
ON WEIGHTED SECOND ORDER ADAMS INEQUALITIES WITH
NAVIER BOUNDARY CONDITIONS
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Abstract. We obtain some sharp weighted version of Adams’ inequality on second

order Sobolev spaces with Navier boundary conditions. The weights that we consider

determine a supercritical exponential growth, except in the origin, and the corresponding

inequalities hold on radial functions only. We also consider the problem of extremal

functions, and we show that the sharp suprema are achieved, as in the unweighted

classical case.

Sunto. Si dimostrano alcune versioni con pesi della disuguaglianza ottimale di Adams

su spazi di Sobolev del secondo ordine con condizioni di Navier al bordo. I pesi con-

siderati determinano una crescita esponenziale sopracritica, ad eccezione dell’origine, e

le corrispondenti disuguaglianze sono valide solo per funzioni radiali. Viene affrontato

anche il problema dell’esistenza di estremali, e si dimostra che le disuguaglianze ottimali

sono assunte, come nel caso classico senza pesi.

2020 MSC. Primary 46E35; Secondary 26D10

Keywords. Limiting Sobolev embeddings, weighted Adams-type inequalities, radial

functions.

1. Introduction

Let BR ⊂ Rn be the Euclidean ball centered at the origin with radius R > 0. In

any dimension n ≥ 3, J. M. B. do Ó, B. Ruf, and P. Ubilla [11] analyzed the following

first order Sobolev type embedding for radial functions into a variable exponent Lebesgue

space:

(1.1) W 1,2
0,rad(B1) ↪→ L2∗+|x|α(B1),
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where 2∗ := 2n
n−2

is the critical Sobolev exponent, and α > 0. Notice that the variable

exponent 2∗+|x|α identifies a supercritical growth, except in the origin. In fact, if 2∗+|x|α

is replaced by the constant 2∗ + c with c = 0 or c > 0 then we have the classical critical

or supercritical Sobolev growth. In contrast with these classical cases, the result in [11]

shows the validity of (1.1) (for any α > 0), and the existence of extremal functions for the

corresponding embedding inequality (at least for suitable values of α > 0). We mention

that the fundamental work of H. Brezis and L. Nirenberg [4] shows a similar phenomenon

but with a completely different growth function: if the classical critical case is perturbed

by adding a suitable lower order term then the corresponding inequality is attained.

The 2-dimensional case is a limiting case in the framework of first order Sobolev em-

beddings. If n = 2 then the maximal growth for the integrability of functions u ∈ W 1,2
0

is the squared exponential eβu
2
, β > 0, as found by S. I. Pohozaev and N. S. Trudinger,

and later J. Moser [17] discovered the sharp version of the embedding inequality known

nowadays as Trudinger-Moser inequality. The attainability problem for this inequality

is quite different from the critical Sobolev case in higher dimensions, indeed extremal

functions exist as enlightned by L. Carleson and S.-Y. A. Chang in the seminal paper

[6]. In [18], Q. A. Ngô and V. H. Nguyen considered the limiting case n = 2 of the

embedding (1.1): they obtained some sharp weighted Trudinger-Moser inequalities with

supercritical growth (except in the origin) for radial functions, and they proved that for

such inequalities extremals exist, as in the unweighted case. We recall that some attention

has been devoted to the study of weighted Trudinger-Moser inequalities, see for instance

[2, 22, 5, 19, 7, 8], and we also mention the recent paper [24] about a weighted inequality

in the higher order setting.

A remarkable contribution in the framework of Trudinger-Moser inequalities is due to

D. R. Adams [1] who extended the sharp inequality of J. Moser to the heavily non-trivial

framework of higher order Sobolev spaces with Dirichlet boundary conditions W
m, n

m
0 ,

1 < m < n. As pointed out in [23] (see also [20, 15, 16]), the result of D. R. Adams is still

valid in larger Sobolev spaces with Navier boundary conditions W
m, n

m
N . Given a smooth
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bounded domain Ω ⊂ Rn, these spaces are defined as

W
m, n

m
N (Ω) :=

{
u ∈ Wm, n

m (Ω)
∣∣∣∆ju

∣∣
∂Ω

= 0 in the sense of traces for 0 ≤ j <
m

2

}
.

We focus the attention on the special second order case m = 2 < n. In this case

W
2,n

2
N (Ω) = W

1,n
2

0 (Ω) ∩W 2,n
2 (Ω), and W

2,n
2

0 (Ω) ⊂ W
2,n

2
N (Ω).

Adams’ sharp inequality holds without any restriction to the radial case, but the sequence

of functions constructed in [1] to prove the sharpness of the inequality consists of radial

functions. Therefore the second order Adams’ inequality with Navier boundary conditions

is sharp also in the radial part ofW
2,n

2
N (BR), i.e. in the subspaceW

2,n
2

N ,rad(BR) ofW
2,n

2
N (BR)

consisting of spherically symmetric functions. More precisely,

(1.2) Sn(β) := sup
u∈W

2, n2
N ,rad(BR), ∥∆u∥n

2
≤1

∫
BR

eβ|u|
n

n−2
dx

< +∞ if 0 < β ≤ βn,

= +∞ if β > βn,

where βn is Adams’ sharp exponent defined by

βn :=
n

ωn−1

[
πn/22mΓ

(
m
2

)
Γ
(
n−m
2

) ] n
n−m

, ωn−1 :=
2πn/2

Γ
(
n
2

) .
In the same spirit of [11, 18], the aim of this paper is to analyze some sharp weighted

versions of (1.2) with supercritical growth (except in the origin). Let w(r) := rα, α > 0,

first we consider the following weighted Adams-type problem:

(1.3) Sn(β, w) := sup
u∈W

2, n2
N ,rad(BR), ∥∆u∥n

2
≤1

∫
BR

e

(
β+w(|x|)

)
|u|

n
n−2

dx.

Theorem 1.1. For any n ≥ 3, R > 0, and α > 0, we have

Sn(βn, r
α) < +∞.

