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Abstract. We present a brief survey on some recent results concerning the local and

global regularity of the solutions for some classes/models of sums of squares of vector

fields with real-valued real analytic coefficients of Hörmander type. Moreover we also

illustrate a result concerning the microlocal Gevrey regularity of analytic vectors for

operators sums of squares of vector fields with real-valued real analytic coefficients of

Hörmander type, thus providing a microlocal version, in the analytic category, of a

result due to M. Derridj.

Sunto. Presentiamo una breve rassegna di alcuni recenti risultati riguardanti la rego-

larità locale e globale delle soluzioni per alcune classi/modelli di somme di quadrati di

campi vettoriali con coefficienti reali analitici a valori reali di tipo Hörmander. Illus-

triamo anche un risultato riguardante la regolarità microlocale dei vettori analitici per

operatori somme di quadrati di campi vettoriali con coefficienti reali analitici a valori

reali di tipo Hörmander, fornendo cos̀ı una versione microlocale, nel caso analitico, di un

risultato dovuto a M. Derridj.
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1. Introduction

The aim of this paper is to provide an overview of some recent results on the global

and local regularity of the solutions for some classes of sums of squares of vector fields

with real-valued real analytic coefficients of Hörmander type. Moreover, we deal of the
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microlocal regularity of the analytic vectors for a generic sum of squares of vector fields

of Hörmander type with real-valued real analytic coefficients.

Let X1(x,D), . . . , Xm(x,D) be vector fields with real-valued real analytic coefficients on

Ω, open neighborhood of the origin in Rn. Let P (x,D) denote the corresponding sum of

squares operator

P (x,D) =
m∑
j=1

Xj(x,D)2.(1)

We assume that the operator P satisfies the Hörmander condition: the Lie algebra gen-

erated by the vector fields and their commutators has the dimension n, equal to the

dimension of the ambient space, at all points.

The celebrated theorem of Hörmander, [35], settled the problem of C∞-hypoellipticity:

if the fields Xj, j = 1, . . . ,m, satisfy the Hörmander condition at the step r, then P is

C∞-hypoelliptic, i.e. if for a given u ∈ D ′(U), U open subset of Ω, with Pu ∈ C∞(U),

we have that u ∈ C∞(U). Furthermore it has been proved by a number of authors (see

[35],[7], [32],[46] and [38] for a short proof of a non-optimal statement) that the following

subelliptic a priori estimate holds:

(2) ∥u∥21/r +
m∑
j=1

∥Xju∥2 ≤ C
(
|⟨Pu, u⟩|+ ∥u∥2

)
.

Here u ∈ C∞
0 (Ω), ∥ · ∥0 denotes the norm in L2(Ω) and ∥ · ∥s the Sobolev norm of order s

in Ω.

Since we will work both in a local setting as well in global one we recall some basic

definitions in both settings. We point out that what was stated before can be reformulated

in the global setting on the n-dimensional torus replacing Ω with Tn.

Definition 1.1. Let U be an open subset of Rn. The space Gs(U), s ≥ 1, the class of

Gevrey functions of order s in U , denotes the set of all f ∈ C∞(U) such that for every

compact set K ⋐ U there are two positive constants CK and A such that

|Dαf(x)| ≤ AC
|α|
K |α|s|α|, ∀α ∈ Zn

+ and ∀x ∈ K.
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Gs(Tn), the class of the global Gevrey functions of order s in Tn, denotes the set of all

f ∈ C∞(Tn) such that there exists a positive constant C, for which

|Dαf(x)| ≤ C |α|+1|α|s|α|, ∀α ∈ Zn
+, x ∈ Tn.

When s = 1 we shall say that u is analytic in Ω, u ∈ Cω(Ω), or in Tn, u ∈ Cω(Tn).

Definition 1.2. An operator P is said to be Gs-hypoelliptic, s ≥ 1, in U , open subset

of Rn, if for any given U ′ open subset of U , the conditions u ∈ D ′ (U) and Pu ∈ Gs(U)

imply that u ∈ Gs(U ′).

