
A DETOUR ON A CLASS OF NONLOCAL DEGENERATE
OPERATORS

UNA PANORAMICA SU UNA CLASSE DI OPERATORI DEGENERI
E NONLOCALI

DELIA SCHIERA

Abstract. We present some recent results on a class of degenerate operators which

are modeled on the fractional Laplacian, converge to the truncated Laplacian, and are

extremal among operators with fractional diffusion along subspaces of possibly different

dimensions. In particular, we will recall basic properties of these operators, validity of

maximum principles, and related phenomena.

Sunto. Presentiamo alcuni recenti risultati riguardanti una classe di operatori degeneri

che sono costruiti a partire dal Laplaciano frazionario, convergono al Laplaciano troncato,

e sono estremali tra operatori con una diffusione frazionaria lungo sottospazi che possono

avere differente dimensione. In particolare, richiamiamo alcune proprietà base di questi

operatori, la validità dei principi di massimo, e fenomeni correlati.
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1. Introduction: The truncated and fractional Laplacians

This note is intended as a survey of selected results for a class of nonlocal degenerate

operators which have been first studied in [13] and then complemented in [12, 26]. We

also refer to [20] and the recent work [3]. Since these operators are inspired by the more

known truncated Laplacian, and the fractional Laplacian, we will start shortly reviewing

main facts about these operators.
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Take a bounded set Ω of RN , and a function u ∈ C2(Ω). We denote Vk the family

of k-dimensional orthonormal sets on RN , and λi(D
2u) the eigenvalues of D2u in non-

decreasing order. Then, for 1 ≤ k ≤ N , we set

P+
k (D

2u)(x) :=
N∑

i=N−k+1

λi(D
2u(x))

= max

{
k∑

i=1

⟨D2u(x)ξi, ξi⟩ : {ξi}ki=1 ∈ Vk

}
.(1)

For a proof of equality in (1), we refer the reader to [16].

Similarly one can define P−
k as the sum of the first k eigenvalues, precisely

P−
k (D

2u)(x) :=
k∑

i=1

λi(D
2u(x))

= min

{
k∑

i=1

⟨D2u(x)ξi, ξi⟩ : {ξi}ki=1 ∈ Vk

}
.

Notice that the name truncated is justified by the fact that in case k = N , namely

if all the eigenvalues of the Hessian are taken into account, then one has P+
N(D

2u) =

P−
N(D

2u) = ∆u, and we recover the Laplace operator. Also, it is immediate to see that

P+
k (X) = −P−

k (−X), hence there is a sort of duality between the two operators above.

These operators have been initially introduced in connection with Riemannian manifolds,

see for instance [27, 28]. We point out as an important remark that we can consider less

regularity on the function u (lower or upper semicontinuity is enough) once we exploit

the viscosity notion of solutions, for which we refer to [19], see also Definition 2.2 below.

Example 1.1. Let us take as an example the function u(x) = (1−|x|2)2. Then, straight-

forward computations show that if x ̸= 0 then

λi(D
2u(x)) = 4|x|2 − 4, i = 1, . . . , N − 1

and

λN(D
2u(x)) = 12|x|2 − 4.

Thus

P+
k (D

2u)(x) = (4k + 8)|x|2 − 4k, and P−
k (D

2u)(x) = 4k|x|2 − 4k, k < N.
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To start with, notice that these operators are nonlinear and do not have a variational

structure. However, P±
k satisfy the following sub/super-additivity conditions

P−
k (Y ) ≤ P±

k (X + Y )− P±
k (X) ≤ P+

k (Y ).

Furthermore, they are degenerate elliptic, in the sense that, given X, Y two N × N

real symmetric matrices,

⟨Xξ, ξ⟩ ≤ ⟨Y ξ, ξ⟩ for any ξ ∈ RN ⇒ P±
k (X) ≤ P±

k (Y ).

This monotonicity condition on the operator extends the classical notion of ellipticity

for linear operators, namely, a linear operator L(X) = tr(AX) is elliptic if A is positive

definite. Actually, the truncated Laplacians are strongly degenerate if k < N . Indeed,

one has

P−
k (X) = P−

k (X + v ⊗ v),

where v is an eigenvector corresponding to the largest eigenvalue of X. A corresponding

equality holds for P+
k .

The literature regarding these operators is really vast, as they gained an increasing

interest in the last years. We refer the interested reader to the works [23, 16] as more

classic references, and to [7, 8, 10, 11, 18, 9, 14, 24] and references therein for more

recent advances. In the following sections, we will also recall more precisely some results

regarding these operators, in order to better emphasize differences and similarities with

respect to the class of operators we will take into account.