Moreover, the exponent βn in the above inequality is sharp in the sense that for any β > βn

we have Sn(β, r
α) = +∞.
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Differently form the unweighted case (1.2), the restriction to the radial part ofW
2,n

2
N (BR)

is necessary in the study of Sn(βn, r
α) with α > 0. Indeed, we have for any α > 0

sup
u∈W

2, n2
N (BR), ∥∆u∥n

2
≤1

∫
BR

e(βn+|x|α)|u|
n

n−2
dx = +∞.

This can be seen by considering any open set Ω ⊂ BR with 0 /∈ Ω. Then Iα := infx∈Ω |x|α >

0, and if {uk}k is any sequence as in [1] satisfying uk ∈ W
2,n

2
0 (Ω), ∥∆uk∥n

2
≤ 1, and

lim
k→+∞

∫
Ω

e(βn+Iα)|uk|
n

n−2
dx = +∞,

then in particular uk ∈ W
2,n

2
N (BR), and we get

sup
u∈W

2, n2
N (BR), ∥∆u∥n

2
≤1

∫
BR

e(βn+|x|α)|u|
n

n−2
dx ≥ lim

k→+∞

∫
BR

e(βn+|x|α)|uk|
n

n−2
dx

≥ lim
k→+∞

∫
Ω

e(βn+Iα)|uk|
n

n−2
dx = +∞.

Similarly, the restriction to radial functions is needed also in the study of

(1.4) S̃n(β, w) := sup
u∈W

2, n2
N ,rad(BR), ∥∆u∥n

2
≤1

∫
BR

e

(
β

n−2
n |u|

) n
n−2+w(|x|)

dx,

with w(r) := rα, α > 0 (at least when β = βn, as above).

Theorem 1.2. For any n ≥ 3, R > 0, and α > 0, we have

S̃n(βn, r
α) < +∞.

Moreover, for any β > βn we have S̃n(β, r
α) = +∞.

Up to our knowledge, few results about the existence of extremal functions for higher

order Adams-type inequalities are available in the literature. In the second order frame-

work, Y. Li and C. B. Ndiaye [13] studied the problem on 4-dimensional Riemannian

manifolds, and later G. Lu and Y. Yang [14] obtained the existence of extremals in W 2,2
0

on any smooth bounded domain Ω ⊂ R4. Finally, A. DelaTorre and G. Mancini [9]

reached the more general case Wm,2
0 in any dimension n = 2m > 3. More recently, the

existence of extremals was also considered in W
2,n

2
N in any dimension n ≥ 4 on Euclidean
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balls, see [21]. Some of the main difficulties in the study of higher order problems are soft-

ned in these spaces with Navier boundary conditions. In particular, Talenti’s comparison

principle enables to perform symmetrization arguments, and if the domain is a Euclidean

ball then the problem of the existence of extremals can be reduced to the radial case. In

fact, the result in [21] shows that one can always find in this functional framework a radial

extremal function, and in particular the critical supremum Sn(βn) in (1.2) is attained in

any dimension n ≥ 4. The attainability of Sn(βn) in dimension n = 3 is left open by [21],

due to some technical difficulties.

Along the same line as in [18] and [21], we will show that both Sn(βn, r
α) and S̃n(βn, r

α)

are attained, i.e. there exist u, ũ ∈ W
2,n

2
N ,rad(BR) with ∥∆u∥n

2
= ∥∆ũ∥n

2
= 1 such that∫

BR

eβ(1+|x|α)|u|
n

n−2
dx = Sn(βn, r

α), and

∫
BR

e

(
β

n−2
n |ũ|

) n
n−2+|x|α

dx = S̃n(βn, r
α).

Theorem 1.3. Let n ≥ 4, R > 0, and α > 0.

(i) The sharp supremum Sn(βn, r
α) is attained.

(ii) Also the sharp supremum S̃n(βn, r
α) is attained.

In Section 2 we analyze the sharp inequality for Sn(β, r
α), and in Section 3 we prove the

attainability of Sn(βn, r
α). Section 4 and Section 5 are devoted to the study of S̃n(β, r

α).

The proofs follows closely the arguments introduced in [18] and [21].

2. Analysis of the sharp inequality for Sn(β, w)

Let Sn(β, w) defined by (1.3). We will analyze the problem with a general weight

w = w(r) satisfying the conditions:

(w0) w : [0, R) → [0,+∞) is continuous,

(w1) w(0) = 0 and w(r) > 0 for any 0 < r ≤ R,

(w2) there exists γ0 > 0 and r0 ∈ (0, R) such that

w(r) ≤ γ0
1

log R
r

for any r ∈ (0, r0),

(w3) there exists γ1 ∈ (0, 1) and r1 ∈ (0, R) such that

w(r) ≤ γ1
βn
n

log R
R−r

log R
r

for any r ∈ (r1, R).
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Clearly the weight w(r) = rα with α > 0 satisfies the above conditions (w0), (w1), (w2),

and (w3), and Theorem 1.1 is a particular case of the following result.

Proposition 2.1. For any n ≥ 3, R > 0, and a weight function w satisfying (w0), (w1),

(w2), and (w3), we have

(2.1) S(βn, w) < +∞ if and only if β ≤ βn.

Proof. Let u ∈ W
2,n

2
N ,rad(BR), we set f := −∆u in BR, and we assume that ∥f∥n

2
≤ 1.

By assumption f is spherically symmetric, and we introduce the auxiliary functions g :

[0, |BR|] → R and G : (0, |BR|] → R defined as

(2.2) f(r) = g
(ωn−1

n
rn
)
, 0 ≤ r ≤ R, and G(t) :=

1

t

∫ t

0

g(s) ds, 0 < t ≤ |BR|.

The one-dimensional Hardy inequality [3, Chapter 3 – Lemma 3.9] yields

(∫ |BR|

0

|G(t)|
n
2 dt

) 2
n

≤ n

n− 2

(∫ |BR|

0

|g(t)|
n
2 dt

) 2
n

=
n

n− 2

(
ωn−1

∫ R

0

|f(r)|
n
2 dt

) 2
n

=
n

n− 2
∥f∥n

2
=

n

n− 2
∥∆u∥n

2
≤ n

n− 2
.

