G : h(x) > s}) ds < +∞. Hence, by

the dominated convergence theorem, we infer that

(17) lim
j→+∞

∥DH(h− hj)∥ = 0.

In other words, if h ≥ 0, we have shown that there exists {hj}j∈N ⊂ BV ∞
H,c(G)

approximating h in the topology induced by the norm ∥ · ∥
BV

Q/Q−1
H

.

The general case can be achieved as follows. Let h ∈ BVH,c(G) and let us

write h = h+ − h−, where h± ≥ 0 denote the positive/negative parts of h. Using

Remark 3.1 it follows that h± ∈ BVH,loc(G) and ∥DHh
±∥(Ω) ≤ ∥DHh∥(Ω) for
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every open set Ω ⊂⊂ G. Therefore ∥DHh
±∥ ≤ ∥DHh∥ < +∞, which implies also

that h± ∈ BVH,c(G). Moreover, we set

h+
j := (h+)j, h−

j := (h−)j ∀ j ∈ N.

From what we have seen above, h+
j − h−

j ∈ BV ∞
H,c(G) and we have∥∥DH [h− (h+

j − h−
j )]

∥∥ =
∥∥DHh

+ −DHh
− −DHh

+
j +DHh

−
j

∥∥
≤

∥∥DH(h
+ − h+

j )
∥∥+

∥∥DH(h
− − h−

j )
∥∥ −−−−→

j→+∞
0,

where we have used (17). This shows the initial claim.

Combining Step 1 and Step 2, the proof is complete. □

The following corollary extends to our setting an interesting isomorphism result con-

tained in [23].

Corollary 4.1. Let

S :
(
BV

Q/Q−1
H (G)

)∗ −→ BVH(G)∗, S(T ) := T |BVH(G),

where ·|BVH(G) denotes the restriction to BVH(G) ⊂ BV
Q/Q−1
H (G).

Then, the map S is an isometric isomorphism.

Proof. We start by proving that S is injective. Let T ∈
(
BV

Q/Q−1
H (G)

)∗
be such that

S(T ) = 0. Then, by definition, T |BVH(G) = 0. Since BV ∞
H,c(G) ⊂ BVH(G), it follows

that T |BV ∞
H,c(G) = 0. But since the space BV ∞

H,c(G) is dense in BV
Q/Q−1
H (G) and T is

continuous, it follows that for any f ∈ BV
Q/Q−1
H (G) there exists {fk}k∈N ⊂ BV ∞

H,c(G)

such that ∥fk − f∥
BV

Q/Q−1
H

−→ 0 as k → +∞. Hence 0 = T (fk) −−−−−→
k−→+∞

T (f) and this

shows that T (f) = 0 for any f ∈ BV
Q/Q−1
H (G) = 0, which means that T = 0.

It remains us to show that S is surjective. To this aim, let us take T ∈ BVH(G)∗. Note,

in particular, that T |BV ∞
H,c(G) is a continuous linear functional. Now we use that BV ∞

H,c(G)

is dense in BV
Q/Q−1
H (G). More precisely, by the classical Continuous Linear Extension

Theorem (see, e.g., [24]), there exists a continuous linear functional T̂ defined on the

whole BV
Q/Q−1
H (G) that extends T . By its very definition, S(T̂ ) = T̂ |BVH(G) = T |BVH(G),
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and hence S(T̂ ) = T . Moreover, the extended functional T̂ preserves the norm, i.e.,

∥T̂∥(
BV

Q/Q−1
H

)∗ = ∥T∥BV ∗
H
. Since S(T̂ ) = T , we get that

∥T̂∥(
BV

Q/Q−1
H

)∗ = ∥S(T̂ )∥BV ∗
H
,

which shows that S is an isometry.

□
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