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Abstract. In this note, we discuss about the regularity of the free boundary for the

solutions of the one-phase Stefan problemut = ∆u in (Ω× (0, T ]) ∩ {u > 0},

ut = |∇u|2 on (Ω× (0, T ]) ∩ ∂{u > 0},

with Ω ⊂ Rn, u : Ω × [0, T ] → R, u ≥ 0. We start by recalling the classical results

achieved by I. Athanasopoulos, L. Caffarelli, and S. Salsa in the more general setting

of the two-phase Stefan problem. Next, we focus on some recent achievements on the

subject, obtained with Daniela De Silva and Ovidiu Savin starting from the techniques

already known for one-phase problems governed by elliptic operators.

Sunto. In questa nota, discutiamo della regolarità della frontiera libera per le soluzioni

del problema di Stefan a una faseut = ∆u in (Ω× (0, T ]) ∩ {u > 0},

ut = |∇u|2 su (Ω× (0, T ]) ∩ ∂{u > 0},

con Ω ⊂ Rn, u : Ω× [0, T ]→ R, u ≥ 0. Incominciamo richiamando i risultati classici ot-

tenuti da I. Athanasopoulos, L. Caffarelli, e S. Salsa nel setting più generale del problema

di Stefan a due fasi, giungendo successivamente ad alcuni più recenti sull’argomento,

trovati insieme a Daniela De Silva e Ovidiu Savin partendo dalle tecniche già note per

problemi di frontiera libera a una fase governati da operatori ellittici.
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1. General facts about the Stefan problem

The Stefan problem is one of the most classical and probably motivating free boundary

problems. It dates back to the 19th century, and its name precisely to around 1890, when

the physicist Josef Stefan discussed it in a series of four papers relating the freezing of the

ground and the formation of sea ice, see [16] for a comprehensive history of the Stefan

problem. Such problem describes the phase transition processes, such as the melting of

the ice (or the solidification of the water), see for example [14] and again [16].

Free boundary problems naturally arise in several fields, such as physics, industry, biol-

ogy and finance. In general, in these applied problems, there is a qualitative change of

a medium and thus an appearance of a phase transition, for instance ice to water, liquid

to crystal, as seen before described by the Stefan problem, buying to selling (assets),

active to inactive (biology), blue to red (coloring games), disorganized to organized (self

-organizing criticality), see [3] for some of such examples.

We heuristically recall that a free boundary problem tipically involves a function that

satisfies some partial differential equations and fulfill some conditions on unknown do-

mains determined via the function itself. Thus, such domains are a priori unknown and

depend on the problem. This is exactly the peculiarity of free boundary problems. The

boundaries of these unknown domains, usually contained in the set on which the prob-

lem is stated, determine the so-called free boundary of the solution. In general, we are

interested in one-phase and two-phase free boundary problems. Roughly saying, we de-

fine “positive phase” the set where the solution of the problem is positive and, in case it

does not change sign, we deal with a one-phase problem. In case there also exists a set

where the solution is negative, we call it “negative phase” of the solution and we have a

two-phase problem. An example of a one-phase problem is the following one:

(1)

∆u = 0 in Ω+(u) := {x ∈ Ω : u(x) > 0} ,

|∇u| = 1 on F (u) := ∂Ω+(u) ∩ Ω,

where Ω is a bounded domain in Rn. An example of a two-phase problem is
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(2)


∆u = 0 in Ω+(u) := {x ∈ Ω : u(x) > 0},

∆u = 0 in Ω−(u) := Int({x ∈ Ω : u(x) ≤ 0}),

|∇u+|2 − |∇u−|2 = 1 on F (u) := ∂Ω+(u) ∩ Ω,

with, as usual, u+ := sup{u, 0} and u− := sup{−u, 0}. In (1) and (2), F (u) denotes the

free boundary of u, while Ω+(u) and Ω−(u) are its positive and negative phase respec-

tively.