(2.3)

Moreover

(2.4) u(r) =
(
n1− 1

nω
1
n
n−1

)−2
∫ |BR|

|Br|

G(t)

t1−
2
n

dt, 0 < r ≤ R,

and by Hölder inequality, we can estimate

|u(r)| ≤
(
n1− 1

nω
1
n
n−1

)−2
(∫ |BR|

|Br|
|G(t)|

n
2 dt

) 2
n (

n log
R

r

)n−2
n

≤
(
n1− 1

nω
1
n
n−1

)−2
(

n

n− 2

)(
n log

R

r

)n−2
n

.

Hence, we have for any 0 < r ≤ R

(2.5) βn|u(r)|
n

n−2 ≤ βn

(
n1− 1

nω
1
n
n−1

)− 2n
n−2

(
n

n− 2

) n
n−2
(
n log

R

r

)
= n log

R

r
,

and

w(r)|u(r)|
n

n−2 ≤ n

βn
w(r) log

R

r
,
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since w = w(r) is positive on (0, R].

The integral that we have to estimate can be written as∫
BR

e

(
βn+w(|x|)

)
|u|

n
n−2

dx = ωn−1

∫ R

0

e

(
βn+w(|x|)

)
|u|

n
n−2

rn−1 dr

≤ ωn−1

∫ r0

0

+

∫ r1

r0

+

∫ R

r1

eβn|u|
n

n−2
e

n
βn

w(r) log R
r rn−1 dr(2.6)

where r0, r1 ∈ (0, R) are given by (w2) and (w3) respectively. The aim is to obtain an

estimate of the three terms in (2.6) which must be independent of u. In view of (w2), we

have

ωn−1

∫ r0

0

eβn|u|
n

n−2
e

n
βn

w(r) log R
r rn−1 dr ≤ ωn−1e

n
βn

γ0

∫ r0

0

eβn|u|
n

n−2
rn−1 dr ≤ e

n
βn

γ0Sn(βn).

Since w = w(r) is strictly positive and continuous on [r0, r1], we can set M :=

maxr∈[r0,r1]w(r) > 0, and

ωn−1

∫ r1

r0

eβn|u|
n

n−2
e

n
βn

w(r) log R
r rn−1 dr ≤ ωn−1e

n
βn

M log R
r0

∫ r1

r0

eβn|u|
n

n−2
rn−1 dr

≤ e
n
βn

M log R
r0 Sn(βn).

Finally, in view of (w3), we get∫ R

r1

eβn|u|
n

n−2
e

n
βn

w(r) log R
r rn−1 dr ≤ Rn+γ1

∫ R

r1

1

r(R− r)γ1
dr

≤ Rn+γ1

r1

∫ R

r1

1

(R− r)γ1
dr =

Rn+γ1

r1
· (R− r1)

1−γ1

1− γ1
,

where we also used the assumption γ1 ∈ (0, 1).

Summarizing∫
BR

e

(
βn+w(|x|)

)
|u|

n
n−2

dx ≤
(
e

n
βn

γ0 + e
n
βn

M log R
r0

)
Sn(βn) + ωn−1

Rn+γ1

r1
· (R− r1)

1−γ1

1− γ1

and Sn(βn, w) < +∞, since the constant on the right hand side depends only on the

dimension n, the radius R > 0, and the weight function w.

The proof of the sharpness of (2.1) is trivial, and follows directly from the sharpness of

Adams’ inequality (1.2). □
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Remark 2.1. Let us consider a weight function w satisfying (w0), (w1), (w2), and (w3).

We set

h(r) :=


n
βn
γ0 if 0 < r < r0,

n
βn
M log R

r0
if r0 ≤ r ≤ r1,

γ1 log
R

R−r
if r1 < r < R,

where the constants γ0 and γ1 are given by (w2) and (w3) respectively, and M :=

maxr∈[r0,r1]w(r) > 0. As a by-product of the previous proof, for any u ∈ W
2,n

2
N ,rad(BR)

with ∥∆u∥n
2
≤ 1 we have

βn|u(r)|
n

n−2 ≤ n log
R

r
and (βn + w(r))|u(r)|

n
n−2 ≤ n log

R

r
+ h(r), 0 < r ≤ R.

We emphasize that the function on the right hand side of the above pointwise estimate is

independent of u, and satisfies

en log R
r
+h(r)rn−1 ∈ Lq( (a,R) ) for any a ∈ (0, R), and any 1 ≤ q <

1

γ1
.

This property will be useful in the study of the attainability of the critical supremum

Sn(βn, w).

3. Attainability of Sn(βn, w)

First, we remark the following simple relation between Sn(βn, w) and the critical supre-

mum Sn(βn) of the unweighted radial Adams’ inequality (1.2).

Proposition 3.1. For any n ≥ 4, R > 0, and a weight function w satisfying (w0) and

(w1), we have

(3.1) Sn(βn, w) > Sn(βn).

Proof. From [21], we know that Sn(βn) is attained by some U ∈ W
2,n

2
N ,rad(BR) with ∥∆U∥n

2
=

1. Since w = w(r) is positive in (0, R], then we have

Sn(βn) =

∫
BR

eβn|U |
n

n−2
dx <

∫
BR

e

(
βn+w(|x|)

)
|U |

n
n−2

dx ≤ Sn(βn, w)

and the proof is complete. □
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In view of the above relation, the study of the attainability of Sn(βn, w) can be simplified

under the following additional conditions on the weight function:

(w4) lim
r→0+

(
w(r) log

R

r

)
= 0,

(w5) the weight r 7→ w(r) is monotone increasing in (0, R), and

(w6) there exists r ∈ (0, r0) such that the function r 7→ w(r) log
R

r
is monotone increas-

ing in (0, r).

For instance, the following functions satisfy (w2) and the above conditions for r > 0 near

zero:

1(
log R

r

)1+ε , with ε > 0, and rα
(
log

R

r

)−1+ε

, with α > 0 and 0 ≤ ε ≤ 1.

