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Abstract. We discuss recent developments of semi-classical and micro-local analysis in

the context of nilpotent Lie groups and for sub-elliptic operators. In particular, we give

an overview of pseudo-differential calculi recently defined on nilpotent Lie groups (using

representation theory) as well as of the notion of quantum limits in the Euclidean and

nilpotent cases.

Sunto. Discutiamo recenti sviluppi dell’analisi semi-classica e micro-locale nel con-

testo dei gruppi di Lie nilpotenti e per operatori sub-ellittici. In particolare, forniamo una

panoramica dei calcoli pseudo-differenziali recentemente definiti sui gruppi di Lie nilpo-

tenti (usando la teoria della rappresentazioni) nonchè della nozione di limiti quantistici

nei casi euclidei e nilpotenti.
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1. Introduction

Since the 1960’s, the analysis of elliptic operators has made fundamental progress with

the emergence of pseudo-differential theory and the subsequent developments of micro-

local and semi-classical analysis. In this paper, we consider some questions that are well

understood for elliptic operators and we discuss analogues in the setting of sub-elliptic

operators.

Bruno Pini Mathematical Analysis Seminar, Vol. 12 (2021) pp. 31-52

Dipartimento di Matematica, Università di Bologna
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32 V. FISCHER

1.1. The questions in the elliptic framework. The questions we are interested in

concern the tools that have been developed in the elliptic framework to describe and

understand the limits in space or in phase-space of families of functions. They are of two

natures: micro-local and semi-classical. Micro-local analysis aims at understanding elliptic

operators in high frequency, while semi-classical analysis investigate the mathematical

evolution of functions and operators depending on a small parameter ε (akin to the Planck

constant in quantum mechanics) that goes to zero.

A typical micro-local question is, for instance, to ‘understand the convergence’ as j →

∞ of an orthonormal basis of eigenfunctions ψj, j = 0, 1, 2, . . .

∆ψj = λjψj, with 0 = λ0 < λ1 ≤ λ2 ≤ . . .

of the Laplace operator ∆ on a compact Riemannian manifold M . One way to answer this

question is to describe the accumulation points of the sequence of probability measures

|ψj(x)|2dx, j = 0, 1, 2, . . . If M is the n-dimensional torus or if the geodesic flow of M is

ergodic, then the volume element dx is an accumulation point of |ψj(x)|2dx, j = 0, 1, 2, . . .

and one can extract a subsequence of density one (jk)k∈N,

i.e. lim
Λ→∞

|{jk : λjk ≤ Λ}|
|{j : λj ≤ Λ}|

= 1,

for which the convergence holds, that is, for any continuous function a : M → C,

(1) lim
k→+∞

∫
M

a(x) |ϕjk(x)|2dx =

∫
M

a(x) dx.

Under the ergodic hypothesis, this is a famous result due to Shnirelman [48], Colin de

Verdière [15], and Zelditch [55] in 1970’s and 80’s and sometimes called the Quantum

Ergodicity Theorem - see also the semi-classical analogue in [38].

A typical semi-classical problem is to understand the quantum evolution of the Schrödinger

equation

iε∂tψ
ε = −ε

2

2
∆ψε, given an L2-bounded family of initial datum ψε|t=0 = ψε0;

in this introduction, let us consider the setting of Rn to fix ideas. Again, a mathematical

formulation consists in describing the accumulation points of the sequence of measures

|ψε(t, x)|2dxdt as ε→ 0.