In this kind of problems, we are not only interested in the regularity of the solutions, but

also in the analysis of some features of the free boundary. In particular, the regularity

of the free boundary is very important for possibly proving that the solutions have some

further regularity properties. We will focus on this subject in a bit.

Going back to the Stefan problem, and specifically looking at its mathematical formula-

tion, the one-phase form, on which this note mainly focuses, is

(3)

ut = ∆u in (Ω× (0, T ]) ∩ {u > 0},

ut = |∇u|2 on (Ω× (0, T ]) ∩ ∂{u > 0},

where Ω ⊂ Rn, u : Ω× [0, T ]→ R, u ≥ 0. The two-phase Stefan problem studied in [1] is

(4)


ut = ∆u in (Ω× (0, T ]) ∩ {u > 0},

ut = ∆u in (Ω× (0, T ]) ∩ {u ≤ 0}0,

u+
t

|∇u+|
= |∇u+| − |∇u−| on (Ω× (0, T ]) ∩ ∂{u > 0}.

Concerning again the physical interpretation of the problem, we point out that (3) is as-

sociated with the situation where one of the material phases may be neglected. Typically,

this is achieved by assuming that a phase is everywhere at the phase change tempera-

ture and hence any variation from such temperature leads to a change of phase. As a

consequence, we can just focus on the behavior of the other phase. In the particular

framework of melting ice, u denotes the temperature of the water. The region {u = 0}

is the unmelted region of ice and the free boundary ∂{u > 0} is the moving interphase

separating the ice and the water. In (3), u has to satisfy the heat equation in its positive

phase and the condition ut = |∇u|2 on ∂{u > 0} represents the law of conservation of
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energy, which defines the position of the moving interphase. Here, ut
|∇u| is the speed of the

surface ∂{u > 0}, at t fixed, in the spatial direction −ν, where ν = ∇u
|∇u| . The more general

setting of (4), instead, describes the physical scenario in which both the two phases can

not be neglected and have non-constant zero temperature. There,
u+t
|∇u+| represents the

speed of the interphase introduced before.

In this note, ∂x{u(·, t) > 0} denotes the boundary in Rn of {u(·, t) > 0}, with t being

fixed. We say that ∂x{u > 0} is ε0-flat in Bλ if, for each t, ∂x{u(·, t) > 0}∩Bλ is trapped

in a strip of width ε0λ, and u = 0 on one side of this strip, while u > 0 on the other side.

Let us remark that this means that the free boundary ∂{u > 0} is, for each t, flat in space

in sense of the notion of flatness exploited by De Silva in [9], see Remark 2.2.

We are in position now to provide the main result proved in [11]. Roughly speaking, it

states that a solution u to (3) in a ball of size λ in space-time, which is of size λ and has

a sufficiently flat free boundary in space, must have smooth free boundary in the interior

provided a necessary nondegeneracy condition holds. The nondegeneracy condition for u

requires that u is bounded below by a small multiple of λ at some point in the domain at

distance λ from the free boundary. The rigorous statement of the result contained in [11]

is the following one.

Theorem 1.1. Fix a constant K (large) and let u be a solution to the one-phase Stefan

problem (3) in Bλ × [−K−1λ, 0] for some λ ≤ 1. Assume that

|u| ≤ Kλ, u(x0, t) ≥ K−1λ for some x0 ∈ B 3
4
λ.

There exists ε0 depending only on K and n such that if, for each t, ∂x{u(·, t) > 0} is

ε0-flat in Bλ, then the free boundary ∂{u > 0} (and u up to the free boundary) is smooth

in Bλ
2
× [−(2K)−1λ, 0].

This note is organized as follows. In Section 2, we recall a bit of the literature concerning

the free boundary regularity in the Stefan problem and we briefly expose the approach

developed in [9]. In the last Section 3, we provide a sketch of the proof of our main result

Theorem 1.1.
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2. A viscosity approach to some free boundary problems

In this section, we quote a bit of the literature concerning the free boundary regularity

in the Stefan problem and we briefly present the approach developed in [9].

