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Abstract. We present some Liouville-type result for the Lane-Emden equation in the

subcritical and in the critical regimes. In particular, we focus on the so-called critical

p−Laplace equation.

Sunto. Presentiamo alcuni risultati di tipo Liouville per l’equazione di Lane-Emded

nei casi sottocritico e critico. In particolare, ci concentriamo sull’equazione critica del

p−Laplaciano.
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1. Introduction

In this survey we focus on the so-called generalized Lane-Emden equation, i.e. the

following quasilinear equation:

(1) ∆pu+ |u|q−1u = 0 in Rn ,

where

n ≥ 2 , 1 < p < n , q > 1 ,

and ∆p is the usual p−Laplace operator

∆pu = div(|∇u|p−2∇u) .

In particular, we are interested in Liouville-type results, i.e. classification and non-

existence results for (positive) solutions to (1).
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As we will see an important role in the Liouville-type results that we are going to

present is played by the exponent

(2) q = p∗ − 1 ,

where p∗ is the usual Sobolev critical exponent

p∗ :=
np

n− p
.

Basically we have two different behaviours: when q < p∗−1 there are no positive solutions

to (1), while when q = p∗− 1 the unique positive solutions are the so-called Talentiane or

Aubin-Talenti bubbles (see (7) and (10) below). We will refer to the case q < p∗ − 1 as

the sub-critical regime and to the case q = p∗ − 1 as the critical regime1.

We mention that the study of (1) in Rn (or, more in general in unbounded domains)

comes from the fact that this equation naturally arises not only in analysis, but also in

physics and in geometry. For instance, for n = 3, (1) arises in the study of stellar structure

in astrophysics (see e.g. [4] and [7]); while in the critical regime (i.e. when (2) holds), (1)

plays and important role in the study of conformal problems, like the Yamabe problem

of prescribed scalar curvature, and in the study of extremals of the Sobolev inequality

(see e.g. [4, 45] and also [40, Section 3]). Moreover, we mention that classification of

solutions to (1) in the critical regime is related, and it is of crucial importance in many

applications such as a priori estimates, blow-up analysis and asymptotic analysis (we refer

to [19, 23, 45] for the case p = 2 and to [41, 51] for the case p ̸= 2).

Finally, we emphasize that the critical p−Laplace equation

(3)

∆pu+ up∗−1 = 0 in Rn

u > 0

is also interesting from the point of view of the calculus of variations. Since the embedding

W 1,p(Rn) ↪→ Lp∗(Rn) is not compact, the classical tools of the calculus of variations (e.g.

the Mountain Pass Lemma or the direct method) do not apply to the functional

(4) J (u) :=
1

p

∫
Rn

|∇u|p dx− 1

p∗

∫
Rn

up∗ dx ,

1for this reason equation (1), in this case, is usually called the critical p−Laplace equation.
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which is the energy functional associated to problem (3)2.

The paper is organized as follows: in Section 2 we present the Liouville-type results in

the semilinear case (i.e. p = 2) and in the quasilinear case (i.e. p ̸= 2); then we focus

on the so-called finite energy assumption and we present a conjecture in this context. In

Section 3 we give a sketch of the proof of the conjecture when n = 2. Finally, in Section 4

we present some open problems that are related to the Liouville-type results we consider

in the paper.

2. Liouville-type results: main results

2.1. Semilinear case. We start by considering the semilinear case (i.e. p = 2) and the

sub-critical regime (i.e. q < 2∗ − 1), the first Lioville-type result is due to Gidas and

Spruck in [26] and reads as follows:

Theorem 2.1. Let u ∈ C2(Rn) be a solution of

(5)

∆u+ uq = 0 in Rn

u ≥ 0

with

1 ≤ q < 2∗ − 1 =
n+ 2

n− 2

then

u ≡ 0 .

The proof of this theorem is based on a test functions argument and on integral identi-

ties. We mention that the same result holds true in the Riemannian setting, in particular

the same result holds in complete non-compact Riemannian manifolds with non-negative

Ricci curvature (see [26]).