TOWARDS SEMI-CLASSICAL ANALYSIS FOR SUB-ELLIPTIC OPERATORS 33

1.2. Sub-elliptic operators. In this paper, we discuss the extent to which these types of

questions have been addressed for sub-elliptic operators. The main examples of sub-elliptic

operators are sub-Laplacians L generalising the Laplace operator. Concrete examples of

sub-elliptic and non-elliptic operators include

LG = −∂2
u − (u∂v)

2 on Ru × Rv = R2,

often called the Grushin operator (the subscript G stands for Grushin). More generally,

Hörmander sums of squares are sub-elliptic operators; they are operators L = −X2
1 −

. . .−X2
n1
−X0 on a manifold Mn where the vector fields Xj’s together with their iterated

brackets generate the tangent space TM at every point [40]. A more geometric source of

sub-Laplacians is the analysis on sub-Riemannian manifolds, starting with CR manifolds

such as the unit sphere of the complex plane C2 or even of Cn for any n ≥ 2, and more

generally contact manifolds. Well-known contact manifolds of dimension three include

the Lie group SO(3) with two of its three canonical vector fields, as well as the motion

group R2
x,y×S1

θ with the vector fields X1 = cos θ∂x+sin θ∂y, and X2 = ∂θ. Sub-Laplacians

appear in many parts of sciences, in physics, biology, finance, etc., see [11].

A particular framework of sub-Riemannian and sub-elliptic settings is given by Carnot

groups; the latter are stratified nilpotent Lie groups G equipped with a basis X1, . . . , Xn1

for the first stratum g of the Lie algebra of G. Using the natural identification of g

with the space of left-invariant vector fields, the canonical sub-Laplacian is then L =

−X2
1 − . . .−X2

n1
. This is an important class of examples not only because this provides a

wealth of models and settings on which to test conjectures, but also more fundamentally,

as any Hörmander sum of squares can be lifted - at least theoretically [29, 46, 43] - to a

Carnot group. For instance, the Grushin operator LG on R2 described above can be lifted

to the sub-Laplacian LH1 = −X2
1 −X2

2 on the Heisenberg group H1; here the product on

H1 ∼ R3
x,y,t is given by

(x, y, t)(x′, y′, t′) =

(
x+ x′, y + y′, t+ t′ +

1

2
(xy′ − x′y)

)
,

and X1 = ∂x − y
2
∂t and X2 = ∂y + x

2
∂t.
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The examples given above infer that the analysis of sub-elliptic operators such as

Hörmander sums of squares is more non-commutative than in the elliptic case. Indeed,

the commutator of the vector fields Xj’s in our examples above usually produces terms

that cannot be neglected in any meaningful elliptic analysis, whereas in the elliptic case

the Xj’s can be chosen to yield local coordinates and therefore commute up to lower

order terms. This led to a difficult non-commutative analysis in the late 70’s and 80’s

around the ideas of lifting the nilpotent Lie group setting [29, 46, 43], and subsequently

in 80’s and 90’s using Euclidean micro-local tools as well [23, 47, 44]. At the same time,

sub-Riemannian geometry was emerging. Although many functional features are almost

identical to the Riemannian case [49], there are fundamental differences regarding e.g.

geodesics, charts or local coordinates, tangent spaces etc. see e.g. [10, 37, 42, 1].

The analysis of operators on classes of sub-Riemannian manifolds started with CR and

contact manifolds [29], followed by a calculus on Heisenberg manifolds [9, 45]. In 2010

[53], an index theorem was proved for sub-elliptic operators on contact manifolds. The

key idea was to adapt Connes’ tangent groupoid [17] from the Riemannian setting to the

sub-Riemannian’s. For contact manifolds, the Euclidean tangent space is then replaced

with the Heisenberg group. Since then, considerable progress has been achieved in the

study of spectral properties of sub-elliptic operators in these contexts (see e.g. [22]) with

the development of these groupoid techniques on filtered manifolds [53, 14, 54].

Few works on sub-elliptic operators followed the path opened by M. Taylor [52] at the

beginning of the 80’s, that is, to use the representation theory of the underlying groups

to tackle the non-commutativity. To the author’s knowledge, in the nilpotent case, they

are essentially [4, 28, 3] and, surprisingly, have appeared only in the past decade.