In particular, the weight w(r) = rα with α > 0 satisfies also (w4), (w5) and (w6), and

hence Theorem 1.3-(i) is a particular case of the following result.

Proposition 3.2. For any n ≥ 4, R > 0, and a weight function w satisfying (w0), (w1),

(w2), (w3), (w4), and (w6), the supremum Sn(βn, w) is attained.

Proof. Let {uk}k be a maximizing sequence for Sn(βn, w), i.e. uk ∈ W
2,n

2
N ,rad(BR), ∥∆uk∥n

2
≤

1, and

(3.2) lim
k→+∞

∫
BR

e

(
βn+w(|x|)

)
|uk|

n
n−2

dx = Sn(βn, w).

Without loss of generality, we can assume that uk ⇀ u in W
2,n

2
N ,rad(BR), and uk → u a.e.

in BR. First, we show that u ̸= 0.

We argue by contradiction assuming that u = 0. Let a ∈ (0, R). In view of Remark

2.1, we can apply the Lebesgue dominated convergence Theorem and conclude that

lim
k→+∞

∫
BR\Ba

e

(
βn+w(|x|)

)
|uk|

n
n−2

dx = |BR \Ba| = lim
k→+∞

∫
BR\Ba

eβn|uk|
n

n−2
dx.

Moreover using again the pointwise estimate emphasized in Remark 2.1, we see that if

a ∈ (0, r) then the monotonicity condition (w6) yields∫
Ba

e

(
βn+w(|x|)

)
|uk|

n
n−2

dx ≤ e
n
βn

w(a) log R
a

∫
Ba

eβn|uk|
n

n−2
dx

≤
∫
Ba

eβn|uk|
n

n−2
dx+

(
e

n
βn

w(a) log R
a − 1

)
Sn(βn).

(3.3)
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Combining (3.2) with (3.3), for any a ∈ (0, r) we have

Sn(βn, w) = lim
k→+∞

∫
BR

e

(
βn+w(|x|)

)
|uk|

n
n−2

dx

≤ lim
k→+∞

∫
BR

eβn|uk|
n

n−2
dx+

(
e

n
βn

w(a) log R
a − 1

)
Sn(βn)

≤ e
n
βn

w(a) log R
a Sn(βn) → Sn(βn) as a→ 0+

since (w4) holds. Therefore Sn(βn, w) ≤ Sn(βn) which contradicts (3.1), and u ̸= 0.

We claim that there exists q > 1 such that

(3.4) sup
k

∫
BR

eq
(
βn+w(|x|)

)
|uk|

n
n−2

dx < +∞.

This yields

Sn(βn, w) = lim
k→+∞

∫
BR

e

(
βn+w(|x|)

)
|uk|

n
n−2

dx =

∫
BR

e

(
βn+w(|x|)

)
|u|

n
n−2

dx,

which ensures that u is an extremal function for Sn(βn, w). Therefore the proof is complete

if we show that (3.4) holds for some q > 1. On the one hand, from Remark 2.1, we deduce

that for any 1 < q < 1
γ1

and any a ∈ (0, R) we have

sup
k

∫
BR\Ba

eq
(
βn+w(|x|)

)
|uk|

n
n−2

dx < +∞.

On the other hand, since u ̸= 0, the concentration-compactness principle of Lions-type in

[10] ensures the existence of p > 1 such that

M∗
p := sup

k

∫
BR

epβn|uk|
n

n−2
dx < +∞,

and we can choose a ∈ (0, R) so small that

q := p

(
1− w(a)

βn

)
> 1.

Then the monotonicity of w expressed by (w5) enable us to estimate

sup
k

∫
Ba

eq
(
βn+w(|x|)

)
|uk|

n
n−2

dx ≤ sup
k

∫
Ba

eqβn

(
1+

w(a)
βn

)
|uk|

n
n−2

dx ≤M∗
p < +∞.

In conclusion, it is enough to choose 1 < q < min{ 1
γ1
, q} to obtain (3.4). □
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4. Analysis of the sharp inequality for S̃n(β, w)

In this Section, we consider S̃n(β, w) defined by (1.4) with a weight w = w(r) satisfying

the two conditions (w0) and (w1) introduced in Section 2, and in addition

(w′
2) there exists γ0 > 0, µ > 2, and r0 ∈ (0, R) such that

w(r) ≤ γ0

(
1

log R
r

)µ

for any r ∈ (0, r0).

The weight w(r) = rα with α > 0 satisfies (w0), (w1), and (w′
2), and Theorem 1.2 is a

particular case of the next result.

Proposition 4.1. For any n ≥ 3, R > 0, and a weight function w satisfying (w0), (w1),

and (w′
2), we have

(4.1) S̃n(βn, w) < +∞ if and only if β ≤ βn.

Proof. Let u ∈ W
2,n

2
N ,rad(BR) be such that ∥∆u∥n

2
≤ 1. Then arguing as in the proof of

Proposition 2.1, see in particular the estimate (2.5), we have for any 0 < r ≤ R

(4.2) β
n−2
n

n |u(r)| ≤
(
n log

R

r

)n−2
n

Set ϱ0 := Re−
2
n , so that for any ϱ0 < r ≤ R

0 ≤ β
n−2
n

n |u(r)| ≤ 2
n−2
n .

Since w = w(r) is positive in (0, R] and Mw := max
r∈[ϱ0,R]

w(r) > 0, we can estimate for any

ϱ0 < r ≤ R (
β

n−2
n

n |u(r)|
) n

n−2
+w(r) ≤ 21+

n−2
n

w(r) ≤ 21+
n−2
n

Mw .