In free boundary problems, free boundary regularity is widely studied. Even in the

case of the Stefan problem, of course, the behavior of the free boundary is fundamen-

tal. For this purpose, in the context of (4), I. Athanasopoulos, L. Caffarelli, and S.

Salsa showed in [1] that Lipschitz free boundaries in space-time become smooth pro-

vided a nondegeneracy condition holds. In [2] they established the same conclusion for

sufficiently “flat” free boundaries. Their techniques were based on the original work

of Caffarelli in the elliptic case [4, 5]. At this point, we could ask to ourselves if the

nondegeneracy assumption is necessary, trying to answer the more general question: if

the free boundary is a Lipschitz graph in space-time, can we deduce further regular-

ity, i.e. the free boundary is actually a C1,α or a C1 graph? The answer is that the

nondegeneracy condition is indeed necessary. As a matter of fact, Lipschitz free bound-

aries in evolution problems do not enjoy, in general, instantaneous regularization. Ex-

amples in which Lipschitz free boundaries preserve corners can be found for instance

in [8]. For the sake of completeness, we recall here a bidimensional example for the

one-phase Stefan problem (3), see [8].

Let

w(ρ, θ, t) = ρg(t)(cos(g(t)θ))+,

where ρ, θ are polar coordinates in the plane and g is a smooth decreasing function greater

than 2. Then, by direct computations, w classically solves

(5)

wt ≥ ∆w in Cr ∩ {w > 0},

wt ≥ |∇w|2 on Cr ∩ ∂{w > 0},

with Cr := Br × (0, r2) and r ≤ r0 sufficiently small. Precisely, in {w > 0} it holds

wt = g′ρg(log ρ cos(gθ)− sin(gθ)θ),

and

∆w = gρg−1(((g−1)ρ−1|∇ρ|2 + ∆ρ− gρ|∇θ|2) cos(gθ)− (2g〈∇ρ,∇θ〉+ρ∆θ) sin(gθ)) = 0,
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since

|∇ρ|2 = 1, ∆ρ = ρ−1, 〈∇ρ,∇θ〉 = 0,

|∇θ|2 = ρ−2, ∆θ = 0.

By these equalities the first condition in (5) immediately follows, because g′ < 0 by

definition of g and taking ρ small enough. Concerning the inequality on the free boundary

∂{w > 0}, we have

|∇w|2 = g2ρ2g−2, wt = −π
2

g′

g
ρg on ∂{w > 0},

which implies the second condition in (5), again by definition of g and choosing ρ suffi-

ciently small. Hence, w is a supersolution of

(6)

ut = ∆u in Cr ∩ {u > 0},

ut = |∇u|2 on Cr ∩ ∂{u > 0}.

Let us consider now a solution u of (6) (in a weak or viscosity sense) with u = w on

∂pCr and the free boundary ∂{u > 0} a Lipschitz graph in space-time. For the sake of

completeness, we recall that ∂pCr := ∂Cr ∩ {t = r2}c is the parabolic boundary of Cr.

Then, first, by a comparison principle, we get u ≤ w in Cr. Moreover, we note that at

the origin (0, 0), the free boundary ∂{w > 0} has a persistent corner singularity and since

(0, 0) ∈ ∂{u > 0} initially with zero speed by hypothesis, (0, 0) ∈ ∂{u > 0} for 0 ≤ t < r2
0.

Then, because u ≤ w and ∂{u > 0} is a Lipschitz graph in space-time, the origin is a

persistent corner for ∂{u > 0} too, as we can see in Figure 1, and thus ∂{u > 0} does not

regularize instantaneously. In [8], there is a three dimensional example for the two-phase

Stefan problem (4) as well, constructed via a technical lemma on spherical harmonics.