1.3. Aim and organisation of the paper. This paper describes the scientific journey

of the author and of her collaborator Clotilde Fermanian-Kammerer towards micro-local

and semi-classical analysis for sub-elliptic operators, especially on nilpotent Lie groups.

The starting point of the investigations was to define and study the analogues of micro-

local defect measures. As explained in Section 2, this has led to adopt the more general

view point and the vocabulary from C∗-algebras regarding states even in the Euclidean
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or elliptic case. The first results regarding micro-local defect measure and semi-classical

measures on nilpotent Lie groups are presented in Section 3, including applications and

future works.

1.4. Acknowledgement. The author is grateful to the Leverhulme Trust for their sup-

port via Research Project Grant 2020-037.

2. Quantum limits in Euclidean or elliptic settings

In this section, we discuss how micro-local defect measures and semi-classical measures

can be seen as quantum limits, that is, as states of C∗-algebras.

2.1. Micro-local defect measures. The notion of micro-local defect measure, also

called H-measure, emerged around 1990 independently in the works of P. Gérard [33]

and L. Tartar [50]. Their motivations came from PDEs, in relation to the div-curl lemma

and more generally to phenomena of compensated compactness. The following result

gives the existence of micro-local defect measures:

Theorem 2.1 ([33]). Let Ω be an open subset of Rn. Let (fj)j∈N be a bounded sequence in

L2(Ω, loc) converging weakly to 0. Then there exist a subsequence (jk)k∈N and a positive

Radon measure γ on Ω× Sn−1 such that the convergence

(Afj, fj)L2 −→j=jk,k→∞

∫
Ω×Sn−1

a0(x, ξ)dγ(x, ξ)

holds for all classical pseudo-differential operator A, a0 denoting its principal symbol.

Here, Sn−1 denotes the unit sphere in Rn. The classical pseudo-differential calculus

refers to all the Hörmander pseudo-differential operators of non-positive order, with sym-

bols admitting a homogeneous expansion and with integral kernel compactly supported

in Ω× Ω.

The measure γ in Theorem 2.1 is called a micro-local defect measure for (fj), or the

(pure) micro-local defect measure for (fjk). Examples of micro-local defect measures

include

• an L2-concentration in space fj(x) = jn/2χ(j(x − x0)) about a point x0 (here,

χ ∈ C∞c (Rn) is some given function), whose micro-local defect measure is γ(x, ξ) =
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δx0(x) ⊗ dχ(ξ)dσ(ξ), where σ is the uniform measure on Sn−1 (i.e. the standard

surface measure on the unit sphere) and dχ(ξ) :=
∫∞
r=0
|χ̂(rξ)|2rn−1dr ,

• an L2-concentration in oscillations fj(x) = ψ(x)e2iπjξ0·x about a frequency ξ0 ∈

Sn−1 (here, ψ is some given smooth function with compact support in Rn), whose

micro-local defect measure is γ(x, ξ) = |ψ(x)|2dx⊗ δξ0(ξ).

Theorem 2.1 extends readily to manifolds by replacing Ω × Sn−1 with the spherical

co-tangent bundle.

The introduction of this paper mentions the Quantum Ergodicity Theorem, see (1).

This is in fact the reduced version ‘in position’. A modern presentation of the full Quan-

tum Ergodicity Theorem can be expressed as saying that the Liouville measure dx⊗dσ(ξ)

is a micro-local defect measure of the sequence (ψj)j∈N0 , for which the subsequence (jk)

is of density one.

2.2. The viewpoint of quantum limits. The author’s definition of quantum limits is

a notion along the line of the following:

Definition 2.1. The quantum limit of a sequence (fj) of unit vectors in a Hilbert space

H is any accumulation point of the functional A 7→ (Afj, fj)H on a sub-C∗-algebra of

L (H).

One may still keep the vocabulary ‘quantum limits’ in slightly more general contexts.