Therefore, we have∫
BR

e

(
β

n−2
n

n |u|
) n

n−2+w(|x|)

dx = ωn−1

∫ R

0

e

(
β

n−2
n

n |u|
) n

n−2+w(r)

rn−1 dr

≤ ωn−1

∫ ϱ0

0

e

(
β

n−2
n

n |u|
) n

n−2+w(r)

rn−1 dr + e2
1+n−2

n Mw · ωn−1

n
Rn(4.3)

The proof of the inequality S̃n(βn, w) < +∞ is complete if we obtain a uniform estimate

of the integral on the right hand side of (4.3), and from now on we focus on the estimate

of the integrand on (0, ϱ0).
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Without loss of generality, we may assume that condition (w′
2) holds up to ϱ0, and that

there exists γ̃0 > 0 and µ > 2 such that

w(r) ≤ γ̃0

(
1

log R
r

)µ

for any r ∈ (0, ϱ0).

Let 0 < r ≤ ϱ0, then

(4.4) n log
R

r
≥ n log

R

ϱ0
= 2,

and we can estimate

e

(
β

n−2
n

n |u|
) n

n−2+w(r)

= eβn|u|
n

n−2

[
eβn|u|

n
n−2 ·
(
β

n−2
n

n |u|
)w(r)

−βn|u|
n

n−2 − 1

]
+ eβn|u|

n
n−2

= eβn|u|
n

n−2

[
eβn|u|

n
n−2 ·
[ (

β
n−2
n

n |u|
)w(r)

−1
]
− 1

]
+ eβn|u|

n
n−2

≤ eβn|u|
n

n−2

[
eβn|u|

n
n−2 ·
[ (

n log R
r

)n−2
n ·w(r)

−1
]
− 1

]
+ eβn|u|

n
n−2

(4.5)

≤ en log R
r

[
en log R

r
·
[
η(r)−1

]
− 1

]
+ eβn|u|

n
n−2

where

η(r) :=

(
n log

R

r

)n−2
n

γ̃0

(
1

log R
r

)µ

.

As r → 0+, we have the following Taylor expansion

η(r)− 1 = exp

{
n− 2

n
γ̃0

(
1

log R
r

)µ

· log
(
n log

R

r

)}
− 1

=
n− 2

n
γ̃0

(
1

log R
r

)µ

· log
(
n log

R

r

)
+ o

((
1

log R
r

)µ

· log
(
n log

R

r

))

and hence (recalling that µ > 2)

en log R
r
·
[
η(r)−1

]
− 1 =

(n− 2)γ̃0

(log R
r
)µ−1

log

(
n log

R

r

)
+ o

(
1

(log R
r
)µ−1

log

(
n log

R

r

))
.

In other words, when r > 0 is near zero, we have

(4.6) θ(r) = φ(r) + o
(
φ(r)

)
,
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where

θ(r) := en log R
r
·
[
η(r)−1

]
− 1, and φ(r) :=

(n− 2)γ̃0

(log R
r
)µ−1

· log
(
n log

R

r

)
.

The two functions θ and φ are continuous and, in view of (4.4), they are strictly positive

on (0, ϱ0). Combining these properties with the validity of (4.6) near zero, we deduce the

existence of a constant Cϱ0 > 0 such that

θ(r) ≤ Cϱ0φ(r) for any 0 < r ≤ ϱ0.

This yields∫ ϱ0

0

e

(
β

n−2
n

n |u|
) n

n−2+w(r)

rn−1 dr ≤
∫ ϱ0

0

en log R
r θ(r)rn−1 dr +

∫ ϱ0

0

eβn|u|
n

n−2
rn−1 dr

≤ Cϱ0R
n

∫ ϱ0

0

φ(r)

r
dr + Sn(βn) = Cϱ0R

n

∫ +∞

2
n

(n− 2)γ̃0
tµ−1

· log(nt) dt+ Sn(βn).

The above estimate shows that S̃n(βn, w) < +∞, indeed: the above integral on ( 2
n
,+∞)

is finite (since µ > 2) and it is independent of u.

The proof of the sharpness of (4.1) follows from the sharpenss of Adams’ inequality

(1.2), in fact there exists a sufficiently small constant C(β) > 0 such that for any 0 ≤

r ≤ R and any s ≥ 0

e

(
β

n−2
n s
) n

n−2+w(r)

≥ C(β)eβs
n

n−2
.

□

5. Attainability of S̃n(βn, w)

It is not clear how to obtain a sharp comparison between S̃n(βn, w) and Sn(βn) as in

(3.1). In order to prove the attainability of S̃n(βn, w), we perform a more careful analysis

by adapting the arguments in [21] to the weighted case.

The test function constructed in [21] to study Sn(βn) are of the form

v(r) =
1

β
n−2
n

n

V
(
n log

R

r

)
, 0 < r ≤ R,
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where if introduce the new variable t ≥ 0 by setting r = Re−
t
n then

V (t) =



a
(
e

n−2
n

t − 1
)
− An

n−2
t 0 ≤ t ≤ n

2
,

b+ λe
n−2
n

t − 1
n−2

(t− 1)
n−2
n +H(t) n

2
< t ≤ Nn,

c1 + c2e
−αt + c3e

−2αt Nn < t ≤ Nn(1 + ζ),

d t > Nn(1 + ζ).

We refer to [21, Section 3] for the explicit definition of the parameters b, c1, c2, c3, d ∈ R,

the definition of the function H = H(t), and the conditions on the remaining parameters

a, α, λ, ζ > 0. To our purposes, it is enough to recall that

An :=
n− 2

n

(
n− 2

2

)− 2
n

, Nn :=
n− 2

2
exp

{(
n

n− 2

)n
2

− n

n− 2

}
+ 1,

and the following result is contained in [21, (3.22)-(3.23)-(3.24)-(3.26)].

Lemma 5.1 ([21]). Let n ≥ 4. There exists λ > 0 such that if λ > λ then all the

parameters defining V , and hence v, can be chosen so that v ∈ W
2,n

2
N ,rad(BR), and ∥∆v∥n

2
≤

1. Moreover, if λ > λ then

(5.1) V (t) ≥
(
λ
n− 2

n
− An

n− 2

)
t ≥ 0 for any t ∈

[
0,
n

2

]
,

and

(5.2) V (t) ≥ f(t) ≥ 0 for any t ∈ [0,+∞),

where

f(t) =


Ant 0 ≤ t ≤ n

2
,

(t− 1)
n−2
n

n
2
< t ≤ Nn,

(Nn − 1)
n−2
n t > Nn.