The other operator which will be a model in order to build a suitable class of nonlocal

truncated Laplacians is the so-called fractional Laplacian. Let us fix s ∈ (0, 1), and take a

function u ∈ C2(RN)∩L∞(RN) (actually, less regularity can be imposed on the function,

see [15]). The fractional Laplacian of order s of u in x is defined as

−(−∆)su(x) :=
1

2
CN,s

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2s
dy,

where CN,s is a dimensional constant, see [15, Equations (2.10) and (2.15)] for its explicit

value. One can equivalently write

(−∆)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy := lim

ε→0

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy,
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where P.V. stands for principal value. The fractional Laplacian arises for instance when

modeling a random process that allows long jumps. The most important feature of this

operator is that it is nonlocal, since the value of (−∆)su at x depends on the value of u

in the whole of RN . It can be proved that

lim
s→1

(−∆)su = −∆u, lim
s→0

(−∆)su = u.

Example 1.2. The function u(x) := (1− |x|2)s+ has constant fractional Laplacian in B1,

more precisely

(−∆)su(x) = CN,s
ωN

2
B(s, 1− s)

where ωN is the volume of the N-dimensional sphere, and B is the special Beta function,

see [15].

Besides the already cited [15], one can take a look at the survey [21] and references

therein, where many standard and not-so-standard results can be found, as well as exam-

ples and applications.

2. A class of nonlocal degenerate operators

In [13] a new class of nonlinear nonlocal operators has been introduced, with the aim

of providing a suitable nonlocal analog of the truncated Laplacians. We first recall the

definition given there, and then we extend it to a larger class of operators.

Let u ∈ L∞(RN) ∩ C2(Ω), fix ξ ∈ RN , and s ∈ (0, 1), and define

Iξu(x) := CsP.V.

∫ +∞

−∞

u(x+ τξ)− u(x)

|τ |1+2s
dτ,

where Cs > 0 is a normalizing constant and P.V. stands for principal value. Notice

that this operator, which is basically a 1-dimensional fractional Laplacian in the space

generated by ξ, acts as a 2s fractional derivative of u in the direction ξ. We substitute the

second order derivatives appearing in the definition of the truncated Laplacian (1) with

Iξu, and we set

I+
k u(x) := sup

{
k∑

i=1

Iξiu(x) : {ξi}ki=1 ∈ Vk

}
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and

I−
k u(x) := inf

{
k∑

i=1

Iξiu(x) : {ξi}ki=1 ∈ Vk

}
.

An important property is that, choosing Cs suitably, if s→ 1 then I±
k u→ P±

k u, see [13].

We recall that in the particular case k = 1, these operators were also considered in the

papers [20, 3].

One may wonder what happens if we take, in place of Iξ, operators which are n-

dimensionally nonlocal, where 1 ≤ n ≤ N . Precisely,

JV u(x) := Cn,sP.V.

∫
V

u(x+ z)− u(x)

|z|n+2s dHn(z),

where V is a n-dimensional subspace of RN , Hn is the n-dimensional Hausdorff measure,

and Cn,s > 0 suitably chosen. We point out that if V = ⟨ξ1, . . . , ξn⟩ then

JV u(x) = Cn,sP.V.

∫
Rn

u(x+
∑n

i=1 τiξi)− u(x)

(
∑n

i=1 τ
2
i )

n+2s
2

dτ1 . . . dτn.

Clearly, in case n = 1, JV reduces to Iξ.

We are now ready to introduce the operators we will consider in this survey.

Definition 2.1. Choose 1 ≤ ℓ ≤ N . Let 1 ≤ k1 ≤ · · · ≤ kℓ ≤ N such that

k :=
ℓ∑

j=1

kj

satisfies 1 ≤ k ≤ N . Let us denote

supk1,...,kℓ := sup
{ξ1j }

k1
j=1∈Vk1

sup
{ξ2j }

k2
j=1∈Vk1,k2

. . . sup
{ξℓj}

kℓ
j=1∈Vk1,...,kℓ

= sup
{
“argument” s.t. {ξ1j }

k1
j=1 ∈ Vk1 , {ξ2j }

k2
j=1 ∈ Vk1,k2 , . . . , {ξℓj}

kℓ
j=1 ∈ Vk1,...,kℓ

}
,(2)

where Vk1 is the collection of all k1-orthonormal sets of RN , and Vk1,...,kt, t ≥ 2, represents

the collection of all kt-orthonormal sets of RN which are orthogonal to the space generated

by the vectors ξsj , with j = 1, . . . , ks and s = 1, . . . , t− 1.

Let also

(3) Vi := ⟨ξij⟩
ki
j=1.
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Then for u ∈ L∞(RN) ∩ C2(Ω) we define

K+
k1,...,kℓ

u(x) := supk1,...,kℓ

ℓ∑
i=1

JVi
u(x).