For instance, one often encounters a subalgebra of L (H) that may need to be completed

into a C∗-algebra, possibly after quotienting by (a subspace of) the kernel of the mapping

A 7→ lim supj→∞ |(Afj, fj)H|. We may also consider a bounded family (fj) in H rather

than unit vectors, leaving the normalisation to be performed within the proofs of further

properties.

The applications we have in mind involve pseudo-differential calculi as subalgebras of

L (H) where the Hilbert space H is some L2-space. A quantum limit in this context will

often turn out to be a state (or a positive functional if the ‖fj‖H’s are only bounded) on a

space of symbols, hence a positive Radon measure in the commutative case. Indeed, from

functional analysis, we know that a bounded linear functional on the space of continuous
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functions on a (say) compact space is given by a Radon measure, and if the functional is

in addition positive, the measure will be positive as well.

Let us now explain how the viewpoint of quantum limits and states gives another proof

of Theorem 2.1 by first obtaining the following result:

Lemma 2.1. Let Ω be an open bounded subset of Rn. Let (fj)j∈N be a bounded sequence

in L2(Ω̄) converging weakly to 0 as j →∞. Then there exists a subsequence (jk)k∈N and

a positive Radon measure on Ω̄× Sn−1 such that

(Afj, fj)L2(Ω̄) −→j=jk,k→∞

∫
Ω̄×Sn−1

a0(x, ξ)dγ(x, ξ)

holds for all classical pseudo-differential operator A whose principal symbol a0 is x-supported

in Ω̄.

Sketch of the proof of Lemma 2.1. If lim supj→∞ ‖fj‖L2(Ω̄) = 0, then γ = 0. Hence, we

may assume that lim supj→∞ ‖fj‖L2(Ω̄) = 1. We consider the sequence of functionals

`j : A 7→ (Afj, fj)L2 on the algebra A0 of classical pseudo-differential operators A whose

symbols are x-supported in Ω̄.

The weak convergence of (fj) to zero means that limj→∞ `j(A) = 0 for every operator

A in

K = {compact operators in A0} ∼ {operators in A0 of order < 0},

by Rellich’s theorem.

The properties of the pseudo-differential calculus imply that a limit of (`j)j∈N is a state

on the closure of the quotient A0/K; we recognise the abelian C∗-algebra generated by

the principal symbols x-supported in Ω̄, that is, the space of continuous functions on

the compact space Ω̄ × Sn−1. Such a state is given by a positive Radon measure on

Ω̄× Sn−1. �

Let us now give the new proof of Theorem 2.1 announced above. Adopting the setting

of the statement, we find a sequence of open sets Ωk, k = 1, 2, . . . such that Ω̄k is a

compact subset of Ωk+1 and ∪k∈NΩk = Ω. Applying Lemma 2.1 to each Ωk together with

a diagonal extraction yield Theorem 2.1.
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The author and her collaborator Clotilde Fermanian Kammerer are forever indebted

to Professor Vladimir Georgescu for his enlightening explanations on the proof of the

existence of micro-local defect measures given above. Vladimir Georgescu’s comments

describe also the states of other C∗-algebras of operators bounded on L2 from profound

works by O. Cordes and his collaborators on Gelfand theory for pseudo-differential calculi

[18, 19, 20, 21, 51]. They also provide a framework which generalises the two original

proofs of the existence of H-measure / micro-local defect measures:

• L. Tartar’s approach [50] which uses operators of multiplication in position and

Fourier multipliers in frequencies, and

• P. Gérard’s [33] relying on properties of the classical pseudo-differential calculus,

especially the G̊arding inequality.

2.3. Semi-classical measures as quantum limits. The semi-classical calculus used

here is ‘basic’ in the sense that it is restricted to the setting of Rn and to operators Opε(a)

with a ∈ C∞c (Rn × Rn) for instance. Here Opε(a) = Op(aε) is ‘the’ pseudo-differential

operator with symbol aε(x, ξ) = a(x, εξ) via a chosen t-quantisation on Rn - for instance

the Weyl quantisation (t = 1/2) or the Kohn-Nirenberg quantisation (t = 0, also known

as PDE quantisation and often written as Op(a) = a(x,D)). More sophisticated semi-

classical calculi can be defined, for instance allowing the symbols a to depend on ε and

in the context of manifolds, see e.g. [57].