P is said to be globally Gs-hypoelliptic, s ≥ 1, in Tn if the conditions u ∈ D ′ (Tn) and

Pu ∈ Gs(Tn) imply that u ∈ Gs(Tn).

When s = 1 we shall say that P is (globally) analytic hypoelliptic.

When in 1967 Hörmander formulated the theorem on the hypoellipticity, the question

on the analytic hypoellipticity for such operators was also asked. In 1971, Derridj, [27],

showed that, in the real analytic case, the Hörmander condition is needed for such op-

erators to be analytic hypoelliptic. Not all sums of squares of real analytic vector fields

are analytic hypoelliptic as the following two seminal examples show. The first is due to

Baouendi and Goulaouic in 1972, [4]. In the local setting they studied the operator

(3) PBG = D2
1 +D2

2 + x2
1D

2
3 in R3.

They showed that PBG is G2-hypoelliptic and no better in any neighborhood of the origin.

The second is due to Métivier in 1981, [43]. He studied the operator

(4) PM = D2
x + x2D2

y + (yDy)
2 in R2.

Métivier showed that PM is G2-hypoelliptic and no better in any neighborhood of the

origin. Let ΣPG and ΣM the characteristic varieties of PBG and PM respectively:

ΣPG =
{
(x, ξ) ∈ T ∗R3 \ {0} : ξ1 = 0 = x1, ξ2 = 0 and ξ3 ̸= 0

}
,

ΣM =
{
(x, y, ξ, η) ∈ T ∗R2 \ {0} : ξ = 0 = x, y = 0 and η ̸= 0

}
.

From the geometrical point of view the main difference between the above operators is

due to the fact that in the case of the Baouendi-Goulaouic operator, (3), the Hamilton
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(bicharacteristic) leaf, TΣBG∩TΣ⊥σ
BG

1, on the characteristic variety lies on the base of the

cotangent bundle; in the case of the Métivier operator, (4), the Hamilton (bicharacteristic)

leaf, TΣM ∩ TΣ⊥σ
M , on the characteristic variety lies along the fiber of the cotangent

bundle. Now we adopt the global viewpoint and we consider the global version of the

above operators

(5) P̃BG = D2
1 +D2

2 + (sinx1)
2D2

3 in T3,

and

(6) P̃M = D2
x + (sinx)2D2

y + (sin(y)Dy)
2 in T2.

In 1994, Cordaro and Himonas, [25], showed that the global version of the Baouendi-

Goulaouic operator, P̃BG, is globally analytic hypoellipticity, see also [49] and [11]. On

the other hand the global version of the Métivier operator, P̃M , is not globally analytic

hypoelliptic. P̃M is G2−globally hypoelliptic and no better as showed in [52] and in [11].

This shows that the scenario can be very different moving from the local to the global

case.

The first general result on analytic hypoellipticity in the local setting is due to Tartakoff

([48]) and Treves ([50]): let P be as in (1), i.e. a sum of squares of vector fields with an-

alytic coefficients satisfying the Hörmander condition, assume further that the symbol of

P , P (x, ξ) =
∑m

j=1Xj(x, ξ)
2, vanishes “exactly” 2 of order 2 on a symplectic submanifold

of T ∗Ω, then P is analytic hypoelliptic. We recall that the more general result concerning

the local regularity of solutions to equations Pu = f , f real analytic, was obtained in 1973

by Derridj and Zuily, [28]. They showed: let P be as in (1) and suppose that the Hörman-

der condition is satisfied using commutators of length up to r and that Pu ∈ Cω(Ω), then

u ∈ Gr(Ω). The Gevrey regularity theorem of Derridj and Zuily is not sharp in general,

since it is easy to exhibit examples having better regularity, like the Heisenberg Laplacian

or more generally any operator satisfying the hypothesis in the Tartakoff-Treves’ theorem.