Analogously, we define K−
k1,...,kℓ

taking the infimum in place of the supremum.

Remark 2.1. One has K+
k1,...,kℓ

(−u) = −K−
k1,...,kℓ

u.

Remark 2.2. In what follows, we give a proof of (2). Let us only show the case ℓ = 2,

the general case follows by iteration. Let

A := sup
{ξ1j }

k1
j=1∈Vk1

sup
{ξ2j }

k2
j=1∈Vk1,k2

f(ξ11 , . . . , ξ
1
k1
, ξ21 , . . . , ξ

2
k2
)

and

B := sup
{ξ1j }

k1
j=1∈Vk1

,{ξ2j }
k2
j=1∈Vk1,k2

f(ξ11 , . . . , ξ
1
k1
, ξ21 , . . . , ξ

2
k2
)

where

f(ξ11 , . . . , ξ
1
k1
, ξ21 , . . . , ξ

2
k2
) = JV1u(x) + JV2u(x).

We first notice that A ≤ B. Indeed, for any choice of {ξ1j }
k1
j=1 ∈ Vk1, {ξ2j }

k2
j=1 ∈ Vk1,k2,

one has

f(ξ11 , . . . , ξ
1
k1
, ξ21 , . . . , ξ

2
k2
) ≤ B.

Hence, taking the supremum first with respect to {ξ2j }
k2
j=1 ∈ Vk1,k2 with fixed {ξ1j }

k1
j=1 ∈ Vk1,

and then with respect to {ξ1j }
k1
j=1 ∈ Vk1, one gets A ≤ B.

Let us assume A < B. Then there exists C such that A < C < B. By definition of B

there exist {ξ̄1j }
k1
j=1 ∈ Vk1, {ξ̄2j }

k2
j=1 ∈ Vk1,k2 such that

f(ξ̄11 , . . . , ξ̄
1
k1
, ξ̄21 , . . . , ξ̄

2
k2
) > C.

This implies

sup
{ξ2j }

k2
j=1∈Vk1,k2

f(ξ̄11 , . . . , ξ̄
1
k1
, ξ21 , . . . , ξ

2
k2
) > C > A.

This contradicts the definition of A.
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Remark 2.3. Notice that

K+
k1,...,kℓ

u(x) = sup
{ξj}kj=1∈Ṽk

ℓ∑
i=1

JṼi
u(x),

where

Ṽi = ⟨ξj⟩j∈Ai
,

(4) Ai =

{
i−1∑
j=0

kj + 1, . . . ,
i∑

j=0

kj

}
, i = 1, . . . , ℓ,

and Ṽk is the set of all ordered k-uples of orthonormal vectors in RN . Here we set for

notational convenience k0 := 0.

Remark 2.4. By (2), one has, for instance in the case ℓ = 3,

K+
k1,k2,k3

u(x) = sup
{ξ1j }

k1
j=1∈Vk1

(
JV1u(x) + sup

{ξ2j }
k2
j=1∈Vk1,k2

(
JV2u(x) + sup

{ξ3j }
k3
j=1∈Vk1,k2,k3

JV3u(x)
))
.

Remark 2.5. We point out that if we choose the normalization constants Cki,s such that

(5)
Cki,s|Ski−1|
4ki(1− s)

→ 1 as s→ 1−,

where |Ski−1| is the volume of the ki dimensional sphere, then

(6) K±
k1,...,kℓ

u(x) → P±
k u(x) as s→ 1−,

see also [13, Lemma 6.1]. Actually, these constants can be explicitly given, see [15, Equa-

tions (2.10) and (2.15)]. In order to see (6), let us fix ε > 0. By definition of supremum,

there exist {ξij}
ki
j=1 with i = 1, . . . , ℓ such that

K+
k1,...,kℓ

u(x)− P+
k u(x)− ε ≤

ℓ∑
i=1

JVi
u(x)− P+

k u(x)

≤
ℓ∑

i=1

JVi
u(x)−

ℓ∑
i=1

ki∑
j=1

⟨D2u(x)ξij, ξ
i
j⟩.

By [13, Lemma 6.1] we know that for any ε > 0 fixed there exists a δ > 0 such that

JVi
u(x) ≤ O(ε) +

Cki,s|Ski−1|
4ki(1− s)

δ2−2s

ki∑
j=1

⟨D2u(x)ξij, ξ
i
j⟩+ Cki,sO(δ

−2s).
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Assuming (5), we get

lim
s→1

K+
k1,...,kℓ

u(x)− P+
k u(x) ≤ Cε.

A reverse inequality can be found analogously, hence we obtain the conclusion. Similar

arguments show the convergence for K−
k1,...,kℓ

.