2this means that problem (3) is the Euler-Lagrange equation of the functional (4).
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In the critical case (i.e. q = 2∗ − 1) the scenario is different because of the existence of

an explicit family of (classical) solutions to

(6)

∆u+ u2∗−1 = 0 in Rn

u > 0

given by the so-called Talentiane or Aubin-Talenti bubbles : these are a two parameters

family of functions of the following form

(7) Uλ,x0(x) :=

( √
n(n− 2)λ

1 + λ2|x− x0|2

)n−2
2

,

where λ > 0 and x0 ∈ Rn. Observe that with the normalization in (7) it turns out that

the functions (7) solves exactly (6). These functions have been constructed indipendently

by Aubin in [3] and Talenti in [48] as minimizers of the Sobolev constant :

S2 := inf
u∈D1,2(Rn)

∫
Rn |∇u|2 dx(∫
Rn u2∗ dx

)2/2∗ ,
where the space D1,2(Rn) is the homogeneous3 Sobolev space defined by

D1,2(Rn) :=
{
u ∈ L2∗(Rn) : ∇u ∈ L2(Rn)

}
.

Hence the natural question is whether the functions (7) are the only solutions to (6) or

not.

This question has attracted a lot of interest in geometric analysis and PDE’s communi-

ties. The first results in this directions are the ones contained in the papers [25] and [37]

where the authors proved that the only solutions to (6) are the Talentiane (7), provided

u(x) = O

(
1

|x|n−2

)
, for |x| → ∞ .

The result without any further assumption is due to Caffarelli, Gidas and Spruck in [4]

(see also [9] and [29]) and is contained in the following

Theorem 2.2. Let u ∈ C2(Rn) be a solution of (6), then u(x) = Uλ,x0(x), for some λ > 0

and x0 ∈ Rn.

3it is homogeneous in the same sense the Sobolev inequality is homogeneous under the rescaling

fλ(·) := f(·/λ)
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The proof of this theorem is based on the Kelvin transform and on a variation of the

method of moving planes (introduced in [1] in the context of constant mean curvature

hypersurfaces and transplanted to the study of qualitative properties of solutions of PDE’s

in [42] and in [24]). We mention that, also in this case, the same result holds true in

the Riemannian setting; in particular, the same result holds in complete non-compact

Riemannian manifolds with non-negative Ricci curvature as recently shown in [5].

We emphasize that thanks to the strong maximum principle (see e.g. [27]) we can

consider (strictly) positive solutions to (6), indeed every non-negative solution to (6) is

strictly positive, unless u ≡ 0.

2.2. Quasilinear case. The quasilinear case (i.e. p ̸= 2) is more difficult and complicated

and we have to take into account the nonlinear nature of the p−Laplace operator, the

lack of regularity of the solutions and the fact a Kelvin type transform is not available

(as in the case of the Laplace operator). In particular, in this case we cannot consider

classical solutions to (1) but we have to deal with weak solutions4. For clarity we report

here the definition of weak solution to (1).

Definition 2.1. A weak solution u to (1) is a function u ∈ W 1,p
loc (Rn)∩L∞

loc(Rn) such that∫
Rn

|∇u|p−2∇u · ∇φdx−
∫
Rn

|u|q−1uφdx = 0 , for all φ ∈ W 1,p
c (Rn),

where W 1,p
c (Rn) denotes the space of compactly supported functions in W 1,p(Rn).

In the sub-critical case (i.e. q < p∗ − 1) the analogue of Theorem 2.1 has been proved

by Serrin and Zou in [43] and is the following

4indeed, it is well-known that solutions to quasilinear equations are not smooth; indeed let p > 1 and

p ̸= 2 and consider the function

u(x1, . . . , xn) =
|x1|q

q
, where

1

p
+

1

q
= 1

which clearly solves

∆pu = 1 .
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Theorem 2.3. Let u be a weak solution of

(8)

∆pu+ uq = 0 in Rn

u ≥ 0

with

1 < p < n and 1 ≤ q < p∗ − 1

then

u ≡ 0 .

In the critical case (i.e. q = p∗ − 1) the analogue of Theorem 2.2 has been recently

proved by Damascelli, Merchán, Montoro and Sciunzi in [14] for 2n
n+2

< p < 2 and by

Vétois in [51] and by Sciunzi in [41] for 1 < p < 2 and for 2 < p < n, respectively.

These results are summarized and presented in the following

Theorem 2.4. Let u be a weak solution of (3), with

1 < p < n ,

and such that

(9) u ∈ D1,p(Rn) :=
{
u ∈ Lp∗(Rn) : ∇u ∈ Lp(Rn)

}
.