However if no additional assumption is made on the operator P , the Gevrey regularity of

1Here TΣ⊥σ

BG denotes the orthogonal complement of TΣBG with respect to the symplectic form σ.
2Here with “exactly” we mean that if Σ = Char(P ) = P−1(0) = {(x, ξ) ∈ T ∗Ω \ 0 : P (x, ξ) = 0}, for

(x, ξ) ∈ Σ, we have that ker dHP (x, ξ) = T(x,ξ)Σ, where HP (x, ξ) = (∇ξP (x, ξ),−∇xP (x, ξ)).
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theorem is (locally) optimal as shown by the Baouendi-Goulaouic operator PBG, (3), and

by the Métivier operator, (4).

In order to better understand the problem of the analytic hypoellipticity, in 1999 Treves

first introduced in [51] and subsequently redefined in [52] the Poisson-Treves stratifica-

tion. In [52] Treves formulated the following conjectures that link the microlocal and the

global analytic hypoellipticity of the operator (1) to precise geometrical properties of its

characteristic variety:

(micro-)Local Treves Conjecture: the operator P (x,D) in (1) is analytic hy-

poelliptic if and only if every stratum of the Poisson-Treves stratification is sym-

plectic;

Global Treves Conjecture: let P (x,D) be as in (1) on Tn; then P (x,D) is glob-

ally analytic hypoelliptic if and only if the closure in T ∗Tn of every Hamilton

(bicharacteristic) leaf of every stratum of the Poisson-Treves stratification is com-

pact.

In 2018 and in 2017, Albano, Bove and Mughetti, [3], and Bove and Mughetti, [12],

showed that the sufficient part of the (micro-)local Treves’ conjecture does not hold.

They produced and studied the first models which are not consistent with the (micro-

)local Treves’ conjecture. More precisely in [3] the authors produced the following model

(7) PABM = D2
1 +D2

2 + x
2(r−1)
1

(
D2

3 +D2
4

)
+ x

2(p−1)
2 D2

3 + x
2(q−1)
2 D2

4, in R4,

with 1 < r < p < q, having a single symplectic stratum, according to the Treves conjec-

ture, and which is Gevrey hypoelliptic of order s0 = (r(q − 1))/(q − 1 + (r − 1)(p − 1))

and no better in any neighborhood of the origin. As remarked by the authors in this

case the co-dimension of the single symplectic stratum is 4. Indeed in the presence of

single symplectic stratum of codimention 2 the Treves conjecture was proved by Okaji,

[44], Cordaro and Hanges [24] and Albano and Bove [1].

In [12] the authors studied the following model

(8) PBM = D2
1 + x

2(ℓ+r−1)
1

(
D2

3 +D2
4

)
+ x2ℓ

1

(
D2

2 + x
2(p−1)
2 D2

3 + x
2(q−1)
2 D2

4

)
, in R4,
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with ℓ, r, p, q ∈ N and 1 < r < p < q, which has two symplectic strata. They showed that

even if the codimention of the characteristic manifold of PBM is 2, the operator is not

analytic hypoelliptic. In fact, it is Gevrey hypoelliptic of order s1 = [(ℓ+ r)(q− 1))]/[(ℓ+

1)(q − 1) + (r − 1)(p− 1)] and no better.

Currently the necessary part of the Treves’ conjecture is still an open problem: if there

is a non-symplectic stratum, so that Hamiltonian leaves appear, the operator P is not

analytic hypoelliptic.

The discovery of these two interesting models, (7) and (8), the first ones to be not con-

sistent with the local Treves conjecture, has de facto completely reopened, in dimension

greater than or equal to 4, the question concerning the identification and nature of the

sufficient conditions in order that an operator be analytic hypoelliptic. In dimension three

no counterexamples are known, it is believed that the Treves conjecture does not hold, in

[13] a candidate has been produced that should violate the conjecture. On the contrary,

there are good reasons to surmise that the conjecture of Treves holds in two variables.

We refer to [51], [16] for more details on the statement of the conjecture, as well as to [13]

for a discussion of both the 3- and 2-dimensional cases. Concerning the global case, in

[21] (see also [11] for a more general result), it was showed that the global version on the

torus of the operators (7) and (8) are globally analytic hypoellitic. At the present, unlike

the local case, the global Treves’ conjecture has not yet been proved or disproved.

