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Abstract. We present recent results about radial sign-changing solutions of a class

of fully nonlinear elliptic Dirichlet problems posed in a ball, driven by the extremal

Pucci’s operators and provided with power zero order terms. We show that new critical

exponents appear, related to the existence or nonexistence of sign-changing solutions

and due to the fully nonlinear character of the considered problem. Furthermore, we

analyze the new concentration phenomena occurring as the exponents approach the

critical values.

Sunto. Vengono presentati alcuni risultati recenti riguardanti soluzioni radiali di segno

variabile per una classe di problemi di Dirichlet completamente non lineari, posti in

domini sferici, aventi gli operatori estremali di Pucci come parte principale e termini di

ordine zero di tipo potenza. Mostreremo come l’esistenza o non esistenza di soluzioni

sia regolata da nuovi esponenti critici tipici del carattere completamente non lineare del

problema considerato. Analizzeremo inoltre i nuovi fenomeni di concentrazione che si

verificano quando gli esponenti convergono ai valori critici.
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1. Introduction

We focus on the existence of radially symmetric, sign-changing solutions of fully non-

linear uniformly elliptic Dirichlet problems of the form

(1)

−M
±
λ,Λ(D2u) = |u|p−1u in B

u = 0 on ∂B

where

• B = B1(0) is the unit ball in Rn;

• M±
λ,Λ are Pucci’s extremal operators with ellipticity constants 0 < λ ≤ Λ;

• p > 1.

Our aim is to present the recent results obtained in [15] about the optimal threshold to be

imposed on the exponent p for the existence of radial sign-changing solutions of problems

(1).

Pucci’s extremal operators M−
λ,Λ and M+

λ,Λ are respectively defined as

M−
λ,Λ(X) = inf

A∈Aλ,Λ
tr(AX) = λ

∑
µi>0

µi + Λ
∑
µi<0

µi

M+
λ,Λ(X) = sup

A∈Aλ,Λ
tr(AX) = Λ

∑
µi>0

µi + λ
∑
µi<0

µi

where Aλ,Λ = {A ∈ Sn : λ In ≤ A ≤ Λ In}, (In identity matrix), and µ1, . . . , µn are the

eigenvalues of the matrix X ∈ Sn. They have been introduced in [23], and extensively

studied in [6]. They are the prototypes of second order, fully nonlinear uniformly elliptic

operators. Being extremal not only with respect to linear operators but in the whole class

of uniformly elliptic operators with the same ellipticity constants, they play a crucial

role in the elliptic regularity theory for fully nonlinear equations, see [6]. Moreover, they

frequently arise in the context of optimal stochastic control problems, see e.g. [13, 19],

with special application to mathematical finance.

Pucci’s extremal operators are mutually related by the relationship

M−
λ,Λ(−X) = −M+

λ,Λ(X)
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Moreover, they can be seen as a generalization of Laplace operator, since

M−
λ,λ(X) =M+

λ,λ(X) = λ tr(X)

However, as soon as λ < Λ, the operatorsM±
λ,λ are neither linear nor in divergence form.

As an example, observe that for the homogeneous planar equation, one has

M−
λ,Λ(D2u) = 0 in R2

⇐⇒

∆u =

(√
Λ

λ
−
√
λ

Λ

)√
−det(D2u)

For a general uniformly elliptic operator F and for a general domain Ω ⊂ Rn, without

any symmetry assumption, the best known existence result states that positive solutions

of Dirichlet problems of the form


−F (D2u) = up in Ω

u > 0 in Ω , u = 0 on ∂Ω

do exist if p ≤ ñ−
ñ−−2

, see [24, 25]. In case F is the Pucci operatorM+
λ,Λ, then the condition

on p improves up to p ≤ ñ+

ñ+−2
, where ñ± are the dimension like parameters associated

with the operators M+
λ,Λ and M−

λ,Λ respectively, defined as

(2)