Then u(x) = Uλ,x0(x), for some λ > 0 and x0 ∈ Rn, where

(10) Uλ,x0(x) =

 n
1
p

(
n−p
p−1

) p−1
p

λ

1 + λ
p

p−1 |x− x0|
p

p−1


n−p
p

.

The proof is based on asymptotic bounds on u and |∇u| and, again, on the method

of moving planes. We refer to the paper [10] for an alternative proof, based on integral

identities, which is suitable to be generalized also in the anisotropic setting and in the

context of convex cones of Rn (see also [31] for a previous result)

We mention that in the context of quasilinear equations the strong maximum principle

holds true (see [49]) and so we can consider (strictly) positive solutions to (3), indeed

every non-negative solution to (3) is strictly positive, unless u ≡ 0.
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The functions (10) are the generalization of the functions (7) and have been constructed

by Aubin in [3] and Talenti in [48] as minimizers of the p−Sobolev constant :

Sp := inf
u∈D1,p(Rn)

∫
Rn |∇u|p dx(∫
Rn up∗ dx

)p/p∗ .
2.3. The finite energy assumption. We now comment about the hypothesis of Theo-

rems 2.2 and 2.4. The common hypothesis in both theorems is the following

u > 0 ,

and it is fundamental, indeed it is possible to construct infinitely-many sign-changing

solutions to

∆pu+ |u|p∗−2u = 0 in Rn ,

which are not radial (see e.g. [15, 17, 18, 33, 34, 36] for the semilinear equation and [11]

for the quasilinear equation, provided n ≥ 4).

On the contrary, the main difference is the hypothesis (9) in Theorem 2.4. Usually,

condition (9) is called finite energy condition (recall the energy functional (4)).

Hence, the desired and conjectured result should be the following

Conjecture 2.1. Let u be a weak solution of (3), with

1 < p < n ,

Then u(x) = Uλ,x0(x), for some λ > 0 and x0 ∈ Rn.

Very recently, positive and partial answers to this conjecture have been provided: in [6]

we show that the conjecture is true in the case

n = 2, 3 with
n

2
< p < n− 1 ,

in [38] the author shows that the conjecture is true in the case

n ≥ 2 with
n+ 1

3
< p < n ,

and in [50] the author shows that the conjecture is true in the case

n ≥ 4 with pn < p < n ,
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where pn = 8
5
if n = 4 and pn = 4n+3−

√
4n2+12n−15
6

. To the best of our knowledge these are

the only results in literature facing Conjecture 2.1.

The proof of the these results is based on integral identities and is inspired by the

already cited papers [5, 10, 26, 43]. In the next section, we are going to present the proof,

contained in [6], of Conjecture 2.1 in the case n = 2.

We mention that in [6], we also deal with Conjecture (2.1) for n ≥ 4 under assumptions

on the growth of the energy or assuming a suitable control of the solutions at infinity.

These conditions are (much) weaker that the finite energy assumption and we refer to [6]

for further details. Finally, in [6] we also consider the Riemannian setting and we prove

analogue results, in particular we consider a complete, non-compact Riemannian manifold

with non-negative Ricci curvature if 1 < p < 2 and with non-negative sectional curvatures

if 2 < p < n. We refer to [6, Appendix A] for further details.

3. Proof of Conjecture 2.1 with n = 2

The proof of Conjecture 2.1 with n = 2 provided in [6] (and also in [38]) is based on a

key integral estimate which is an adaptation of the argument in [43]. In order to state it

we need to introduce some notations; let n = 2 and 1 < p < 2, we consider u to be the

weak solution of (3) and we define the following vector fields:

u := |∇u|p−2∇u and v := u− 2(p−1)
2−p u .

Then, we set

U :=

∇u in Ωc
cr

0 in Ωcr

and V :=

∇v in Ωc
cr

0 in Ωcr ,

where

Ωcr := {x ∈ Rn : ∇u(x) = 0} ,

is the set of critical points of u.

Finally, we recall the notion of traceless matrix associated to V denoted by V̊:

V̊ := V − trV

n
Idn ,

where Idn denotes the n× n identity matrix.
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With these notations, we have the following fundamental integral estimate.

Proposition 3.1. Let n = 2, 1 < p < 2 and let u be a weak solution of (3). Then

(11)

∫
R2

u
p

2−p |V̊|2ϕ dx ≤ −
∫
R2

u
p

2−p ⟨v · V̊,∇ϕ⟩ dx ,

for all 0 ≤ ϕ ∈ C∞
0 (Rn), where the expression v · V̊ is interpreted as the vector with

components (v · V̊)i =
∑n

j=1 vjV̊ij, for i = 1, . . . , n.