The above function f corresponds to a particular case of the test functions considered by

S. Hudson and M. Leckband [12, Section 2], and they obtained the following fundamental

estimate.
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Lemma 5.2 ([12]). If n ≥ 4 then

Nn − 1

e
> exp

{
ψ
(n
2

)
+ γ

}
where ψ(x) := Γ′(x)

Γ(x)
, Γ is the gamma Euler function, and γ is the Euler constant, i.e.

γ := limj→+∞

(∑j
i=1

1
i
− log j

)
.

Using the above results, we obtain the following estimate from below for S̃n(βn, w).

Proposition 5.3. For any n ≥ 4, R > 0, and a weight function w satisfying (w0) and

(w1), we have

S̃n(βn, w) > |BR|
(
1 + exp

{
ψ
(n
2

)
+ γ

} )
.

Proof. Let v, V , and f be as in Lemma 5.1 with λ > λ to be chosen during the proof. It

is enough to show that

(5.3)

∫
BR

e

(
β

n−2
n

n |v|
) n

n−2+w(|x|)

dx > |BR|
(
1 + exp

{
ψ
(n
2

)
+ γ

} )
.

If we set w(t) := w(Re−
t
n ) then we can rewrite∫

BR

e

(
β

n−2
n

n |v|
) n

n−2+w(|x|)

dx = ωn−1

∫ R

0

e

(
β

n−2
n

n v
) n

n−2+w(r)

rn−1 dr

= |BR|
∫ +∞

0

e[V ]
n

n−2+w(t)−t dt

and we can estimate∫ +∞

0

e[V ]
n

n−2+w(t)−t dt ≥
∫ 1

0

e[f ]
n

n−2+w(t)−t dt+

∫ n
2

1

e[V ]
n

n−2+w(t)−t dt+

∫ +∞

n
2

e[f ]
n

n−2−t dt

where we used the positivity of w = w(t) in (0,+∞), the estimate (5.2) in Lemma 5.1,

and f ≥ 1 in [n
2
,+∞). Recalling that f ≥ 0 in [0,+∞), in particular we have for any

t ≥ 0

[f ]
n

n−2
+w(t) − t ≥ −t,

and hence

(5.4)

∫ 1

0

e[f ]
n

n−2+w(t)−t dt ≥
∫ 1

0

e−t dt = 1− 1

e
.
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Moreover, we can compute

(5.5)

∫ +∞

n
2

e[f ]
n

n−2−t dt =
Nn − 1

e
+

1

e

(
2− n

2

)
.

Next, we point out that it is possible to choose λ > λ sufficiently large so that

(5.6) [V (t)]
n

n−2
+w(t) ≥ [f(t)]

n
n−2 for any t ∈

(
1,
n

2

)
.

In fact, in view of (5.1), it is enough to check that[(
λ
n− 2

n
− An

n− 2

)
t

]1+n−2
n

·w(t)

≥ Ant for any t ∈
(
1,
n

2

)
,

and this is the case if for instance we choose λ > λ satisfying λn−2
n

− An

n−2
≥ An

n
2
(≥ 1).

With this choice of λ, using (5.6), we can estimate∫ n
2

1

e[V ]
n

n−2+w(t)−t dt ≥
∫ n

2

1

e[f ]
n

n−2−t dt =
n

2

∫ 1

2
n

e
n−2
2

s
n

n−2−n
2
s ds

≥ n

2

∫ 1

2
n

e−1 ds =
1

e

(n
2
− 1
)
,

and if we combine this last inequality with (5.4), (5.5), and Lemma 5.2, we obtain the

desired conclusion (5.3). □

We also recall another sharp estimate due to S. Hudson and M. Leckband [12] which

will be crucial in our analysis.

Lemma 5.4 ([12]). Let p > 1 and let {ϕk}k be a sequence of measurable functions ϕk :

[0,+∞) → [0,+∞) satisfying∫ +∞

0

[ϕk(τ)]
p dτ ≤ 1 and lim

k→+∞

∫ A

0

[ϕk(τ)]
p dτ = 0 for any fixed A > 0.

Then

lim
k→+∞

∫ +∞

0

exp

{( ∫ t

0

ϕk(τ) dτ

)p′

− t

}
dt ≤ 1 + exp

{
ψ(p) + γ

}
.

We replace condition (w′
2) with the following additional conditions:

(w′
3) lim

r→0+

(
w(r) log

R

r
· log

(
log

R

r

) )
= 0,

(w′
4) there exists ϱ ∈ (0, R) such that

1

r
w(r) log

R

r
· log

(
log

R

r

)
∈ L1( 0, ϱ ),

(w′
5) the weight r 7→ w(r) is monotone increasing in (0, R), and



60 FEDERICA SANI

(w′
6) there exists r ∈ (0, r0) such that the function r 7→ w(r) log

(
n log

R

r

)
is monotone

increasing in (0, r).

In particular, the weight w(r) = rα with α > 0 satisfies also (w′
3), (w

′
4), (w

′
5), and (w′

6),

and hence Theorem 1.3-(ii) is a particular case of the following result.

Proposition 5.5. For any n ≥ 4, R > 0, and a weight function w satisfying (w0), (w1),

(w′
3), (w

′
4), (w

′
5), and (w′

6), the supremum S̃n(βn, w) is attained.

Proof. Let {uk}k be a maximizing sequence for S̃n(βn, w), i.e. uk ∈ W
2,n

2
N ,rad(BR), ∥∆uk∥n

2
≤

1, and

lim
k→+∞

∫
BR

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx = S̃n(βn, w).

Without loss of generality, we can assume that uk ⇀ u in W
2,n

2
N ,rad(BR), and uk → u a.e.

in BR. As in (4.2), we have for any 0 < r ≤ R

(5.7) β
n−2
n

n |uk(r)| ≤
(
n log

R

r

)n−2
n

and with this estimate, it is easy to see that for any ϱ ∈ (0, R)

(5.8) lim
k→+∞

∫
BR\Bϱ

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx =

∫
BR\Bϱ

e

(
β

n−2
n

n |u|
) n

n−2+w(|x|)

dx.