2. Local and Global regularity for some classes of of sums of squares

of vector fields of Hörmander type

In this section we present a couple of results: the first concerning the sharp Gevrey

hypoellipticity for a generalization of the Métivier operator, the second, obtained in a joint

work with Bove, about the global analytic hypoellipticity for a class of sums of squares.

2.1. On the sharp Gevrey regularity for a generalization of the Métivier oper-

ator. In order to better understand the problem of the regularity of sums of squares in

dimension two and three, it is of crucial importance to know whether a certain Gevrey

regularity, which may be relatively easy to obtain by using L2 a priori estimates, is opti-

mal or not. In two variables this becomes difficult because if the Poisson-Treves strata is
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not symplectic, the Hamilton leaves corresponding to the kernel of the symplectic form

have injective projection onto the fibers of the cotangent bundle, thus causing technical

complication in the construction of a singular solution, which is the method of proving

optimality.

We consider the operator

Mn,m = D2
x +

(
x2n+1Dy

)2
+ (xnymDy)

2 ,(9)

in Ω, open neighborhood of the origin in R2, where n and m are positive integers. The

operator is a non trivial generalization of the Métivier operator (4). The operator (9)

has a symplectic characteristic manifold and a non-symplectic stratum according to the

Poisson-Treves stratification. According to the Treves conjecture in dimension two, it

turns out not to be analytic hypoelliptic. We have the following theorem.

Theorem 2.1. [22] The operator Mn,m, (9), is G
2m

2m−1 -hypoelliptic and no better in any

neighborhood of the origin.

A few remarks are in order.

(a) The Gevrey regularity obtained for the operator Mn,m is consistent with that

predicted in [15] using L2 a priori estimates, i.e. using the sub-elliptic estimate

(2). The Gevrey regularity obtained for the operator Mn,m remains the same if

we perturb the operator adding a pseudodifferential operator of order less then

(2n+ 2)−1 as showed in [10].

(c) As in the case of the Métivier operator (4), the operator Mn,m in (9) is not glob-

ally analytic hypoelliptic on the two dimensional torus. This means that if, for

instance, we consider in T2 the operator

(10) D2
x +

(
sin2n+1(x)Dy

)2
+ (sinn(x) sinm(y)Dy)

2 ,

the latter is not globally analytic hypoelliptic in T2, it is Gs-globally hypoelliptic

for every s ≥ 2m
2m−1

. This can be obtained via Theorem 2.1 and either following the

proof of the Theorem 2.1 in [52] (p. 325) or following the proof of the Proposition

1.1 in [11].



REGULARITY AND OF ANALYTIC VECTOR FOR “SUMS OF SQUARES” 97

Idea of the proof of the Theorem 2.1. Following the ideas in [43] we first construct

a formal solution to the problem Mn,mu = 0. The construction of the formal solution in

[43], for the operator in (4), uses the spectral theory of the harmonic oscillator, i.e. of the

operator D2
x + x2, the variable y being reduced to a parameter. For the eigenfunctions of

the harmonic oscillator there are three terms recurrence formulas relating the derivative

and the multiplication by x of an eigenfunction to those up and down one level. In the

case of an anharmonic oscillator, which occurs if one considers cases vanishing of order

higher than 2, Gundersen has shown in [33] that such recurrence formulas do not exist,

so that the optimality for the operators

D2
x + x2(q−1)D2

y + (ykDy)
2,

is not known.

In 2001 Bender and Wang, [6], studied the following class of eigenvalue problems

−u′′(t) + t2N+2u(t) = tNE u(t), N = −1, 0, 1, 2, . . . ,(11)

on the interval −∞ < t < +∞. The eigenfunctions u are confluent hypergeometric

functions and moreover can be written as a product of a polynomial and a function

exponentially vanishing at infinity. As in the case of the harmonic oscillator, also the

eigenfunctions of the operator (11) satisfies a “good” recurrence relation. This allows us

to obtain a formal solution of Mn,m:

K [u](x, y) =

∫ +∞

0

eiyρ
2m

2m−1
ρr+

2m
(n+1)(2m−1) [u(t, ρ)]

t=ρ

m
(n+1)(2m−1) x

dρ.

where

u(t, ρ) =
∑
ℓ≥0

ℓ∑
p=0

gℓ,p(ρ)vp(t).