We refer to [6, Proposition 2.2] and to [43, Section 6] for its proof, but we mention that

all the computations can be performed thanks to the regularity of the solution proved e.g.

in the recent paper [2].

An immediate consequence of the previous proposition is when one takes ϕ = η2, where

0 ≤ η ∈ C∞
0 (Rn) and uses Cauchy-Schwarz or Hölder inequality in (11). The following

integral estimates are the keys to deduce the rigidity result.

Corollary 3.1. Let n = 2, 1 < p < 2 and let u be a weak solution of (3). Then,

(12)

∫
R2

u
p

2−p |V̊|2η2 dx ≤ C

∫
R2

u
4−3p
2−p |∇u|2(p−1)|∇η|2 dx ,

and

(13)

∫
R2

u
p

2−p |V̊|2η2 dx ≤

C

(∫
supp|∇η|

u
p

2−p |V̊|2η2 dx
) 1

2
(∫

R2

u
4−3p
2−p |∇u|2(p−1)|∇η|2 dx

) 1
2

,

for all 0 ≤ η ∈ C∞
0 (Rn).

Now we can prove Conjecture 2.1 with n = 2

Proof of Conjecture 2.1 with n = 2. We aim to prove the following

(14)

∫
R2

u
p

2−p |V̊|2η2 dx = 0 .

Indeed, once (14) holds we conclude that

(15) V̊ = ∇v − div v

n
Idn ≡ 0 in Ωc

cr .
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Then, we denote with Ω0 ⊆ Ωc
cr a connected component of Ωc

cr. Since 0 < u ∈ C1,α
loc (Rn)

(see e.g. [2]), then v := u− p
2−p ∈ C1,α

loc (Rn). From the fact that

v = −
(
2− p

p

)p−1

|∇v|p−2∇v ,

we get

divv = −
(
2− p

p

)p−1

∆pv

which can be rewritten in terms of u in the following way

divv = −u
p

n−p − n(p− 1)

n− p
u− p(n−1)

n−p |∇u|p ,

where we used the fact that u solves (3). We observe that the right-hand side of the pre-

vious identity is in C0,α
loc (Rn), hence by standard elliptic regularity, we have v ∈ C2,α

loc (Ω0),

u ∈ C2,α(Ω0) and so divv ∈ C1,α
loc (Ω0). Differentiating (15), we get

∂i (divv) = n ∂i (divv) .

Therefore

divv = const on Ω0

and thus

v(x) = C(x− x0)

on Ω0 and for some C ∈ R and x0 ∈ Rn. Thus

v(x) = C1 + C2|x− x0|
p

p−1

on Ω0, for some C1, C2 > 0. Then u(x) = Uλ,x0(x) on Ω0 for some λ > 0 and x0 ∈ Rn.

Since the argument above holds whenever ∇u ̸= 0, we must have Ω0 = Rn \ {x0} and the

result follows.

It remains to prove (14). In order to do this, we choose 0 ≤ η ∈ C∞
0 (Rn) in Corollary

3.1 as follows: for any R > 1 let η = 1 in BR, η = 0 in Bc
2R, 0 ≤ η ≤ 1 on Rn and such

that

|∇η|2 ≤ C

R2
in B2R \BR .
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Then (12) reads as∫
R2

u
p

2−p |V̊|2η2 dx ≤ C

R2

∫
B2R\BR

u
4−3p
2−p |∇u|2(p−1) dx

=
C

R2

∫
B2R\BR

u
(
u− p

2−p |∇u|p
) 2(p−1)

p
dx .

From Hölder inequality we obtain (recall that 1 < p < 2)∫
R2

u
p

2−p |V̊|2η2 dx ≤ C

R2

(∫
B2R\BR

u− p
2−p |∇u|p dx

) 2(p−1)
p
(∫

B2R\BR

u
p

2−p dx

) 2−p
p

,

moreover, from Young inequality we get

(16)

∫
R2

u
p

2−p |V̊|2η2 dx ≤ C

R2

(∫
B2R\BR

u− p
2−p |∇u|p dx+

∫
B2R\BR

u
p

2−p dx

)
.