Concerning previous phenomena associated with the Stefan problem, we quote the work

[7] as well. There, S. Choi and I. Kim showed that solutions regularize instantaneously

if the initial free boundary is locally Lipschitz with bounded Lipschitz constant and the

initial data has subquadratic growth. The techniques are related to Athanasopoulos, Caf-

farelli, and Salsa’s ones.
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Figure 1. Bidimensional example of a Lipschitz free boundary preserving

corners.

Let us stress, at this point, that, as already mentioned, the contribution of Athanasopou-

los, Caffarelli, and Salsa was inspired by Caffarelli’s one in the elliptic case. This was

fundamental to develop the study of the free boundary regularity as a research topic.

The key step of his method consists in finding a family of comparison subsolutions using

supconvolutions on balls of variable radii. More recently, D. De Silva in [9] improved

Caffarelli’s approach to obtain the C1,α regularity of flat free boundaries for problems in

the class of the one-phase nonhomogeneous Bernoulli free boundary problem

(7)

∆u = f in Ω ∩ {u > 0},

|∇u| = 1 on F (u) := Ω ∩ ∂{u > 0}.

Specifically, she dealt with problems of the type

(8)

tr(A(x)D2u) = f in Ω ∩ {u > 0},

|∇u| = g on F (u),
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where Ω is a bounded domain in Rn, f ∈ C(Ω) ∩ L∞(Ω), g ∈ C0,β(Ω), g ≥ 0, and

A(x) = (aij(x))1≤i,j≤n, with aij ∈ C0,β(Ω). Here, tr() denotes, as usual, the trace of a

matrix. The strategy used by her was to show that the graph of a solution u to (8)

satisfies an “improvement of flatness” property and then iterate it to achieve the C1,α

regularity. The main result in [9] essentially says that a sufficiently “flat” solution to (8)

in a certain ball has the free boundary F (u) which is a C1,α graph in the interior. The

exact statement reads as follows.

Theorem 2.1 (Flatness implies C1,α, De Silva). Let u be a viscosity solution to (8) with

0 ∈ F (u), g(0) = 1 and A(0) = I. There exists a universal constant ε̄ > 0 such that, if

the graph of u is ε̄-flat in B1, that is

(xn − ε̄)+ ≤ u(x) ≤ (xn + ε̄)+, x ∈ B1,

and

[aij]C0,β(B1) ≤ ε̄, ‖f‖L∞(B1) ≤ ε̄, [g]C0,β(B1) ≤ ε̄

then F (u) is C1,α in B1/2.

Remark 2.1. Notice that in the theorem above viscosity solutions are considered. This

notion of solution had already exploited by Caffarelli in [4, 5] and was exactly one of the

most innovative elements of his work. Furthermore, the assumptions 0 ∈ F (u), g(0) = 1

and A(0) = I, and the conditions

[aij]C0,β(B1) ≤ ε̄, ‖f‖L∞(B1) ≤ ε̄, [g]C0,β(B1) ≤ ε̄

mean that (8) is formally close to (1).

To enter more deeply inside De Silva’s work [9], in view of the main Theorem 2.1 and

the strategy to prove it, it becomes crucial to clarify the notion of flatness used. In this

regard, the technical definition of ε-flatness is the following.

Definition 2.1. A function u is ε-flat in Ω if

(x · ν − ε)+ ≤ u(x) ≤ (x · ν + ε)+, x ∈ Ω,

where |ν| = 1.
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Figure 2. Flatness assumption in [9].

Remark 2.2. The previous definition, in particular, implies
F (u) ⊆ {−ε ≤ x · ν ≤ ε},

u = 0 in {x · ν < −ε},

u > 0 in {x · ν > ε},

i.e. F (u) is trapped in a strip of width 2ε (a region between two parallel hyperplanes at

distance 2ε from each other), and u = 0 on one side of this strip, while u > 0 on the other

side, as shown in Figure 2.