Here vp(t) are the even-parity eigenfunctions of the problem (11) with N = 2n and gℓ,p(ρ)

are suitable functions such that

|g(k)ℓ,p (ρ)| ≤ Cℓ (ℓ+ 1)ℓ(1−
1

2m)

ρℓ
e−c0ρ, 0 ≤ p ≤ ℓ and k ≤ 2m− 1,

for ρ ≥ C0(ℓ+ 1).

With the aid of a suitable family of smooth cutoff functions, we can turn the formal
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solution, K [u](x, y), into a true solution, K [ũ](x, y). Then Mn,mK [ũ] belongs to a

suitable function space. The result is obtained by contradiction, i.e. by assuming that

Mn,m is Gs-hypoelliptic in a neighborhood of the origin for s < 2m/(2m−1). This second

step of the proof is based on the Theorem 3.1 in [41] and a suitable estimate from below

of |Dk
yK [ũ](0, 0)|.

2.2. On a Class of Globally Analytic Hypoelliptic Sums of Squares.

In the joint work with Bove [11], we consider sums of squares operators globally defined

on the torus. We show that if some assumptions are satisfied the operators are globally

analytic hypoelliptic. The purpose of the assumptions is to rule out the existence of a

Hamilton leaf on the characteristic variety lying along the fiber of the cotangent bundle,

i.e. the case of the (global) Métivier operator (6), or the case of the global version of its

generalization (10).

More precisely let n, m be two positive integers and P be a sum of squares operator of

the form

(12) P (t, x,Dt, Dx) =
N∑
j=1

Xj(t, x,Dt, Dx)
2 on Tn

t × Tm
x .

We assume:

(A-1) The Xj are real analytic vector fields defined on the torus Tn+m. We denote the

variable as (t, x) where t ∈ Tn, x ∈ Tm.

(A-2) The vector fields Xj, 1 ≤ j ≤ N , satisfy the Hörmander condition.

(A-3) Let n′ < n and consider Xj(t, x,Dt, Dx) for 1 ≤ j ≤ n′. We assume that

(13) Xj =
n′∑
i=1

aji(t
′)Dti ,

where t = (t′, t′′) with t′ ∈ Tn′
, t′′ ∈ Tn−n′

. Furthermore, we assume that the

vector fields Xj, 1 ≤ j ≤ n′, are linearly independent for every t′ ∈ Tn′
.

(A-4) Consider now Xj for n′ + 1 ≤ j ≤ N . We assume that N ≥ n and that Xj has

the form

(14) Xj = aj(t
′)Dtq(j) +

m∑
k=1

bjk(t)Dxk
,
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where aj, bjk are real analytic funtions defined in Tn′
, Tn respectively and q is

a surjective map from {n′ + 1, . . . , N} onto {n′ + 1, . . . , n}. Hence q−1({j}) is a

partition of {n′ + 1, . . . , N} with non empty subsets.

Furthermore we assume that for each j = n′+1, . . . , n, there exists λj ∈ q−1({j}),

such that

(15)
N∑

r=n′+1

m∑
k=1

|brk(t)| ≤ C|aℓ(t′)|,

for every ℓ ∈ {λj | j ∈ {n′ + 1, . . . , n}}.

We also assume that

(16)
N∑

r=n′+1

|ar(t′)| ≤ C|aℓ(t′)|,

for every ℓ ∈ {λj | j ∈ {n′ + 1, . . . , n}}.

Remark 2.1. We could also consider the vector fields above in the case when n = n′ with

no condition (15). Then the corresponding operator is in a subclass of that considered by

Cordaro and Himonas in [25].