In fact, if r ≥ ϱ > 0 then(
β

n−2
n

n |uk|
) n

n−2
+w(r) ≤

(
n log

R

r

)
e

n
n−2

w(r) log
(
n log R

r

)
≤
(
n log

R

ϱ

)
e

n
n−2

w(ϱ) log
(
n log R

ϱ

)
where we also used the monotonicity of the weight (w′

5). Since the right hand side is a

positive constant independent of k, the convergence expressed by (5.8) is a consequence

of the Lebesgue dominated convergence theorem. Similarly, for any ϱ ∈ (0, R)

(5.9) lim
k→+∞

∫
BR\Bϱ

eβn|uk|
n

n−2
dx =

∫
BR\Bϱ

eβn|u|
n

n−2
dx.

Arguing as in the proof of Proposition 2.1, see in particular the identity (2.4), we have

for any 0 < r ≤ R

(5.10) β
n−2
n

n uk(r) =
n− 2

n

∫ |BR|

|Br|

Gk(t)

t1−
2
n

dt, 0 < r ≤ R,
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where Gk is defined as in (2.2), and satisfies∫ |BR|

0

|Gk(t)|
n
2 dt ≤

(
n

n− 2

)n
2

,

as already shown in (2.3). Clearly the following alternative holds:

• either for any 0 < r ≤ R

(5.11) lim
k→+∞

∫ |BR|

|Br|
|Gk(t)|

n
2 dt = 0

• or there exist ϱ0 ∈ (0, R) and δ ∈ (0, 1) such that

(5.12)

∫ |BR|

|Bϱ0 |
|Gk(t)|

n
2 dt ≥

(
n

n− 2

)n
2

δ.

We will prove that the first case cannot happen – namely, (5.11) cannot hold for any

0 < r ≤ R. Then we will complete the proof by showing that the validity of (5.12) for

some ϱ0 ∈ (0, R) and δ ∈ (0, 1) yields the attainability of S̃n(βn, w).

Let us assume that (5.11) holds for any 0 < r ≤ R. Then in particular u = 0, and we

will show that the contribution of the weight is negligible as k → +∞ in the sense that

(5.13) S̃n(βn, w) = lim
k→+∞

∫
BR

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx ≤ lim
k→+∞

∫
BR

eβn|uk|
n

n−2
dx.

This will enable us to reach a contradiction as a consequence of the (unweighted) result

of S. Hudson and M. Leckband [12], see Lemma 5.4.

Since u = 0, the contribution of the weight is negligible on BR \Bϱ for any ϱ ∈ (0, R).

In fact, (5.8) and (5.9) yield

(5.14) lim
k→+∞

∫
BR\Bϱ

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx = |BR \Bϱ| = lim
k→+∞

∫
BR\Bϱ

eβn|uk|
n

n−2
dx.

Now we assume that 0 < ϱ < Re−
t
n . Then, arguing as in (4.5), we can estimate for any

0 < r ≤ ϱ

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

≤ eβn|u|
n

n−2

[
eβn|u|

n
n−2 ·
[ (

n log R
r

)n−2
n ·w(r)

−1
]
− 1

]
+ eβn|uk|

n
n−2

≤ en log R
r

[
eh(r) − 1

]
+ eβn|uk|

n
n−2
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where

h(r) := n log
R

r
·

[ (
n log

R

r

)n−2
n

·w(r)

− 1

]
and hence

(5.15)

∫
Bϱ

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx ≤ ωn−1R
n

∫ ϱ

0

1

r

[
eh(r) − 1

]
dr +

∫
Bϱ

eβn|uk|
n

n−2
dx.

Notice that in view of (w′
3), as r → 0+, we have the following Taylor expansion

h(r) = n log
R

r
·
[
e

n−2
n

w(r) log
(
n log R

r

)
− 1

]
= n log

R

r
·
[
n− 2

n
w(r) log

(
n log

R

r

)
+ o

(
w(r) log

(
n log

R

r

) )]
= (n− 2)w(r) log

R

r
· log

(
n log

R

r

)
+ o

(
w(r) log

R

r
· log

(
n log

R

r

) )
and hence the integrability condition (w′

4) ensures that if 0 < ϱ < ϱ then

1

r

[
eh(r) − 1

]
∈ L1( (0, ϱ) )

which yields

I(ϱ) := ωn−1R
n

∫ ϱ

0

1

r

[
eh(r) − 1

]
dr → 0 as ϱ→ 0+.

Combining (5.14) with (5.15), we get that for any ε > 0 there exists kε ≥ 1 such that for

any k ≥ kε we have∫
BR

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx =

∫
BR\Bϱ

+

∫
Bϱ

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx

≤
∫
BR

eβn|uk|
n

n−2
dx+ I(ϱ) + ε

and letting k → +∞ and then ϱ→ 0+, we obtain the desired estimate (5.13).

Using the change of variable t = |BR|e−τ , we can equivalently rewrite

β
n−2
n

n uk(r) =

∫ n log R
r

0

ϕk(τ) dτ, 0 < r ≤ R,

where

ϕk(τ) :=
n− 2

n
(|BR|e−τ )

2
nGk(|BR|e−τ ), τ > 0,
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and ϕk satisfies

∫ +∞

0

|ϕk(τ)|
n
2 dτ =

(
n− 2

n

)n
2
∫ |BR|

0

|Gk(t)|
n
2 dt ≤ 1.

Performing again a suitable change of variable (|x| = r = Re−
t
n ), we have

lim
k→+∞

∫
BR

eβn|uk|
n

n−2
dx = lim

k→+∞
ωn−1

∫ R

0

exp


∣∣∣∣∣
∫ n log R

r

0

ϕk(τ) dτ

∣∣∣∣∣
n

n−2

 rn−1 dr

≤ lim
k→+∞

|BR|
∫ +∞

0

exp

{(∫ t

0

|ϕk(τ)| dτ
) n

n−2

− t

}
dt.