According to this notion of flatness, it becomes enough intuitive to think about what an

improvement of flatness result means, see Figure 3. We recall here the precise statement

of such property.

Lemma 2.1 (Improvement of flatness). Let u be a solution to (8) in B1 with

‖f‖L∞(B1) ≤ ε2, ‖g − 1‖L∞(B1) ≤ ε2, ‖aij − δij‖L∞(B1) ≤ ε,
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Figure 3. Improvement of flatness in [9]

satisfying

(xn − ε)+ ≤ u(x) ≤ (xn + ε)+ for x ∈ B1,

with 0 ∈ F (u). If 0 < r ≤ r0 for r0 a universal constant and 0 < ε ≤ ε0 for some ε0

depending on r, then(
x · ν − r ε

2

)+

≤ u(x) ≤
(
x · ν + r

ε

2

)+

for x ∈ Br,

with |ν| = 1 and |ν − en| ≤ Cε for a universal constant C.

We point out that the condition |ν − en| ≤ Cε is the crucial one to get the C1,α

regularity of F (u) after the iteration of this kind of property.

The techniques developed in [9] have turned out to be very flexible and have been widely

generalized to a variety of settings, including “thin” free boundary problems, two-phase

nonhomogeneous problems, and constrained minimization problems, see for instance [12],

[10] and [13], for which regularity results have not been proved using Caffarelli’s approach

yet. We remark that in [13] variational techniques, instead of viscosity ones, are employed.
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It is thus important to understand if the strategy exploited in [9] might be applied in

the context of time dependent problems. For this purpose, in [11], coherently with the

ideas in [9], the regularity of flat free boundaries for the one-phase Stefan problem (3)

is investigated by relying on perturbation arguments leading to a linearization of the

problem. We end up this section pointing out that the methods developed in [11] might

be suitable to further extensions, such as to the two-phase form of the Stefan problem

and to the parabolic version of the “thin” one-phase problem.

3. Sketch of the proof of Theorem 1.1

In this section, we look at the proof of Theorem 1.1. Before going into the details,

we remark that this theorem is basically equivalent to the previously mentioned flatness

result contained in [2].

Concerning the proof, we first introduce some definitions. Coherently with [9], viscosity

solutions are considered.

Definition 3.1. We say that u : Ω× [0, T ]→ R+ solves (3) in the viscosity sense if u is

continuous and its graph cannot be touched by above (resp. below), at a point (x0, t0) in

a parabolic cylinder Br(x0) × (t0 − r2, t0], by the graph of a classical strict supersolution

ϕ+ (resp. subsolution).

For the sake of completeness, we provide the notion of a function touching another one

by above/below.

Definition 3.2. We say that a function ϕ touches a function u by above (resp. below)

at (x0, t0) in a parabolic cylinder Br(x0)× (t0 − r2, t0], if ϕ(x0, t0) = u(x0, t0) and u(x, t)

≤ ϕ(x, t) (resp. u(x, t) ≥ ϕ(x, t)) for all (x, t) ∈ Br(x0)× (t0 − r2, t0].

The initial step of the proof is to remark that if a solution u satisfies the hypotheses of

Theorem 1.1, then, using an appropriate dilation, we can extend the flatness assumption

to the whole function u instead of just the free boundary ∂{u > 0}. More precisely, we

consider the parabolic rescaling uλ of the function u, defined in B1 × [−(Kλ)−1, 0],

(9) uλ : (x, t) −→ u(λx, λ2t)

λ
, (x, t) ∈ B1 × [−(Kλ)−1, 0].
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Then, uλ formally solves a Stefan problem with possibly small speed coefficient λ,

(10)

(uλ)t = ∆(uλ) in (B1 × [−1, 0]) ∩ {uλ > 0},

(uλ)t = λ|∇(uλ)|2 on (B1 × [−1, 0]) ∩ ∂{uλ > 0},

and it turns out to satisfy for all small η > 0

an(t)
(
xn − b(t)− η1+β

)+ ≤ u ≤ an(t)
(
xn − b(t) + η1+β

)+
in Bη × [−λ−1η, 0].