ñ+ = λ
Λ

(n− 1) + 1 ≤ n for M+
λ,Λ

ñ− = Λ
λ

(n− 1) + 1 ≥ n for M−
λ,Λ

We will call ñ± the “effective dimensions”, using the terminology introduced in [22],

and we will always assume that ñ± > 2. The effective dimensions play a key role in

existence results for fully nonlinear uniformly elliptic equations. Note that if Λ = λ then

ñ+ = ñ− = n.
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The above mentioned existence result relies on the Liouville type theorems proved in

[7], stating that

∃u > 0 , −M−
λ,Λ(D2u) ≥ up in Rn ⇐⇒ p > ñ−

ñ−−2

∃u > 0 , −M+
λ,Λ(D2u) ≥ up in Rn ⇐⇒ p > ñ+

ñ+−2

The thresholds ñ±
ñ±−2

are optimal for the existence of supersolutions in Rn and of solutions

in Rn \ {0}, see [1], and they both reduce, in the semilinear case Λ = λ, to the Serrin

exponent n
n−2

. However, for the semilinear equation −∆u = up, as it is well known, the

optimal condition for the existence of entire positive solutions is p ≥ p∗ = n+2
n−2

, where

p∗ = 2∗ − 1 is the so called Sobolev exponent, and this in turn implies that positive

solutions in bounded domains do exist if p < p∗. These existence results are intimately

related to the (lack of) compactness properties of the Sobolev embeddings. Moreover, the

entire solutions existing in the critical case p = p∗ realize the best constant in the Sobolev

inequality, see [27]. In other words, the critical nature of the Sobolev exponent p∗ may be

largely interpreted in view of the structural properties of the operator and the functional

setting behind the equation.

In the fully nonlinear framework, more precise information and optimal threshold ex-

ponents for the existence of solutions can be obtained for Pucci’s operators in the radial

setting. In particular, in [12] some critical exponents p∗± acting as thresholds for the ex-

istence of entire positive radial solutions or positive solutions in balls have been proved

to exist. At least for positive radial solutions, the exponents p∗± play the same role for

Pucci’s operators as the critical Sobolev exponent p∗ = n+2
n−2

for the Laplacian. Though

their appearance is motivated exclusively as threshold for the existence of entire radial

solutions or solutions in balls, the recent results of [3], where some weighted energies

associated with radial solutions of (1) are introduced and proved to be asymptotically

preserved by almost critical solutions, suggest that the critical exponents reflect some

intrinsic properties of the operators, maybe beyond the radial setting. This motivated

the further investigation pursued in [15] about radial sign-changing solutions.

We proved in [15] that for problem (1) with operatorM+
λ,Λ a new critical exponent p∗∗+

appears as optimal threshold for the existence of radial sign-changing solutions, and it
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satisfies, as long as λ < Λ,

p∗− < p∗∗+ < p∗+ .

This new feature is essentially due to the nonlinear character of the involved operators:

when considering sign-changing solutions for a single problem with the operator given by

eitherM−
λ,Λ orM+

λ,Λ, the negative part of the solutions are positive solutions for the other

operator, either M+
λ,Λ or M−

λ,Λ respectively. Hence, for each single problem both critical

exponents related to both operators come into play in order to determine the optimal

threshold for the existence of solutions.

Furthermore, when studying the asymptotic behavior of almost critical sign-changing

solutions, new concentration phenomena and new limit solutions occur. In particular, the

asymptotic analysis of radial nodal solutions with any number m of nodal domains shows

that the behavior can be different in each nodal region and may also depend on m being

even or odd. Indeed, while in some nodal domain there is blow up and concentration, in

others the solutions are bounded and converge to a finite limit, radically differently from

what happens for the classical semilinear case.

In Section 2 we recall the relevant results for positive solutions, with special reference

to solutions in balls, see [3], annular domains, see [16], exterior domains, see [14] (see also

[18]). In Section 3 we describe the results of [15] about sign-changing solutions.