Semi-classical measures were introduced in the 90’s in works such as [34, 35, 36, 41]. In

this section, we show how the viewpoint of quantum limits gives a simple proof of their

existence as in the case of micro-local defect measures (see Section 2.2). With the Weyl

quantisation, the existence of semi-classical measures can be proved using graduate-level

functional analysis and the resulting measures are called Wigner measures. But our proof

below is independent of the chosen quantisation.

Theorem 2.2. Let (fε)ε>0 be a bounded family in L2(Rn). Then there exists a sequence

εk, k ∈ N with εk → 0 as k →∞, and a positive Radon measure γ on Rn ×Rn such that

∀a ∈ C∞c (Rn × Rn) (Opε(a)fε, fε)L2 −→ε=εk,k→∞

∫
Rn×Rn

a(x, ξ)dγ(x, ξ).
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Sketch of the proof of Theorem 2.2. We may assume lim supε→0 ‖fε‖L2 = 1. We set `ε(a) :=

(Opε(a)fε, fε)L2 . For each a ∈ C∞c (Rn × Rn), `ε(a) is bounded so its limits exist as

ε→ 0. A diagonal extraction and the separability of C∞c (Rn ×Rn) yield the existence of

` = limk→∞ `εk on C∞c (Rn × Rn). From the properties of the semi-classical calculus, one

checks that ` extends to a state of the commutative C∗-algebra C∞c (Rn × Rn), hence a

positive Radon measure on Rn × Rn. �

The semi-classical analogues of the examples of micro-local defect measures are:

• an L2-concentration in space fε(x) = ε−n/2χ(x−x0
ε

) about a point x0 (again, χ ∈

C∞c (Rn) is some given function), whose semi-classical measure is γ(x, ξ) = δx0(x)⊗

|χ̂(ξ)|2dξ,

• an L2-concentration in oscillations fε(x) = ψ(x)e2iπξ0·x/ε about a frequency ξ0 ∈ Rn

(again, ψ ∈ C∞c (Rn) is some given function), whose semi-classical measure is

γ = |ψ(x)|2dx⊗ δξ0(ξ).

2.4. Applications. Let us give an application of quantum limits to semi-classical analysis

already mentioned in the introduction in the form of the following result taken from [26,

Appendix A]. This is an elementary version of properties that hold in more general settings

and for more general Hamiltonians, including integrable systems (see [2, 13]).

Proposition 2.1. Let (ψε0)ε>0 be a bounded family in L2(Rn) and the associated solutions

to the Schrödinger equation,

iετ∂tψ
ε = −ε

2

2
∆ψε, ψε|t=0 = ψε0.

where ∆ = −
∑

1≤j≤n ∂
2
xj

is the standard Laplace operator on Rn. We assume that the

oscillations of the initial data are exactly of size 1/ε in the sense that we have:

∃s, Cs > 0, ∀ε > 0 εs‖∆s/2ψε0‖L2(Rn) + ε−s‖∆−s/2ψε0‖L2(Rn) ≤ Cs.

Any limit point of the measures |ψε(t, x)|2 dxdt as ε → 0 is of the form %t(x)dt where %t

is a measure on Rn satisfying:

(1) ∂t%t = 0 for τ ∈ (0, 1),

(2) %t(x) =
∫
Rn γ0(x− tξ, dξ) for τ = 1,
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(3) %t = 0 for τ > 1.