Rescaling this condition back to the original coordinates, we obtain that u is whole flat

in Bηλ × [−ηλ, 0].

At this point, Theorem 1.1 is a direct consequence of the following main result, which is

the correspondent one to Theorem “Flatness implies C1,α” in [9].

Theorem 3.1. Fix a constant K (large) and let u be a solution to the one-phase Stefan

problem (3) in B2λ × [−2λ, 0] for some λ ≤ 1. Assume that 0 ∈ ∂{u > 0}, and

an(t) (xn − b(t)− ε1λ)+ ≤ u ≤ an(t) (xn − b(t) + ε1λ)+ ,

with

K−1 ≤ an ≤ K, |a′n(t)| ≤ λ−2, b′(t) = −an(t),

for some small ε1 depending only on K and n. Then in Bλ × [−λ, 0] the free boundary

∂{u > 0} is a C1,α graph in the xn direction.

The fundamental step to prove Theorem 3.1 is to show that an improvement of flatness

property is indeed enjoyed, according to the approach developed in [9]. The natural

question could be: what type of improvement of flatness result can we expect for solutions

of the one-phase Stefan problem (3)? The main difficulties with (3) lie in the answer to

this question. As a matter of fact, even if at scale 1 a solution u to (3) is trapped

between nearby translations of an exact traveling wave, we cannot expect that at much

smaller scale the same property will still hold. This is different from what happens in the

elliptic counterpart studied in [9], where the preservation of such property is exactly the

improvement of flatness result, see Lemma 2.1. Specifically, this discrepancy is due to a

lack of natural scaling for (3), where, in general, by natural scaling for a free boundary

problem we mean a rescaling of its solutions which preserves the structure of the problem.
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Indeed, we consider again the parabolic rescaling uλ (9) of a solution u to (3), which we

could think to be the natural one since (3) is a parabolic problem. Nevertheless, uλ

formally solves (10), in which if we let λ go to 0, we achieve, again formally, that the

limiting solution

(11) ũ := lim
λ→0

uλ

satisfies ũt = ∆ũ in (B1 × (−1, 0]) ∩ {ũ > 0},

ũt = 0 on (B1 × (−1, 0]) ∩ ∂{ũ > 0},

where, by the sake of simplicity, we work in B1×(−1, 0]. Then, the free boundary ∂{ũ > 0}

of ũ does not move, so we can not expect to have regularization and thus to transfer

regularity to the original (3), which is what, in general, the existence of a natural scaling

allows to do. At the same time, if we take the hyperbolic rescaling, again, by simplicity,

denoted by uλ, of a solution u to (3)

uλ : (x, t) −→ u(λx, λt)

λ
, (x, t) ∈ B1 × (−1, 0],

then uλ formally satisfiesλ(uλ)t = ∆(uλ) in (B1 × (−1, 0]) ∩ {uλ > 0},

(uλ)t = |∇(uλ)|2 on (B1 × (−1, 0]) ∩ ∂{uλ > 0}.

Letting again λ go to 0, the limiting solution ũ defined in (11) formally solves∆ũ = 0 in (B1 × (−1, 0]) ∩ {ũ > 0},

ũt = |∇ũ|2 on (B1 × (−1, 0]) ∩ ∂{ũ > 0},

which is the one-phase Hele-Shaw problem, studied in [6] by similar methods to [11]. This

problem does not possess good continuity properties in time, so again we do not have

regularity in the limiting problem and we can not transfer regularity to (3). Arguments

of the same type can be applied to all the other possible rescalings we can consider, hence

a natural scaling does not exist for (3). We stress that the existence of a natural scaling

in the elliptic counterpart established in [9] allows to iterate indefinitely the improvement

of flatness property.
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In view of these technical difficulties, we need to find a different method to face the

question of what type of improvement of flatness result can we expect for solutions of

the Stefan problem (3). For this purpose, we can exploit a Hodograph transform which

reduces (3) to an equivalent nonlinear problem with fixed boundary and oblique derivative

boundary condition. Precisely, the graph of a solution u to (3) in Rn+2

Γ := {(x, xn+1, t)| xn+1 = u(x1, x2, . . . , xn, t)}

can be viewed as the graph of a possibly multi-valued function ū with respect to the xn

direction

Γ := {(x, xn+1, t)| xn = ū(x1, x2, . . . , xn−1, xn+1, t)}.