Moreover, for any A > 0

∫ A

0

|ϕk(τ)|
n
2 dτ =

(n− 2

n

)n
2

∫ A

0

|BR|e−τ |Gk(|BR|e−τ ) |
n
2 dτ

=
(n− 2

n

)n
2

∫ |BR|

|BR|e−A

|Gk(t)|
n
2 dt→ 0 as k → +∞,

as a consequence of (5.11) with r = |BR|e−A ∈ (0, R), and hence Lemma 5.4 enable us to

reach a contradiction. In fact, it yields

S̃n(βn, w) = lim
k→+∞

∫
BR

eβn|uk|
n

n−2
dx ≤ |BR|

(
1 + exp

{
ψ
(n
2

)
+ γ

} )
which contradicts Proposition 5.3.

Since we ruled out the validity of (5.11) for any 0 ≤ r ≤ R, condition (5.12) must hold

for some ϱ0 ∈ (0, R) and δ ∈ (0, 1). In particular, for any k ≥ k0

(5.16)

∫ |Bϱ0 |

0

|Gk(t)|
n
2 dt ≤

(
n

n− 2

)n
2

(1− δ),

and the idea is to exploit this property to show that for any ε > 0 there exists ϱε ∈ (0, ϱ0)

such that

(5.17)

∫
Bϱε

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx ≤ ε for any k ≥ k0.
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This ensures that the weak limit u is an extremal function for S̃n(βn, w). In fact, combining

(5.8) with (5.17), we get∫
BR

e

(
β

n−2
n

n |u|
) n

n−2+w(|x|)

dx ≥ lim
k→+∞

∫
BR\Bϱε

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx

≥ lim
k→+∞

∫
BR

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx− ε = S̃n(βn, w)− ε.

Passing to the limit as ε→ 0+, we obtain the desired conclusion, i.e.∫
BR

e

(
β

n−2
n

n |u|
) n

n−2+w(|x|)

dx ≥ S̃n(βn, w).

Therefore, the proof is complete if we show that (5.17) holds. Using (5.10), (5.16), and

Hölder inequality, we can estimate for any k ≥ k0 and any 0 < r ≤ ϱ0

β
n−2
n

n

∣∣uk(r)− uk(ϱ0)
∣∣ = n− 2

n

∣∣∣∣∣
∫ |Bϱ0 |

|Br|

Gk(t)

t1−
2
n

dt

∣∣∣∣∣
≤ n− 2

n

( ∫ |Bϱ0 |

|Br|
|Gk(t)|

n
2 dt

) 2
n
( ∫ |Bϱ0 |

|Br|

1

t
dt

)n−2
n

≤ (1− δ)
2
n

(
n log

ϱ0
r

)n−2
n

and hence

βn |uk(r)− uk(ϱ0)|
n

n−2 ≤ (1− δ)
2

n−2 n log
ϱ0
r
.

Since

(1− δ)
2

n−2 ≤ 1− cnδ with cn :=

1 if n = 3, 4,

2
n−2

otherwise,

we conclude that

(5.18) βn |uk(r)− uk(ϱ0)|
n

n−2 ≤ (1− cnδ) n log
ϱ0
r
.

In view of the following elementary inequality

(a+ b)p ≤ (1 + ε)ap +

(
1− 1

(1 + ε)
1

p−1

)1−p

bp ,
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which holds for any a, b ≥ 0, p > 1 and ε > 0, we can use together (5.7) with r = ϱ0 and

the above estimate (5.18) to get

βn|uk(r)|
n

n−2 ≤ (1 + ε) βn |uk(r)− uk(ϱ0)|
n

n−2 + C(ε, n) βn |uk(ϱ0)|
n

n−2

≤ (1 + ε) (1− cnδ) n log
ϱ0
r

+ C(ε, n) n log
R

ϱ0
.

If we choose ε = cnδ and we denote by φ = φ(r) the corresponding right hand side of the

above estimate, that is

φ(r) := (1− c2nδ
2) n log

ϱ0
r

+ C(δ, n) n log
R

ϱ0
,

then we obtain for any k ≥ k0 and any 0 < r ≤ ϱ0

β
n−2
n

n |uk(r)| ≤ [φ(r)]
n−2
n

and (
β

n−2
n

n |uk(r)|
) n

n−2
+w(r) ≤ [φ(r)]1+

n−2
n

w(r) = φ(r)e
n−2
n

w(r) logφ(r).

Let 0 < ϱ < min{ϱ0, r} with r > 0 given by (w′
6). Then (w′

6) ensures the monotonicity

of the function r 7→ w(r) logφ(r) in (0, ϱ) and

φ(r)e
n−2
n

w(r) logφ(r) ≤ φ(r)e
n−2
n

w(ϱ) logφ(ϱ), 0 < r < ϱ.

Moreover, we can choose ϱ even smaller so that (w′
3) guarantees

e
n−2
n

w(ϱ) logφ(ϱ) ≤ 1 + c2nδ
2.

This choice of ϱ > 0 small is independent of k, and hence for any k ≥ k0 we have∫
Bϱ

e

(
β

n−2
n

n |uk|
) n

n−2+w(|x|)

dx = ωn−1

∫ ϱ

0

e

(
β

n−2
n

n |uk(r)|
) n

n−2+w(r)

rn−1 dr

≤ ωn−1

∫ ϱ

0

e(1+c2nδ
2)φ(r)rn−1 dr = ωn−1ϱ

n(1−c4nδ
4)

0

(
R

ϱ0

)C̃(δ,n) ∫ ϱ

0

rnc
4
nδ

4−1 dr

= ωn−1ϱ
n(1−c4nδ

4)
0

(
R

ϱ0

)C̃(δ,n)
ϱnc

4
nδ

4

nc4nδ
4

Since nc4nδ
4 > 0, the last term tends to zero as ϱ→ 0+. This yields (5.17), and the proof

is complete.

□
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