Example 2.1. Notice that if ℓ = 1, then k = k1, and by definition

supk1 = sup
{ξ1j }

k1
j=1∈Vk1

.

This class of operators has been denoted in [13] as follows:

J +
k u(x) := sup

{
JV u(x) : V = ⟨ξ1, . . . , ξk⟩, {ξi}ki=1 ∈ Vk

}
J −

k u(x) := inf
{
JV u(x) : V = ⟨ξ1, . . . , ξk⟩, {ξi}ki=1 ∈ Vk

}
.

In particular, if ℓ = 1, and k1 = 1, then K±
1 = J ±

1 = I±
1 , whereas if ℓ = 1, and k1 = N ,

then K±
N = J ±

N = −(−∆)s.

Also, if k1 = · · · = kℓ = 1, then k = ℓ and

sup1,...,1

ℓ∑
i=1

JVi
u(x) = sup

{ξj}kj=1∈Vk

ℓ∑
i=1

J⟨ξi⟩u(x),

so that K±
1,...,1 = I±

k . In particular, if ℓ = N , then K±
1,...,1 = I±

N .

We finally notice that if ℓ ̸= 1, then K±
k1,...,kℓ

does not coincide with the fractional

Laplacian, even if k = N .

Example 2.2. Let ℓ = 3, and k1 = 1, k2 = 1, k3 = 3. Then, k = 5, and

K+
1,1,3u(x) = sup

|ξ11 |=1

sup
|ξ21 |=1

ξ21⊥ξ11

sup
{ξ31 ,ξ32 ,ξ33}∈V3

ξ3j⊥⟨ξ11 ,ξ21⟩

(
J⟨ξ11⟩u(x) + J⟨ξ21⟩u(x) + J⟨ξ31 ,ξ32 ,ξ33⟩u(x)

)
.

When dealing with degenerate operators, regularity issues may arise, and the natural

notion of solutions turns out to be that of viscosity solutions. Below, we give the definition,

see [1, 2], adapted to our context. For definitions and main properties of viscosity solutions

in the classical local framework we refer to the survey [19].
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Definition 2.2. Let f ∈ C(Ω × R). We say that u ∈ L∞(RN) ∩ LSC(Ω) (respectively

USC(Ω)) is a (viscosity) supersolution (respectively subsolution) to

(7) K+
k1,...,kℓ

u+ f(x, u(x)) = 0 in Ω

if for every point x0 ∈ Ω and every function φ ∈ C2(Bρ(x0)), ρ > 0, such that x0 is a

minimum (resp. maximum) point to u− φ, one has

(8) K(u, φ, x0, ρ) + f(x0, u(x0)) ≤ 0 (resp. ≥ 0)

where

K(u, φ, x0, ρ) = supk1,...,kℓ

ℓ∑
i=1

Cki,s

{
P.V.

∫
Bρ(0)

φ(x0 +
∑ki

j=1 τjξ
i
j)− φ(x0)

(
∑ki

j=1 τ
2
j )

ki+2s

2

dτ1 . . . dτki

+

∫
Bρ(0)c

u(x0 +
∑ki

j=1 τjξ
i
j)− u(x0)

(
∑ki

j=1 τ
2
j )

ki+2s

2

dτ1 . . . dτki

}
.

We say that a continuous function u is a solution of (7) if it is both a supersolution and

a subsolution of (7). We analogously define viscosity sub/super solutions for the operator

K−
k1,...,kℓ

, taking the infimum in place of the supremum.

Remark 2.6. In the definition of supersolution above we can assume without loss of

generality that u > φ in Bρ(x0) \ {x0}, and φ(x0) = u(x0), see also Remark 2.6 in [12].

Remark 2.7. The operators K±
k1,...,kℓ

satisfy the following ellipticity condition: if ψ1, ψ2 ∈

C2(Bρ(x0)) ∩ L∞(RN) for some ρ > 0 are such that ψ1 − ψ2 has a maximum in x0, then

K±
k1,...,kℓ

ψ1(x0) ≤ K±
k1,...,kℓ

ψ2(x0).

Indeed, if ψ1(x0)− ψ2(x0) ≥ ψ1(x)− ψ2(x), for all x ∈ Bρ(x0) then

ψ1

(
x0 +

ki∑
j=1

τjξ
i
j

)
− ψ1(x0) ≤ ψ2

(
x0 +

ki∑
j=1

τjξ
i
j

)
− ψ2(x0),

which yields the conclusion.

Remark 2.8. Notice that in the definition above we assumed u ∈ L∞(RN), as this will

be enough for our purposes, however, one can also consider unbounded functions u with

a suitable growth condition at infinity, see [13].
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3. Continuity, maximum principles, and related problems

Notice that, assuming u ∈ C2(Ω), the map x 7→ P±
k u(x) is continuous. This property is

also verified by the class of fully nonlinear integro differential operators taken into account

in the work by Caffarelli and Silvestre [17], see Lemma 4.2 there. As a particular case of

the results in [17], also (−∆)su is continuous if u ∈ C2(Ω) and bounded in RN . However,

the operators we are considering lack continuity, as we proved in [12, 26].