Then, abstractly, since u solves (3), ū satisfies the quasilinear parabolic equation with

oblique derivative boundary condition

(12)

ūt = tr(Ā(∇ū)D2ū) in {xn+1 > 0},

ūt = g(∇ū) on {xn+1 = 0},

with Ā(p) symmetric, positive definite as long as pn 6= 0, and gn(p) > 0. We note

that the free boundary ∂{u > 0} of u is given by the graph of the trace of ū on

{xn+1 = 0}. In particular, it turns out that a solution ū of (12) enjoys an improve-

ment of flatness property.

Before providing the precise statement of this result, we introduce some notation. By the

sake of simplicity, in the following we will refer to the coordinates of ū as (x1, x2, . . . , xn−1, xn, t)

instead of (x1, x2, . . . , xn−1, xn+1, t).

Notation. For n ≥ 2, given r > 0 we set

Qr := (−r, r)n Cr := (Qr ∩ {xn > 0})× (−r, 0],

Fr := {(x, t)| x ∈ Qr ∩ {xn = 0}, t ∈ (−r, 0]} .

Moreover, we denote by la,b(x, t) functions which for each fixed t are linear in the x

variable, whose coefficients in the x′ variable are independent of t, and so that they
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satisfy the boundary condition in (12) on {xn = 0}. More precisely, these functions are

defined as

la,b(x, t) := a(t) · x+ b(t),

with

a(t) := (a1, . . . , an−1, an(t)), ai ∈ R, i = 1, . . . , n− 1,

and

b′(t) = g(a(t)).

Now, we are ready to state the improvement of flatness result for solutions ū of (12).

Proposition 3.1 (Improvement of flatness). Assume that u is a viscosity solution to (12),

possibly multi-valued, which satisfies

(13) |u− la,b| ≤ ελ in Cλ, |a′n(t)| ≤ δελ−2,

with

ε ≤ ε0, λ ≤ λ0, λ ≤ δε.

Then there exists lã,b̃ such that

|u− lã,b̃| ≤
ε

2
τλ in Cτλ,

with

|a(t)− ã(t)| ≤ Cε, |ã′n(t)| ≤ δε

2
(τλ)−2.

Here, the constants ε0, λ0, δ, τ > 0 small and C large depend only on n, and K.

In fact, this result holds for a more general class of problems, see [11]. For the sake of

completeness, we add to Proposition 3.1 the definition of multi-valued viscosity solutions

to (12).

Definition 3.3. Assume that u : Cλ → R is a multi-valued function with compact graph

in Rn+2. We say that u is a viscosity subsolution to (12) if u cannot be touched by above

at points in Cλ ∪ Fλ (locally, in parabolic cylinders) by (single-valued) classical strict

supersolutions ϕ of (12).
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Similarly, we can define viscosity supersolutions and viscosity solutions to (12) for multi-

valued functions. Again for completeness, we give the notion of a single-valued function

touching a multi-valued one by above.

Definition 3.4. We say that a single-valued function ϕ touches a multi-valued function

u by above at (x0, t0) ∈ Cλ ∪ Fλ in a parabolic cylinder Br(x0) × (t0 − r2, t0], if ϕ(x0, t0)

∈ u(x0, t0) and u(x, t) ≤ ϕ(x, t) for all possible values of u at (x, t), and for all (x, t)

∈ Br(x0)× (t0 − r2, t0].