We have

Theorem 2.2. [11] Let P be a sum of squares operator as in (12). Assume that the

conditions (A-1), (A-2), (A-3) and (A-4) above are satisfied. Then P is globally

analytic hypoelliptic.

We point out that the global analog of some well-known examples belong to the class of

sums of squares characterized by the above assumptions.

Example 1. Let

P0 =
3∑

j=1

Xj(t,Dt, Dx)
2 = D2

t1
+ a(t1)

2D2
t2
+ b(t1)

2D2
x,

where a, b are non identically vanishing real analytic functions defined on T1. Assume

that |b(t1)| ≤ C|a(t1)|. In this case n′ = 1, n = 2 and m = 1. The vector fields Xj,

j = 1, 2, 3, satisfy the assumptions of the Theorem 2.2. Then P0 is globally analytic

hypoelliptic.
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We can distinguish two cases. If b vanishes only where a vanishes, P0 is the global version

of the Olĕınik–Radkeviç operator. We recall that the local version of the Olĕınik–Radkeviç

operator is given by D2
t1
+ t

2(p−1)
1 D2

t2
+ t

2(q−1)
1 D2

x, p, q ∈ Z+, 1 < p ≤ q (for more details

see [45], [14], for a generalization see [18], [20].)

If b vanishes and a does not, P0 is a globally defined version of the Baouendi-Goulaouic

operator, (3). The global analytic hypoellipticity in this case was showed for the first

time by Cordaro and Himonas in 1994, [25] (see also [49] for an alternative proof.)

Example 2. Let

(17)

P1 =
6∑

j=1

Xj(t,Dt, Dx)
2 = D2

t1
+a(t1)

2D2
t2
+b(t1)

2
(
D2

x1
+D2

x2

)
+c(t1, t2)

2D2
x1
+d(t1, t2)

2D2
x2
,

where a, b, c and d are real analytic functions. Assume that a vanishes at the origin,

then a(t1) = tℓ1ã(t1), where ℓ ∈ N, ã(0) ̸= 0. Assume that b = O(tℓ+r−1
1 ) for a certain

r ∈ N, r > 1, that t−ℓ
1 c(t) = O(tp−1

2 ) and that t−ℓ
1 d(t) = O(tq−1

2 ), for certain p, q ∈ N, with

1 < r < p < q. Then the operator (17) is the global analog of the operator (8). In [12]

it was showed that (8) violates the local Treves conjecture, i.e. it is not locally analytic

hypoelliptic at the origin even if all the Poisson-Treves strata are symplectic. From the

global point of view the vectors fields Xj, j = 1, . . . , 6, in (17) satisfy the assumptions of

the Theorem 2.2 (in this case n′ = 1, n = 2 and m = 2.) Then P1 is globally analytic

hypoelliptic on T4. We point out that the operator (17) does not belong to the class

studied in [25].

Example 3. Let

(18) P3 =
3∑

j=1

Xj(t,Dt, Dx)
2 = D2

t1
+ a2(t1)

2D2
t2
+ (a3(t1)Dt3 + b(t)Dx)

2 .

where a2, a3, b are real analytic functions in T3
t . Assume that a2 = O(tp−1

1 ) for t1 → 0,

a3 = O(tp−1
1 ) for t1 → 0, and that b = O(tp−1

1 ) for t1 → 0, i.e. b(t) = O(tp−1
1 )b̃(t). The

vector fields Xj in (18) satisfy the assumptions of the Theorem 2.2. Then P3 is globally

analytic hypoelliptic.
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3. On the microlocal regularity of the analytic vectors for “sums of

squares” of vector fields of Hörmander type

In the joint work with Derridj, [23], we deal with the microlocal regularity of the analytic

vectors for sums of squares of vector fields.

Definition 3.1. Let Pm(x,D) be a differential operator of order m in Ω. We denote by

Gs(Ω;Pm) the space of the s-Gevrey vectors of Pm in Ω. A function u ∈ L2(Ω) belongs

to Gs(Ω;Pm) if and only if for every compact subset K of Ω there is a constant CK > 0

such that

P k
mu ∈ L2(Ω) and ∥P k

mu∥L2(K) ≤ Ck+1
K (k!)ms, ∀ k ∈ Z+.