For instance, a counterexample for the case ℓ = k < N , for which K+
k1,...,kℓ

reduces to

I+
k , k < N , is given by the following

u(x) =

 0 if |x| ≤ 1 or ⟨x, eN⟩ ≤ 0

−1 otherwise.

Notice that this function is smooth in B1(0), however, it is not continuous in the whole

space RN . Direct computations show that

I+
k u(0) = 0.

On the other hand,

lim sup
n→+∞

I+
k u

(
1

n
eN

)
< 0

where eN = (0, . . . , 0, 1), see [12] for the details.

The general case follows by taking into account a similar function u, see [26], precisely

u(x) =

 0 if |x| ≤ 1, or ∃i = 1, . . . , ℓ s.t. x ∈ ⟨ej⟩j∈Ai

−1 otherwise,

where Ai are defined in (4). Notice that u ≡ 0 if and only if ℓ = 1 and k1 = N , which is

the case of the fractional Laplacian.

However, we gain continuity of the operators once we assume a global regularity as-

sumption on the function. The proof is completely analogous to [12, Proposition 3.1].

Proposition 3.1. Let u ∈ C2(Ω) ∩ L∞(RN), and consider the map

K±
k1,...,kℓ

u : x ∈ Ω 7→ K±
k1,...,kℓ

u(x).

If u ∈ LSC(RN) (respectively USC(RN), C(RN)) then K±
k1,...,kℓ

u ∈ LSC(Ω) (respectively

USC(Ω), C(Ω)).
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Another interesting fact which is related to the lack of continuity is that the sup or

inf in the definition of K±
k1,...,kℓ

are in general not attained under the only assumption

u ∈ C2(Ω)∩L∞(RN). We refer to [12, 26] for some counterexamples. This is a difference

with respect to the truncated Laplacians P±
k . Indeed, the minimum in the definition of

P−
k is attained by the eigenvectors corresponding to the first k eigenvalues, whereas the

maximum in P+
k is attained by the eigenvectors corresponding to the last k eigenvalues,

see [16].

Continuity of the operator was crucial in [17] to obtain a comparison principle. There-

fore, in order to prove it for the operators K±
k1,...,kℓ

, we need to exploit a different approach.

Recall that in the theory of viscosity solutions the comparison principle for second order

operators requires the Jensen-Ishii’s lemma, see [19], which in turn lies on a complex

proof that uses tools from convex analysis. Here, instead, the proof, for which we refer to

[12, 26], is completely self contained and uses only a straightforward calculation, somehow

more similar to the case of first order local equations, where just the doubling variable

technique is used. We also refer the reader to [20] for a different proof in case the domain

is strictly convex.

Theorem 3.1. Let Ω ⊂ RN be a bounded domain and let c(x), f(x) ∈ C(Ω) be such that

∥c+∥∞ <
∑ℓ

i=1Cki,s
1
2s
(diam(Ω))−2s. If u ∈ USC(Ω)∩L∞(RN) and v ∈ LSC(Ω)∩L∞(RN)

are respectively sub and supersolution of K±
k1,...,kℓ

u+ c(x)u = f(x) in Ω

u = 0 in RN\Ω,

then u ≤ v in Ω.

This comparison principle gives as an immediate corollary the validity of weak maxi-

mum/minimum principles for the operators K±
k1,...,kℓ

, namely a sign propagation property

is satisfied. However, it does not guarantee that the strong maximum/minimum principle

are satisfied, and indeed we will see that a very complicated behavior arises, depending

on whether we are considering K+
k1,...,kℓ

or K−
k1,...,kℓ

, and also on the value of k. We recall

that an operator K satisfies the strong minimum principle in Ω if

Ku ≤ 0 in Ω, u ≥ 0 in RN =⇒ u > 0 or u ≡ 0 in Ω.
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Notice that since we are dealing with nonlinear operators, maximum and minimum princi-

ples are different concepts, and it may happen that one holds, whereas the other one not.

However, since K+
k1,...,kℓ

(−u) = −K−
k1,...,kℓ

u, there is a duality, and maximum principles for

one operator correspond to minimum principles for the other one.

Let us first briefly review what happens for truncated and fractional Laplacians. It is

well known that the fractional Laplacian satisfies the strong maximum (and minimum)

principle, see [15, Theorem 2.3.3]. Actually, a stronger property holds, in the sense that

(9) (−∆)su(x) ≥ 0 in Ω, u ≥ 0 in RN ⇒ u > 0 in Ω or u ≡ 0 in RN .