To find Proposition 3.1, we investigate the linearized problem associated to (12), namely

the oblique derivative parabolic problem

(14)

λvt = tr(A(t)D2v) in {xn > 0},

vt = γ(t) · ∇v on {xn = 0},

with A(t) uniformly elliptic and γn > 0. The fact that we study this linearized problem

to achieve the improvement of flatness property directly comes from the original idea of

De Silva, which was that the proof which gives regularity in the linearized problem can

be applied with appropriate differences, but following the same scheme, to the nonlinear

problem as well. Nevertheless, this is not evident in [9], since the desired regularity of the

Neumann problem for the Laplace operator is reached by classical arguments.

We sketch, at this point, the proof of Proposition 3.1.

Sketch of the proof of Proposition 3.1. The improvement of flatness result relies on vari-

ous Hölder estimates for solutions to (14). Thus, it is crucial to prove such estimates.

In particular, C1,α estimates turn out to be the fundamental ones. In proving these, an

essential role is played by estimates for the 1D linear problem

(15)

vt = 1
λ
{ann(t)vnn + h(xn, t)} in C1,

vt = γn(t)vn + f(t) on F1,
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with

h(xn, t) :=
∑

(i,j)6=(n,n)

aij(t) vij((0, xn), t),

f(t) :=
∑
i<n

γi(t) vi(0, t),

which is obtained, roughly speaking, fixing x′ = 0 in (14). More precisely, since problem

(14) is invariant with respect to translations in the x′ variable and a difference of viscosity

solutions is still a viscosity solution, we have that also vi, i = 1, . . . , n − 1, are viscosity

solutions to (14). Therefore, by Cα estimates for solutions to (14), we get that v ∈ C∞ in

the x′ variable. Then, we are indeed left with the understanding of the 1D problem (15).

Now, after a parabolic rescaling and a compactness argument, we further reduce ourselves

to study

(16)

v̄t = Ā v̄xx in P1/2,

v̄t = 0 on {x = 0},

with Ā constant and P1/2 :=
(
0, 1

2

)
×
(
−1

4
, 0
]
. Here, we simply denote xn by x, because

we are in a one-dimensional spatial setting. We point out that the boundary condition

in (16) tells us that v̄ is constant on {x = 0}. Then C2 estimates for the standard heat

equation imply the condition

(17) |v̄ − (āx+ b̄)| ≤ Cτ 2 ≤ 1

2
τ 1+α in Pτ , τ small,

where the fact that āx+ b̄ does not depend on t is a consequence of the boundary condition

in (16).

Going back, at this point, to the initial solution v of (14), (17) reads

|v − (a1x+ b1(t))| ≤ 3

4
(τρ)1+α in Pτρ, ρ small ,

with

b′1(t) = λγ(t)a1,

which is a pointwise C1,α estimate at the origin. This pointwise C1,α estimate can be

applied at other points on {x = 0}, and combined these with interior C1,α estimates for

parabolic equations, we have the desired C1,α estimates for v.
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We conclude the sketch of the proof with the exact statement which provides the C1,α

estimates for solutions of (14). Constants depending only on n and K are called universal.

Proposition 3.2 (Interior estimates). Let v be a viscosity solution to (14) such that

‖v‖L∞ ≤ 1, with

K−1I ≤ A(t) ≤ KI, K−1 ≤ γn ≤ K, |γ| ≤ K,

λ ∈ (0, 1], |A′(t)| ≤ λ−1, |γ′(t)| ≤ λ−1,

for some large constant K. Then

|∇v|, |D2v| ≤ C in C1/2,

and for each ρ ≤ 1/2, there exists lā,b̄ such that

|v − lā,b̄| ≤ Cρ1+α in Cρ,

where

b̄′(t) = γ(t) · ā, |ā′n| ≤ Cρα−1λ−1, |ā| ≤ C,

with α, C universal.

�
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