Now we estimate the right-hand side of (16) in the following way: take

φ = u− p
2−p

+1η2

as test function in the weak formulation of (3) to get

−
∫
R2

u
p

2−pη2 dx = −
∫
Rn

|∇u|p−2∇u · ∇
(
u− p

2−p
+1η2

)
dx

=
2(p− 1)

2− p

∫
Rn

u− p
2−p |∇u|pη2 dx− 2

∫
Rn

u− p
2−p

+1|∇u|p−2η⟨∇u,∇η⟩ dx .

From Cauchy-Schwarz and Young inequalities we obtain

−
∫
R2

u
p

2−pη2 dx ≥2(p− 1)

2− p

∫
R2

u− p
2−p |∇u|pη2 dx

− 2

∫
R2

u− p
2−p

+1|∇u|p−1η|∇η| dx

≥2(p− 1)

2− p

∫
R2

u− p
2−p |∇u|pη2 dx

− 2ε

∫
R2

u− p
2−p |∇u|pη2 dx− Cε

∫
R2

u
p(1−p)
2−p η2−p|∇η|p dx ,

for all ε > 0, i.e.

(17) −
∫
R2

u
p

2−pη2 dx ≥ 2

(
p− 1

2− p
− ε

)∫
R2

u− p
2−p |∇u|pη2 dx−Cε

∫
R2

u
p(1−p)
2−p η2−p|∇η|p dx ,

for all ε > 0.
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In order to tackle the second integral on the right-hand side of (17) we use the following

lower bound for the function u: since u is a p−superharmonic function then there exist

C, ρ > 0 such that

u(x) ≥ C

|x|
2−p
p−1

for every x ∈ Rn \Bρ ,

we refer to [43, Lemma 2.3] for the proof. Hence, (17) becomes, for R > ρ,

−
∫
BR

u
p

2−p dx ≥ 2

(
p− 1

2− p
− ε

)∫
BR

u− p
2−p |∇u|p dx− CεR

2 ,

for all ε > 0 and for some Cε > 0. Choosing ε small enough and reordering terms , we get∫
BR

u− p
2−p |∇u|p dx+

∫
BR

u
p

2−p dx ≤ CR2 .

So, we have that the right-hand side of (16) is uniformly bounded in R. Hence,∫
R2

u
p

2−p |V̊|2η2 dx < ∞ .

By using (13) and passing to the limit as R → ∞, we obtain (14).

□

4. Open problems

In this section we state some open problems which are related to the Liouville-type

results that we presented in the paper.

4.1. The Lane-Emden conjecture. A natural generalization of the Lane-Emden equa-

tion is the so-called Lane-Emden system:

(18)

∆u+ vp = 0 in Rn,

∆v + uq = 0 in Rn,

where p, q > 0. The pair (p, q) is called sub-critical if

(19)
1

p+ 1
+

1

q + 1
> 1− 2

n
.

In [35], the author proves that the system (18) has no positive radial solutions if and only

if the pair (p, q) is subcritical. This implies that the following conjecture holds true for

non-negative radial solutions (see e.g. [16, 20, 44])
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Lane-Emden Conjecture. If the pair (p, q) is subcritical, then the only non-negative

solutions to system (18) are u, v ≡ 0.

We mention that (19) is optimal for proving nonexistence results: indeed, in the critical

case (i.e. (19) with “ = ”) and supercritical case (i.e. (19) with “ < ”) the system (18)

admits (bounded) positive radial classical solutions (see e.g. [35] and [44]).

Regarding the Lane-Emden Conjecture partial results are know: in dimensions n = 1

and n = 2 it follows from the results in [35, 44, 47]; moreover, in dimensions n = 3 and

n = 4 the conjecture has been recently solved in [39] and in [46], respectively. In higher

dimensions n ≥ 5 the conjecture is open and is known to be true only in some subregions

of the subcritical range given by (19) (we refer to the papers [46] and [30] and to the

references therein for further details).