2. Positive solutions

For radial functions u(x) = u(|x|), the fully nonlinear equations

−M±
λ,Λ(D2u) = up

reduce to ordinary differential equations, since the eigenvalues of the hessian matrix

D2u(x) are nothing but

• u′′(r), which is simple

• u′(r)
r

, which has with multiplicity n− 1.

Let us focus initially on the operator M+
λ,Λ. If u(x) = u(|x|) is a C2 positive radial

solution of −M+
λ,Λ(D2u) = up, then u satisfies
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• if u′′ ≤ 0 and u′ ≥ 0, then

M+
λ,Λ(D2u) = λu′′(r) + Λ(n− 1)

u′(r)

r
= −u(r)p

• if u′′ ≤ 0 and u′ ≤ 0, then

M+
λ,Λ(D2u) = λ∆u = λu′′(r) + λ(n− 1)

u′(r)

r
= −u(r)p

• if u′′ ≥ 0 and u′ ≤ 0, then

M+
λ,Λ(D2u) = Λu′′(r) + λ(n− 1)

u′(r)

r
= −u(r)p

In other words, the coefficients of u′′ and u′ jumps according to the changes of concavity

and monotonicity of u respectively, and we can write

• where u(r) is concave and increasing

(3) u′′(r) + (ñ− − 1)
u′(r)

r
= −u(r)p

λ

• where u(r) is concave and decreasing

(4) u′′(r) + (n− 1)
u′(r)

r
= −u(r)p

λ

• where u(r) is convex and decreasing

(5) u′′(r) + (ñ+ − 1)
u′(r)

r
= −u(r)p

Λ

where ñ± are the dimension like parameters defined in (2). For the operator M−
λ,Λ, we

obtain analogous equations with Λ and λ ( and ñ+, ñ−) interchanged. Let us stress the

fact that the different equations arising in the different regimes of monotonicity/convexity

properties of the solution u are structurally identical: they differ just for the constant

coefficients in front of the lower order terms.

We further notice that when looking for radial solutions either in balls or in the whole

space, any positive radial solution u is always deceasing and therefore only two ODEs

come into play : the ones with n and ñ+ forM+
λ,Λ, and the ones with n and ñ− forM−

λ,Λ.

In the semilinear case Λ = λ, the problem is ruled by the single equation

(6) u′′ + (n− 1)
u′

r
= −up ,
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and it is well known that positive solutions defined in the whole interval [0,+∞) exist if

and only if

p ≥ p∗ =
n+ 2

n− 2
.

For p < p∗, any solution u of (6) becomes zero at a first finite radius, independently on

the initial value u(0). These functions correspond to positive solutions of the semilinear

equation −∆u = up in balls, vanishing on the boundary.

For p = p∗ = n+2
n−2

, the solutions of (6) are explicitly known. They are the radial solutions

of

−∆u = u
n+2
n−2 in RN ,

and they are functions of the form

(7) Uα(x) =

(
α

1 + α|x|2
n(n−2)

)n−2
2

for any α ≥ 0. The functions Uα are also known as the ”talentian” functions and, as it is

well known, they realize the best constant S in the Sobolev inequality, that is

(8) S =
‖DUα‖L2

‖Uα‖L2∗
= inf

u∈H1(Rn)\{0}

‖Du‖L2

‖u‖L2∗
.

For p > p∗, the positive solutions u of (6) existing for all r ≥ 0 correspond to radial entire

solutions of the semilinear problem −∆u = up in Rn, and they are known to satisfy

∃ lim
r→+∞

r
2
p−1u(r) > 0 .