Proof. Using for instance the notion of quantum limits, we obtain time-dependent semi-

classical measures in the sense of the existence of a subsequence (εk) and of a continuous

map t 7→ γt from R to the space of positive Radon measures such that∫
R
θ(t) (Opε(a)fε, fε)L2 −→ε=εk,k→∞

∫∫
R×R2n

θ(t) a(x, ξ) dγt(x, ξ)dt,

for any θ ∈ C∞c (R) and a ∈ C∞c (R2n). Now, up to a further extraction of a subsequence,

we obtain using the Schrödinger equation:

(1) for τ ∈ (0, 1), γt(x, ξ) = γ0(x, ξ) for all times t ∈ R,

(2) for τ = 1, ∂tγt(x, ξ) = ξ · ∇xγt(x, ξ) in the sense of distributions,

(3) for τ > 1, γt = 0 for all times t ∈ R.

Taking the x-marginals of the measures γt gives the measures described in the statement.

�

The usual Schrödinger equation corresponds to τ = 1, as in the introduction of this

paper. In this case, the description of the semi-classical measure above provides the link

between the quantum world and the classical one: γt is the composition of γ0 with the

Hamiltonian flow from classical mechanics.

3. Pseudo-differential theory and quantum limits on nilpotent Lie

groups

In this section, we will present the works [24, 25, 26] of Clotilde Fermanian-Kammerer

and the author about quantum limits on nilpotent Lie groups. We will only describe

briefly the setting and the notation, referring the interested reader to the literature for

all the technical details. We will end with a word on future developments.

3.1. Preliminaries on nilpotent Lie groups. Let us consider a nilpotent Lie group G;

we will always assume that nilpotent Lie groups are connected and simply connected. If

we fix a basis X1, . . . , Xn of its Lie algebra g, via the exponential mapping expG : g→ G,

we identify the points (x1, . . . , xn) ∈ Rn with the points x = expG(x1X1 + · · · + xnXn)

in G. This also leads to a corresponding Lebesgue measure on g and the Haar measure dx
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on the group G, hence Lp(G) ∼= Lp(Rn) and we allow ourselves to denote by C∞c (G), S(G)

etc, the spaces of continuous functions, of smooth and compactly supported functions or

of Schwartz functions on G identified with Rn, and similarly for distributions.

The group convolution of two functions f1 and f2, for instance square integrable, is

defined via

(f1 ∗ f2)(x) :=

∫
G

f1(y)f2(y−1x)dy.

The convolution is not commutative: in general, f1 ∗ f2 6= f2 ∗ f1.

A vector of g defines a left-invariant vector field on G and, more generally, the universal

enveloping Lie algebra U(g) of g is isomorphic to the space of the left-invariant differential

operators; we keep the same notation for the vectors and the corresponding operators.

Let π be a representation of G. Unless otherwise stated, we always assume that such

a representation π is strongly continuous and unitary, and acts on a separable Hilbert

space denoted by Hπ. Furthermore, we keep the same notation for the corresponding

infinitesimal representation which acts on U(g) and on the space H∞π of smooth vectors.

It is characterised by its action on g

π(X) = ∂t=0π(etX), X ∈ g.

We define the group Fourier transform of a function f ∈ L1(G) at π by

π(f) ≡ f̂(π) ≡ FG(f)(π) =

∫
G

f(x)π(x)∗dx.

We denote by Ĝ the unitary dual of G, that is, the unitary irreducible representations of

G modulo equivalence and identify a unitary irreducible representation with its class in Ĝ.

The set Ĝ is naturally equipped with a structure of standard Borel space. The Plancherel

measure is the unique positive Borel measure µ on Ĝ such that for any f ∈ Cc(G), we

have:

(2)

∫
G

|f(x)|2dx =

∫
Ĝ

‖FG(f)(π)‖2
HS(Hπ)dµ(π).