When s = 1, we shall say that u is an analytic vector for Pm, A (Ω, Pm).

We remark that Gs(Ω) ⊂ Gs(Ω;Pm).

The question on the regularity of the analytic/Gevrey vectors goes back to the result of

Kotake and Narasimhan, [39]. In [39] the authors showed, in the local setting, that if

Pm is a linear elliptic operator in Ω, if u ∈ A (Ω, Pm) then u ∈ Cω(Ω). The result is

also true for s-Gevrey vectors of elliptic operators with s-Gevrey coefficients, s > 1. In

[40], Métivier proved that, in general, the result obtained by Kotake and Narasimhan

can not be extended to non-elliptic operators, i.e. that if Pm is not an elliptic operator

with analytic coefficients, then an s-Gevrey vector for Pm is not necessarily a Gevrey

function of order s. More precisely in [40] Métivier showed that the following conditions

are equivalent:

i) Gs(Ω;Pm) ⊂ Gs(Ω), s > 1;

ii) Pm is an elliptic operator on Ω.

Moreover in [40] it has been showed that if Pm is a formally self-adjoint operator on Ω,

then if for s ≥ 1 we have that Gs(Ω;Pm) ⊂ Gs(Ω) then Pm is elliptic on Ω. In 1982

Baouendi and Métivier, [5], studied the regularity of the s-Gevrey vectors for the class

of hypoelliptic operators of principal type with analytic coefficients, showing a difference

between the case s = 1 and s > 1. These results give rise to a natural question: let Pm be

a differential operator with analytic coefficients not-elliptic in Ω and u a s-Gevrey vector
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of Pm, what is the optimal s′−Gevrey regularity of u?

For a large survey on the subject until 1987 we refer to [8] and for a more recent one to

[29].

We focus our attention on the case of sums of squares. Let P be as in (1) and let Xj(x, ξ)

be the symbol of the vector field Xj(x,D). Write {Xi, Xk} the Poisson bracket of the

symbols of the vector fields Xi, Xk:

{Xi, Xk} (x, ξ) =
n∑

ℓ=1

(
∂Xi

∂ξℓ

∂Xk

∂xℓ

− ∂Xk

∂ξℓ

∂Xi

∂xℓ

)
(x, ξ).

Definition 3.2. Let (x0, ξ0) be a point in the characteristic set of P :

Char(P ) = {(x, ξ) ∈ T ∗U \ {0} : Xj(x, ξ) = 0, j = 1, . . . m}.(19)

Consider all the iterated Poisson brackets {Xi, Xk}, {Xp, {Xi, Xk}} etcetera. We define

ν(x0, ξ0) as the length of the shortest iterated Poisson bracket of the symbols of the vector

fields which is non zero at (x0, ξ0).

We recall that concerning systems of vector fields with real analytic coefficients satis-

fying the Hörmander condition the problem of the local regularity of the analytic vectors

for such systems was first studied in [26] followed by a more refined version in [34].

In a couple of recent works ([30] and [31]) Derridj studied the problem of the local reg-

ularity for the Gevrey vectors for operators of Hörmander type of first kind, i.e. sums

of squares, and of the second kind or degenerate elliptic parabolic. In a joint work with

Derridj we prove the minimal microlocal version of the result in [30] in the case of analytic

vectors:

Theorem 3.1. [23] Let P be as in (1). Let u be an analytic vector for P , u ∈ A (U ;P ).

Let (x0, ξ0) be a point in the characteristic set of P and ν(x0, ξ0) its length. Then (x0, ξ0) /∈

WFν(x0,ξ0)(u).

Here WFs(u), s ≥ 1, denotes the Gevrey wave front set of order s of the distribution u;

we recall the definition via FBI-transform.

Definition 3.3. Let u be a compactly supported distribution on Rn. Let (x0, ξ0) ∈ T ∗Rn\0.