Let us further recall that the condition p < p∗ = n+2
n−2

suffices for the existence of a positive

solution of the semilinear Dirichlet problem −∆u = up in Ω

u = 0 on ∂Ω

for any bounded domain Ω ⊂ Rn. Moreover, the assumption p < p∗ = n+2
n−2

is also

necessary in case Ω is a starshaped domain, as it follows by the Pohozaev identity. The

nonexistence of solutions for p ≥ p∗ = n+2
n−2

is strictly related to the lack of compactness for

the embedding H1
0 (Ω) ↪→ L2∗=p∗+1(Ω). Thus, by the concentration–compactness principle,

see [20, 21], a concentration phenomenon for almost critical solutions occurs. The problem
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has been largely studied and there are many many contributions in the literature, see e.g.

[2, 5, 26]. In the particular case when the Ω = B is a ball, then the unique positive

(radial) solutions uε of the homogeneous Dirichlet problem with exponent pε = n+2
n−2
− ε

blow up and concentrate at the center of the ball as ε→ 0, while their energy satisfies

J(uε) =

(
1

2
− 1

pε + 1

)∫
B

upε+1
ε dx

ε→0−→ 1

n
Sn,

where S is the constant defined in (8). The local profile of uε, suitably rescaled, is that

of the talentian function U(x) = U1(x) defined in (7).

In the fully nonlinear case Λ > λ, the Cauchy problem associated with the ODEs (4),

(5) has been thoroughly analyzed in [12], where it is proved that there exist unique radial

critical exponents p∗± associated with M±
λ,Λ respectively, such that

∃u > 0 radial solution of −M±
λ,Λ(D2u) = up in Rn

⇐⇒

p ≥ p∗±

The radial critical exponents p∗± are not explicitly known as functions of the effective

dimensions, but they are proved to satisfy

max
{

ñ+

ñ+−2
, n+2
n−2

}
< p∗+ < ñ++2

ñ+−2
for M+

λ,Λ

ñ−+2
ñ−−2

< p∗− <
n+2
n−2

for M−
λ,Λ

Moreover, one has

• for p < p∗± there exist positive solutions in balls vanishing on the boundary. In

this case, the radial setting is not a restriction since the moving plane technique

of Gidas, Ni, Nirenberg applies to positive solutions, see [8]. For other partial

symmetry results in the fully nonlinear framework, also for sign-changing solutions,

see [4].

• for p = p∗± the critical solutions U are showed to be fast decaying as r → +∞,

meaning that

∃ lim
r→+∞

rñ±−2U(r) > 0
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Even if the critical solutions U are not explicitly known as in the semilinear case, in

[3] we proved that for each U there exists a unique radius r0 > 0 such that U ′′(r0) =

0, and there exist positive constants c, C > 0 depending on limr→+∞ r
ñ±−2U(r)

such that

U(r0)

(1 + C(r2 − (r0)2))
ñ±−2

2

≤ U(r) ≤ U(r0)

(1 + c(r2 − (r0)2))
ñ±−2

2

for all r ≥ r0.

• for p > p∗± the existing entire solutions u may be, depending on p, either slow

decaying, that is satisfying

∃ lim
r→+∞

r2/p−1u(r) > 0

or pseudo–slow decaying, that is satisfying

0 < lim inf
r→+∞

r2/p−1u(r) < lim sup
r→+∞

r2/p−1u(r) < +∞

In the latter case, the functions u′′(r) have infinitely many zeros and solutions u

change convexity infinitely many times. Let us emphasize that the pseudo slow

behavior at infinity never occurs in the semilinear case.

More than that, in [3] we analyzed the asymptotic behavior as ε→ 0 of almost critical

solutions uε, defined as the positive solutions in the unit ball, vanishing on the boundary,

with almost critical exponents pε = p∗±−ε. We obtained the following result, for the proof

of which we refer to [3].