For the truncated Laplacians, the situation is deeply different. The operator P−
k , with

k < N , satisfies the weak minimum principle, but not the strong minimum principle, see

[10, Proposition 2.4]. On the other hand, the operator P+
k satisfies the strong minimum

principle. Indeed, if P+
k (D

2u(x)) ≤ 0 in Ω, then in particular

k λN−k+1(D
2u(x)) ≤

N∑
i=N−k+1

λi(D
2u(x)) ≤ 0

and since the eigenvalues are in non-decreasing order, λi(D
2u(x)) ≤ 0 for any i ≤ N−k+1.

Thus,

∆u(x) =
N∑
i=1

λi(D
2u(x)) ≤ 0

which yields the conclusion.

One finds a similar picture when considering the operators K±
k1,...,kℓ

.

Theorem 3.2. [[26]] The following conclusions hold.

(i) The operators K−
k1,...,kℓ

, with k < N , do not satisfy the strong minimum principle

in Ω.

(ii) The operators K−
k1,...,kℓ

with k = N satisfy the strong minimum principle in Ω.

(iii) The operators K+
k1,...,kℓ

satisfy the following implication

Ku(x) ≤ 0 in Ω, u ≥ 0 in RN ⇒ u > 0 in Ω or u ≡ 0 in RN .

In particular, they satisfy the strong minimum principle.
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(iv) Let k < N , or k = N and ℓ > 1. There exist functions u such that K−
k1,...,kℓ

u ≤ 0

in Ω, u ≡ 0 in Ω, and u ̸≡ 0 in RN \Ω, namely these operators do not satisfy the

implication in (iii).

Conclusion (ii) is the most delicate, and a careful analysis is needed, see [12, 26].

Conclusion (i) instead follows by taking φ a smooth bounded function of one variable

which attains the minimum in a point of Ω, and setting u(x) = φ(xN). Conclusion (iii)

is suggested by property (9) satisfied by the fractional Laplacian. In order to prove it,

take u which satisfies the assumptions of the minimum principle, and assume there exists

x0 ∈ Ω such that u(x0) = 0. Choose any orthonormal basis of RN {ξ1, . . . , ξN}. Thus,

0 ≥ K+
k1,...,kℓ

u(x0) ≥
ℓ∑

i=1

JVi
u(x0) =

ℓ∑
i=1

Cki,sP.V.

∫
Rki

u(x0 +
∑

j∈Ai
τjξj)

|τ |ki+2s
dτ,

where Ai is defined in (4). Hence, since u ≥ 0 in RN , we conclude that u ≡ 0 on every

space Vi + x0 for any i = 1, . . . , ℓ. Since the directions ξi are arbitrary, we get u ≡ 0 on

RN . Finally, a counterexample to show conclusion (iv) is given by the function

u(x) =

0 if ∃i = 1, . . . , ℓ such that d(x, ⟨ej⟩j∈Ai
) ≤ 1,

1 otherwise,

where Ai are defined in (4), and d(x,A) is the distance from the point x to the space A.

Remark 3.1. We wish to cite here the recent paper [6], in which the geometry of the sets

of minima for supersolutions of equations involving the operators I±
k is characterized.

Remark 3.2. The comparison principle can be exploited in order to get uniqueness for

the Dirichlet problem K±
k1,...,kℓ

u = f(x) in Ω

u = 0 in RN \ Ω.

where f is a bounded continuous function. Existence is guaranteed by the Perron method,

in case Ω is a uniformly convex domain, namely it is the intersection of a family of balls

of same radius, [1, 2, 12, 26].
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Another related problem, which turns out to be affected by the nonlocality, is the

validity of a Hopf type lemma. Whereas for truncated Laplacians [10] one has that any

supersolution can be bounded from below by the distance function to the boundary, here,

as in the case of the fractional Laplacian, for which we refer to [22], we need to compare

the supersolutions with the distance to the power s. Precisely,

Proposition 3.2 ([12]). Let Ω be a bounded C2 domain, k = N , and let u satisfyK−
k1,...,kℓ

u ≤ 0 in Ω

u ≥ 0 in RN \ Ω.

Assume u ̸≡ 0 in Ω. Then there exists a positive constant c = c(Ω, u) such that

(10) u(x) ≥ c d(x)s ∀x ∈ Ω,

where d(x) = infy∈∂Ω |x− y|.