We say that (x0, ξ0) /∈ WFs(u), s ≥ 1, if there exist a neighborhood Ω of x0 − iξ0 ∈ Cn
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and positive constants C, ε such that

|e−λϕ0(z)Tu(z, λ)| ≤ Ce−ελ1/s

,

for every z ∈ Ω and λ > 1. Here T denotes the FBI transform of u with classical phase

function

Tu(z, λ) =

∫
Rn

e−
λ
2
(z−y)2u(y)dy.

For more details on the FBI-transform see [47]. For a different but equivalent definition

of the wave front set see [36] or [37].

A few remarks are in order.

i) The result obtained in Theorem 3.1 allow to recover the result obtained in the

local analytic case by Derridj in [30]. Let V denote a neighborhood of the point

x0 and

r = sup
x∈V,|ξ|=1

ν(x, ξ). Then A (V ;P ) ⊂ Gr(V ).

ii) The method used to gain the Theorem 3.1 can be extended to a class of Hörmander

type operators not strictly sums of squares; we consider operators of the form

P (x,D) +
∑m

i=1 bj(x)Xj(x,D) + c(x) where P is as in (1), bj(x) are real-valued

real analytic functions and c(x) is a real analytic complex function.

iii) The strategy to obtain the Theorem 3.1 can be carried over to the case of s-Gevrey

vectors with s ∈ Z+;

iv) The result is optimal, as showed by the following example given in [17]: consider

the periodic version of the Baouendi-Grushin operator:

Q0 = ∂2
t + (sin t)2 ∂2

x in T2;

we have that Gs(T2;Q0) ̸⊂ Gσ(TN) for every s ≥ 1 and every s < σ < 2s. ([17]

studies the problem of the regularity of the global Gevrey vector for the class of

sums of squares introduced in [25] on the n-dimensional torus, see also [19] for

other results on the subject.)

Idea of the proof of the Theorem 3.1. The result is obtained by taking advantage

from the result in [2], where the authors give, via FBI technique, the microlocal version
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of the result obtained by Derridj and Zuily in [28] concerning the local Gevrey regularity

of the solutions to the problem Pu = f , P as in (1) and f analytic function in Ω. We use

the method of adding an extra variable. The method essentially allows to relate the study

of the regularity of the analytic vectors of the operator P (x,D), in Ω, to the study of the

regularity of the solutions of a new operator Q(t, x,Dt, D) =
∑m

j=0X
2
j = D2

t + P (x,D),

obtained by adding the variable t ∈ R, in the open set Õ = ]−δ0, δ0[×O ∈ R1+n, δ0 > 0.

We point out that the new operator Q satisfies the Hörmander condition. So, we study

the microlocal properties of the solutions of the problem Qv = f , f ∈ Cω(Õ). We denote

by Σ̃ and Σ the characteristic set of Q and P respectively. We remark that the point

(t0, x0, 0, ξ0) ∈ Σ̃ have the same length as that of the point (x0, ξ0) ∈ Σ. Let ν be the

length of the point (0, x0, 0, ξ0) ∈ Σ̃. Taking advantage from the result in [2], we have

(0, x0, 0, ξ0) /∈ WFν(v). Now we consider the problem(D2
t + P (x,D))U(t, x) = 0,

U(0, x) = u(x),

in Õ = ]−δ0, δ0[ × O, δ0 > 0, where u(x) is an analytic vector for P (x,D): ∥P ku∥0 ≤

C2k+1(2k)!. The function

U(t, x) =
∑
k≥0

t2k

2k!
P ku(x)

is a solution of the above problem. We choose δ0 <
√
2C.

The result in the Theorem 3.1 is obtained showing, via FBI transform, that if u and U

are as above, then (0, x0, 0, ξ0) /∈ WFs (U) if and only if (x0, ξ0) /∈ WFs(u), s ≥ 1. This

last statement generalized a result obtained in 1990 by Bolley, Camus and Métivier, [9];

they show it in the analytic case, s = 1, via Fourier transform.
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