Theorem 2.1. Let {uε} be a sequence of positive almost critical solutions, and let Mε =

uε(0) = ‖uε‖∞. Then:

i) lim
ε→0

Mε = +∞;

ii) uε → 0 in C2
loc(B\ {0}) as ε→ 0;

iii) the rescaled functions

ũε(r) =
1

Mε

uε

(
r

Mε

pε−1
2

)
, r = |x| < Mε

pε−1
2

converge in C2
loc(Rn) to U1, the fast decaying entire critical solution satisfying

U1(0) = 1;
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iv) (Mε)
pε(ñ±−2)−ñ±

2 uε(r)→ c
(

1
rñ±−2 − 1

)
in C2

loc(B\ {0}).

Remark 2.1. By a continuity argument, the exponents p±∗ are proved to be the optimal

thresholds for the existence of positive solutions also in some bounded domains obtained as

small perturbations of balls, see [11]. But, in general, the conditions on p for the existence

of positive solutions depend on the topology of the domain. For annular domains, (radial)

positive solutions exist for all p > 1 and for any rotationally invariant uniformly elliptic

operator of the form F (x,D2u), see [16].

The critical character of the exponents p∗± is confirmed by the existence and unique-

ness results obtained in [14] for the exterior Dirichlet problem associated with Pucci’s

operators. Namely, for the existence of positive solutions of the problem

(9) −M±
λ,Λ(D2u) = up in Rn \B , u = 0 on ∂B

one has the following result.

Theorem 2.2. There exist positive radial solutions of problem (9) if and only if p > p∗±.

Moreover, for any p > p∗±, problem (9) has a unique positive radial solution u∗ satisfying

(10) lim
r→+∞

rñ±−2u∗(r) = C > 0 ,

and infinitely many positive radial solutions u satisfying

(11) lim
r→+∞

rñ±−2u(r) = +∞ .

Consistently with the case of entire solutions, the solution u∗ satisfying (10) will be

referred to as the fast decaying solution. It is characterized by an initial critical slop

(12) (u∗)′(1) = α∗±(p) > 0 .

As far as solutions u satisfying (11) are concerned, they are proved to satisfy either

lim
r→+∞

r
2
p−1u(r) = c > 0 ,

in which case they will be called slow decaying solutions, or

0 < lim inf
r→+∞

r
2
p−1u(r) < lim sup

r→+∞
r

2
p−1u(r) < +∞ ,
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in which case they will be named pseudo-slow decaying solutions.

Let us observe that when studying the existence of radial solutions in exterior domains

(as well as in annular domains), all the three equations (3), (4) and (5) corresponding

to the different regimes of monotonicity/convexity properties of the solution come into

play. Moreover, differently from the case of solutions in balls or in the whole space, in

this case the initial slope imposed to any solution of the Cauchy problem associated with

the ODEs (3), (4) and (5) plays a crucial role, at least when the exponent p satisfies

p > p∗±: a sufficiently large initial velocity will produce a solution in an annular domain,

whereas small enough initial slopes (precisely u′(1) ≤ α∗±(p)) yield solutions of the exterior

Dirichlet problem.

In the semilinear case, a proof of Theorem 2.2 can be found in [17]. For the fully

nonlinear case, the proof is given in [14] and it relies on different arguments forM+
λ,Λ and

M−
λ,Λ: for M−

λ,Λ, we exploited the fact that p∗− >
ñ−+2
ñ−−2

and we used some properties of

solutions of supercritical semilinear problems; for M+
λ,Λ, for which p∗+ < ñ++2

ñ+−2
, a different

proof is obtained as an application of Gauss-Green Theorem. However, let us stress the

fact in the fully nonlinear setting a reflection argument analogous to the Kelvin transform

which reduces a supercritical exterior Dirichlet problem to a subcritical Dirichlet problem

in the punctured ball as in the semilinear case is not available.

Remark 2.2. In the semilinear case, for the exterior Dirichlet problem, the Sobolev ex-

ponent p∗ = n+2
n−2

acts as critical threshold for the existence of positive solutions even for

non radial exterior domains, as proved in [9], where solutions are constructed by using a

perturbative method.