Notice that the conclusion is not true for the operators K−
k1,...,kℓ

, k < N . Indeed, consider

the function

u(x) =

e
− 1

1−|x|2 if |x| < 1

0 if |x| ≥ 1

fix x ∈ B1(0), and take {ξi} ∈ Vk such that ⟨x, ξi⟩ = 0 for any i = 1, . . . , k. Hence∣∣∣∣∣x+∑
j∈Ai

τjξj

∣∣∣∣∣
2

= |x|2 + |τ |2 ≥ |x|2 ,

see (4), and using the radial monotonicity of u

K−
k1,...,kℓ

u(x) ≤ 0 in B1(0).

However, u clearly does not satisfy

u(x) ≥ c d(x)γ

for any positive constants c, γ.

As a consequence of Proposition 3.2, we immediately obtain the following
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Corollary 3.1. Let Ω be a bounded C2 domain, and let u satisfyK+
k1,...,kℓ

u ≤ 0 in Ω

u ≥ 0 in RN \ Ω.

Assume u ̸≡ 0 in Ω. Then

u(x) ≥ c d(x)s

for some positive constant c = c(Ω, u).

4. Principal eigenvalues

In this section, we aim to briefly discuss existence and main properties of suitably

defined principal eigenvalues, and their relation with the validity of maximum principles.

It is well known that the operator −∆− λ satisfies the maximum principle if and only if

λ < λ1, which is the principal eigenvalue of the Laplace operator, given by

λ1 = inf

{∫
Ω

|∇u|2, u ∈ C∞
0 (Ω),

∫
Ω

u2 = 1

}
.

However, when the problem lacks a variational formulation, as it is the case in our analysis,

one has to give a different characterization of the principal eigenvalue. It turns out that

the most convenient way to do so, is to exploit the formulation in [4]. In the case of fully

nonlinear operators like the Pucci operators, this is done in [25], see also [5] for a class of

p-homogeneous operators.

The case of truncated Laplacians has been treated in [10]. In our setting we have a

similar situation as [10], hence we follow their approach and define

µ±
k1,...,kℓ

= sup
{
µ : ∃v ∈ LSC(Ω) ∩ L∞(RN), v > 0 in Ω, v ≥ 0 in RN ,

K±
k1,...,kℓ

v + µv ≤ 0 in Ω
}
,

As noticed in [10], see also [18], when considering degenerate operators the situation is

delicate due to the possible lack of continuity up to the boundary. Thus, we need also to
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introduce the values

µ̄±
k1,...,kℓ

= sup
{
µ : ∃v ∈ LSC(Ω) ∩ L∞(RN), inf

Ω
v > 0, v ≥ 0 in RN ,

K±
k1,...,kℓ

v + µv ≤ 0 in Ω
}
.

One has, by similar arguments as for the proof of the comparison principle,

Theorem 4.1 ([12, 26]). The operators K±
k1,...,kℓ

(·)+µ· satisfy the maximum principle for

µ < µ̄±
k1,...,kℓ

.

However, this result is not completely satisfactory, as the natural threshold for validity

of maximum principles should be µ±
k1,...,kℓ

. It is immediate that µ̄±
k1,...,kℓ

≤ µ±
k1,...,kℓ

. Also,

one proves [26] that µ̄−
k1,...,kℓ

= µ−
k1,...,kℓ

= +∞ for any k < N . Indeed, let w(x) = e−α|x|2 >

0 for α > 0 and fix any µ > 0. Notice that∫
Rki

1− e−α
∑

τ2j

(
∑
τ 2j )

ki+2s

2

dτ1 . . . dτki = αs

∫
Rki

1− e−
∑

τ2j

(
∑
τ 2j )

ki+2s

2

dτ1 . . . dτki .

Hence, we obtain, choosing {ξj} ∈ Vk such that ξj is orthogonal to x for any j,

K−
k1,...,kℓ

w(x) + µw(x) ≤ −
∑

Cki,se
−α|x|2

∫
Rki

1− e−α
∑

τ2j

(
∑
τ 2j )

ki+2s

2

dτ1 . . . dτki + µe−α|x|2 ≤ 0

if α is big enough.

Furthermore, in convex domains µ̄±
k1,...,kℓ

= µ±
k1,...,kℓ

, see [12, Lemma 6.7]. However, it is

in general an open problem whether these values coincide or not.

We finally recall some bounds for these generalized eigenvalues.

Proposition 4.1 ([26]). One has

(i) If BR1 ⊆ Ω, then

µ̄−
k1,...,kℓ

≤ c1
R2s

1

< +∞

if k = N , and

µ̄+
k1,...,kℓ

≤ c1
R2s

1

< +∞

for any k1, . . . , kℓ, where c1 > 0.
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(ii) If Ω ⊆ BR2, then

0 <
c2
R2s

2

ℓ∑
i=1

kiωki ≤ µ̄+
1

ℓ∑
i=1

kiωki ≤ µ̄+
k1,...,kℓ

≤ µ̄−
k1,...,kℓ

where c2 > 0 and ωki is the volume of the ki dimensional sphere.