4.2. The anisotropic setting. In the anisotropic context, i.e. Rn endowed with a

generic anisotropic norm H, i.e. H : Rn → R is a positive, positively homogeneous

of degree one 1 and convex function. In this setting the natural generalization of the

Lane-Emden equation is the following

(20) ∆H
p u+ uq = 0 in Rn ,

where, for 1 < p < n, ∆H
p denotes the so-called anisotropic p−Laplace operator :

∆H
p u := div(Hp−1(∇u)∇H(∇u)) ;

observe that in the Euclidean case, i.e when H(·) = | · | one has

Hp−1(∇u)∇H(∇u) = |∇u|p−2∇u ,

and so ∆H
p reduces to the usual p−Laplace operator. In this setting the Liouville-type

theorem in the critical case (i.e. q = p∗ − 1) is given in [10] where we prove that positive

solutions to (20) with finite energy are given by

(21) UH
λ,x0

(x) :=

 n
1
p

(
n−p
p−1

) p−1
p

λ

1 + λ
p

p−1H0(x0 − x)
p

p−1


n−p
p

,
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for some λ > 0 and x0 ∈ Rn and where H0 denotes the dual norm of H, i.e.

H0(ζ) := sup
H(ξ)=1

ζ · ξ , for all ζ ∈ Rn.

For the sake of completeness, we mention that the functions (21) have been constructed

as minimizers of the anisotropic Sobolev constant in [12] by using the optimal transport

(see also [40] for further details).

It would be of interest to consider the anisotropic subcritial case (i.e. (20) with 1 ≤

q < p∗ − 1) and prove the analogue of Theorem 2.3. Moreover, it would be of interest to

remove the finite energy assumptions in the critical case proved in [10].

4.3. The non-local setting. Given 0 < α < n the non-local version of the Lane-Emden

equation is the following:

(22) −(−∆)α/2u+ uq = 0 in Rn ,

where (−∆)α/2 is the usual non-local Laplace operator. Observe that when α = 2, (22)

reduces to

∆u+ uq = 0 in Rn .

In this setting the Liouville-type theorem in the critical case (i.e. q = n+α
n−α

) is given in [8],

where the authors prove that positive solutions to (22) such that u ∈ L
2n

n−α

loc (Rn) are given

by

(23) U (α)
λ,x0

(x) = c(n, α)

(
λ

λ2 + |x− x0|2

)n−α
2

,

for some λ > 0 and x0 ∈ Rn. We mention that the functions (23) have been constructed

as minimizers of the Hardy-Littlewood-Sobolev constant in [28]. We refer to [8] for further

details. In the subcritical case (i.e. 1 ≤ q < n+α
n−α

) it has been proved, in [13], that the only

non-negative solution to (22) is u ≡ 0. We refer to [13] for further details and previous

results.

Both results are based on an adaptation of the method of moving planes and it would be

of interest to find an alternative proof suitable to be adapted to the non-local p−Laplace

operator.
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4.4. The Heisenberg setting. We recall that the Heisenberg group Hn is the Lie group

(R2n+1, ◦) with the composition defined in the following way: given ξ, ξ′ ∈ Hn we denote

ξ = (z, t) = (x, y, t) and ξ = (z′, t′) = (x′, y′, t′), where z = (x, y), z′ = (x′, y′) ∈ R2n and

t, t′ ∈ R then

ξ ◦ ξ′ := ((z + z′, t+ t′ + 2 [⟨x′, y⟩ − ⟨x, y′⟩]) ,

where ⟨·, ·⟩ denotes the standard scalar product in Rn. The linear second order partial

differential operator

∆Hn :=
n∑

i=1

(
X2

i + Y 2
i

)
,

where

Xi = ∂xi
+ 2yi∂t , Yi = ∂yi − 2xi∂t j ∈ {1, . . . , n} ,

is called the Kohn-Laplace operator on Hn. In this setting the Lane-Emden equation is

the following

(24) ∆Hnu+ uq = 0 in Hn .

In the critical case q = 1+ 2
n
, in the paper [21], the authors proved that the only positive

solutions to (24) such that u ∈ L
2n+2

n (Hn) are (up to left translations and dilations) of

the following form

(25) W(ξ) =
c0

(t2 + (1 + |z|2)2)
n
2

.

We mention that the functions (25) have been constructed as minimizers of the so-called

Folland-Stein constant in [21]. Moreover, (24) is also related to so-called CR Yamabe

problem. For further details on these two topics we refer to the original papers [21] and

[22].

In the subcritical case, 1 < q < 1 + 2
n
it has been recently proved that the only non-

negative solution to (24) is u ≡ 0 (see [32] and the references therein for previous results).

It would be of interest to weaken the (finite energy) assumption u ∈ L
2n+2

n (Hn) in the

critical case and to prove analogue Liouville-type results for the p−Kohn-Laplace operator

on Hn.
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