3. Sign-changing solutions

The results of the previous section can be applied in order to obtain existence results

for radial sign-changing solutions in a ball. Indeed, sign-changing solutions of problem

(1) are nothing but constant sign radial solutions in balls and annuli glued together.
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As before, let us first recall the known results for semilinear equations. For the Dirichlet

problem

(13)

−∆u = |u|p−1u in B

u(0) > 0 , u = 0 on ∂B

radial sign-changing solutions do exist if and only if p < p∗ = n+2
n−2

. Moreover, for any

fixed integer m ≥ 1, if ump denotes the solution having m nodal regions, then, for p→ p∗,

one has

ump → 0 in C2
loc(B \ {0}) ,∫

B

|∇ump (x)|2 dx =

∫
B

|ump (x)|p+1 dx→ mSn .

Furthermore, suitable rescalings of the restriction of ump to each nodal region converge,

up to the sign, to the entire positive solution U1 of the critical equation defined by (7).

We refer to [10] for the proof of the above results and further properties of the radial

sign-changing solutions of problem (13).

In the fully nonlinear framework, as showed in [15], new critical exponents appear

as threshold for the existence of sign-changing radial solutions and new concentration

phenomena occur. The main difference with respect to the semilinear problem relies on

the fact when considering sign-changing solutions of a single problem, with a fixed operator

given by eitherM+
λ,Λ orM−

λ,Λ, the negative part of a solution is a positive solution for the

other operator, either M−
λ,Λ or M+

λ,Λ respectively. Thus, both the two different critical

exponents p∗± come into play when analyzing each single problem. Keeping in mind that

p∗− < p∗+ as soon as Λ > λ, one has the following existence result, whose proof can be

found in [15].

Theorem 3.1. We have:

i) for the operator M−
λ,Λ, radial sign-changing solutions of (1) with any number of

nodal domains exist if and only if

p < p∗− ;
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ii) for the operator M+
λ,Λ, there exists a new critical exponent p∗∗ satisfying

p∗− < p∗∗ < p∗+ ,

such that no radial sign-changing solutions to (1) exist for p ≥ p∗∗, while radial

sign-changing solutions to (1) with any number of nodal domains exist at least for

a sequence of exponents pk ↗ p∗∗.

The difference between the two previous existence results is due to the facts that we

are considering sign-changing solutions satisfying u(0) > 0 and that p∗− < p∗+. Indeed,

for the operator M−
λ,Λ, the first nodal component of a solution is a positive solution

relative to M−
λ,Λ in some ball, and therefore it exists if and only if p < p∗−. On the other

hand, for p < p∗− < p∗+, negative solutions for the operator M−
λ,Λ in annular domains,

which, up to the sign, correspond to positive solutions forM+
λ,Λ in annular domains, exist

independently of their initial slope, according to Theorem 2.2. Hence, gluing together a

positive solution for M−
λ,Λ in some ball with negative and positive solutions for M−

λ,Λ in

annular domains, we obtain sign-changing solutions with any number of nodal domains if

and only if p < p∗−.

The above argument does not apply to the operatorM+
λ,Λ, and in this latter case the proof

of the existence of sign-changing solutions is much more delicate. Indeed, the existence of

the first positive nodal component for a solution relative to M+
λ,Λ requires the condition

p < p∗+. On the other hand, the existence of a second negative nodal component, which

has initial slope given by the final slope of the first nodal component, and , up to the sign,

corresponds to a positive solution for M−
λ,Λ in an annular domain, is not guaranteed for

p > p∗−, according to Theorem 2.2. In particular, for p < p∗+ but close to p∗+, the positive

solutions of the Dirichlet problem forM+
λ,Λ in the unit ball B are almost critical solutions,

and their slopes at the boundary ∂B converge to 0, according to Theorem 2.1. Thus, for

p close to p∗+, the slope of the first nodal component at the first nodal radius (which can

be fixed at 1 up to a scaling) is an initial slope for the second nodal component not large