Actually, in case ℓ = k, namely when the operators I±
k are taken into account, one can

also prove that the eigenvalues are ordered in the sense that

µ̄+
1 ≤ · · · ≤ µ̄+

N ≤ µ̄−
N

see [12, Proposition 6.3].

A natural question is whether there exists an eigenfunction corresponding to these

eigenvalues. The answer is very partial, even in the case of the truncated Laplacians, and

relies on regularity estimates up to the boundary. We only treat the case of the operator

I±
1 , proving, see [12],

Theorem 4.2. Let Ω be a uniformly convex domain, and let s > 1
2
. Then there exists a

positive function ψ1 ∈ C0,2s−1(Ω) such that

(11)

I+
1 ψ1 + µ+

1 ψ1 = 0 in Ω

ψ1 = 0 in RN \ Ω.

The crucial regularity result is the following

Proposition 4.2. Let u satisfy

(12)

I+
1 u(x) = f(x) in Ω

u = 0 in RN \ Ω,

where Ω is a uniformly convex domain. If s > 1
2
, then u is Hölder continuous of order

2s− 1 in RN .

For the proof we refer to [12], see also the very recent paper [3] for a different approach.

Notice that here the nonlocal nature of the problem plays a crucial role. Indeed, for

the truncated Laplacian one gets Lipschitz regularity [10], whereas here the regularity

depends on s and resembles what happens for the fractional Laplacian, see [21].
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5. Representation formulas

We conclude this survey considering the question of whether it is possible, at least in

the radial case, to find the optimal frame for K±
k1,...,kℓ

. However, it turns out to be hard to

give an answer in its full generality, and only partial results are known. In [13] the cases

I±
k and J ±

k are considered, and the following results are proved.

Proposition 5.1. Assume u(x) = g̃(|x|2) ∈ C2(RN \ {0}) ∩ L∞(RN), and let x ̸= 0.

(i) If g̃, g̃′′ are convex, for all N, k ∈ N with 1 ≤ k ≤ N we have

I+
k u(x) = Ix̂u(x) + (k − 1)Ix⊥u(x),

where x⊥ ∈ ⟨{x̂}⟩⊥ with
∣∣x⊥∣∣ = 1, and x̂ = x/|x|.

(ii) If g̃ is convex, and 1 ≤ k < N , we have

I−
k u(x) = kIx⊥u(x),

where x⊥ is as in the previous point.

(iii) If g̃′′ is convex, then

I−
Nu(x) = NIξ∗u(x),

where ξ∗ ∈ RN is a unit vector such that ⟨x̂, ξ∗⟩ = 1√
N
.

Proposition 5.2. Assume 1 < k < N . Let u(x) = g̃ (|x|2) ∈ C2(RN) ∩ L∞(RN). If g̃ is

convex, then

(i) one has

J −
k u(x) = JV u(x),

where V is any k dimensional subspace which is orthogonal to x.

(ii) one has

J +
k u(x) = JV u(x),

where V is any k-dimensional subspace containing x.

Remark 5.1. Some examples of functions g̃ satisfying the above assumption are g̃(t) =
√
t
−γ

with γ ∈ (0, 1), g̃(t) = (a+
√
t)−γ, g̃(t) = (a+ t)−γ, g̃(t) = e−at for a > 0 and γ > 0.
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Only partial results can be proved for more general operators of the form K±
k1,...,kℓ

,

precisely,

Lemma 5.1 ([26]). Let k < N . Assume u(x) = g̃(|x|2) ∈ C2(RN) ∩ L∞(RN) such that g̃

is convex. Then for any x ̸= 0

(13) K−
k1,...,kℓ

u(x) =
ℓ∑

i=1

JWi
u(x)

for any Wi of dimension ki such that x is orthogonal to Wi.

Actually, by similar arguments as in Lemma 5.1 one can also treat operators of the

form

K̃k1,...,kℓu(x) := sup
{ξ1j }

k1
j=1∈Vk1

inf
{ξ2j }

k2
j=1∈Vk1,k2

. . . inf
{ξℓj}

kℓ
j=1∈Vk1,...,kℓ

ℓ∑
i=1

JVi
u(x).

Indeed, we have

K̃k1,...,kℓu(x) = (−∆)sRk1u(x) +
ℓ∑

i=2

JWi
u(x),

for any Wi of dimension ki such that x is orthogonal to Wi. However, it does not seem

trivial to understand the behavior of other mixed operators, precisely when more then

one sup is involved, or when taking K−
k1,...,kℓ

if k = N , as in these cases a competition

between different terms in the sum arises.

Notice that these representation formula are of interest in order to give Liouville type

results, see [13, 26].
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