enough in order to yield a positive solution for M−
λ,Λ in an annular domain, meaning

that no radial sign-changing solutions exist for p close to p∗+. The new critical exponent

p∗∗ given by Theorem 3.1 is then defined as the supremum of the exponents p for which
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there exist sign-changing radial solutions, and it is easily proved to satisfy p∗∗ > p∗−. The

exponent p∗∗ is, roughly speaking, the exponent satisfying p+
− < p∗∗ < p∗+ for which the

positive solution u of the Dirichlet problem −M+
λ,Λ(D2u) = up

∗∗
in B1

u = 0 on ∂B1

satisfies

u′(1) = −α∗−(p∗∗) ,

where α∗−(p) is the critical initial slope of the positive fast decaying solution of the exterior

Dirichlet problem relative to M−
λ,Λ in Rn \B1, defined by (12).

The difference between the semilinear and the fully nonlinear cases, and between the

two cases relative toM−
λ,Λ andM+

λ,Λ, is even more evident in the study of the asymptotic

behavior of almost critical radial sign-changing solutions.

Let us consider almost critical solutions uε with a fixed number m ≥ 2 of nodal regions,

that are solutions of problem (1) with p = pε and

pε → p∗− as ε→ 0 , for M−
λ,Λ

pε → p∗∗ as ε→ 0 , for M+
λ,Λ

The asymptotic analysis performed in [15] leads to the following concentration results.

Theorem 3.2. For the operator M−
λ,Λ, up to a subsequence, as ε→ 0+, only the restric-

tion of uε to its first nodal region blows up at the origin, and uε → ū in C2
loc(B \ {0}),

where ū is a radial sign-changing solution of
−M−

λ,Λ(D2u) = |u|p∗−−1u in B

u = 0 on ∂B

u(0) < 0

with (m− 1) nodal regions.

The result of the above theorem can be easily explained in light of the critical role

played in this case by p∗−: as pε → p∗−, the only nodal component which can no longer

exist is the first one, since it is an almost critical positive solution in a ball for the operator
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M−
λ,Λ. Hence, the blow up behavior occurs only for the first nodal component, whereas

the other nodal components rearrange in order to yield a sign-changing radial solution

with one less nodal component.

As far as almost critical sign-changing radial solutions relative toM+
λ,Λ are concerned,

the concentration result reads as follows.

Theorem 3.3. For the operator M+
λ,Λ, up to a subsequence, as ε→ 0+, one has:

i) if m is even, then the restrictions of uε to each nodal region blow up at the origin,

and uε → 0 in C2
loc(B \ {0});

ii) if m is odd, then the restrictions of uε to each of the first m − 1 nodal regions

blow up at the origin, and uε → v̄ in C2
loc(B \ {0}), where v̄ is the unique positive

solution of −M
+
λ,Λ(D2u) = up

∗∗
in B

u = 0 on ∂B.

Also for the operator M+
λ,Λ, an explanation of the above concentration result can be

obtained by considering the critical character of the exponent p∗∗. As pε → p∗∗, the

solutions which can no longer exist are the negative nodal components, which are, up

to the sign, positive solutions relative to M−
λ,Λ in annular domains whose initial slope

converges to the critical one α∗−(p∗∗). On the other hand, by continuous dependence on

initial conditions, there exists a sort of hierarchy in the blow up behavior of the nodal

components: bounded nodal components keep bounded the subsequent ones. Hence, since

the negative nodal components must blow up and concentrate at the origin, all the nodal

components must blow up and concentrate at the centre of the ball as well when m is even.

When m is odd, the last positive nodal components are the only ones which ”survive”

and they converge to a positive solution in the unit ball for the operatorM+
λ,Λ at the level

p = p∗∗.

Another explanation of the concentration results stated in Theorems 3.2 and 3.3 can

be obtained by considering a suitably defined energy associated with radial solutions of

the considered problems, see [3, 15].
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