Here ‖ · ‖HS(Hπ) denotes the Hilbert-Schmidt norm on Hπ. This implies that the group

Fourier transform extends unitarily from L1(G)∩L2(G) to L2(G) onto L2(Ĝ) :=
∫
Ĝ
Hπ⊗

H∗πdµ(π) which we identify with the space of µ-square integrable fields on Ĝ.
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A symbol is a measurable field of operators σ(x, π) : H∞π → H∞π , parametrised by x ∈ G

and π ∈ Ĝ. We formally associate to σ the operator Op(σ) as follows

Op(σ)f(x) :=

∫
G

Tr
(
π(x)σ(x, π)f̂(π)

)
dµ(π),

where f ∈ S(G) and x ∈ G. If G is the abelian group Rn, this corresponds to the

Kohn-Nirenberg quantisation.

Regarding symbols, when no confusion is possible, we will allow ourselves some no-

tational shortcuts, for instance writing σ(x, π) when considering the field of operators

{σ(x, π) : H∞π → H∞π , (x, π) ∈ G × Ĝ} with the usual identifications for π ∈ Ĝ and

µ-measurability.

This quantisation has already been observed in [52, 4, 28] for instance. It can be

viewed as an analogue of the Kohn-Nirenberg quantisation since the inverse formula can

be written as

f(x) :=

∫
G

Tr
(
π(x)f̂(π)

)
dµ(π), f ∈ S(G), x ∈ G.

This also shows that the operator associated with the symbol I = {IHπ , (x, π) ∈ G × Ĝ}

is the identity operator Op(I) = I.

Note that (formally or whenever it makes sense), if we denote the (right convolution)

kernel of Op(σ) by κx, that is,

Op(σ)φ(x) = φ ∗ κx, x ∈ G, φ ∈ S(G),

then it is given by

π(κx) = σ(x, π).

Moreover the integral kernel of Op(σ) is

K(x, y) = κx(y
−1x), where Op(σ)φ(x) =

∫
G

K(x, y)φ(y)dy.

We shall abuse the vocabulary and call κx the kernel of σ, and K its integral kernel.

3.2. Pseudo-differential calculi on graded nilpotent Lie groups.



TOWARDS SEMI-CLASSICAL ANALYSIS FOR SUB-ELLIPTIC OPERATORS 43

3.2.1. Preliminaries on graded groups. Graded groups are connected and simply con-

nected Lie group whose Lie algebra g admits an N-gradation g = ⊕∞`=1g` where the

g`, ` = 1, 2, . . ., are vector subspaces of g, almost all equal to {0}, and satisfying

[g`, g`′ ] ⊂ g`+`′ for any `, `′ ∈ N. These groups are nilpotent. Examples of such groups

are the Heisenberg group and, more generally, all stratified groups (which by definition

correspond to the case g1 generating the full Lie algebra g); with a choice of basis or of

scalar product on g1, the latter are called Carnot groups.

Graded groups are homogeneous in the sense of Folland-Stein [30] when equipped with

the dilations given by the linear mappings Dr : g → g, DrX = r`X for every X ∈ g`,

` ∈ N. We may re-write the set of integers ` ∈ N such that g` 6= {0} into the increasing

sequence of positive integers υ1, . . . , υn counted with multiplicity, the multiplicity of g`

being its dimension. In this way, the integers υ1, . . . , υn become the weights of the dilations

and we have DrXj = rυjXj, j = 1, . . . , n, on a basis X1, . . . , Xn of g adapted to the

gradation.

We denote the corresponding dilations on the group via

rx = exp(DrX), for x = exp(X) ∈ G.

This leads to homogeneous notions for functions, distributions and operators. For in-

stance, the homogeneous dimension of G is the homogeneity of the Haar measure, that

is, Q :=
∑

`∈N ` dim g`; and the differential operator Xα is homogeneous of degree [α] :=∑
j υjαj.

3.2.2. The symbolic pseudo-differential calculus on G. In the monograph [28], the (Fréchet)

space Sm(G) of symbols of degree m ∈ R on G is defined and the properties of the corre-

sponding space of operators Ψm(G) = Op(Sm(G)) are studied. Naturally, when G is the

abelian group R, the classes of symbols and of operators are the ones due to Hörmander.

In the monograph, it is proved that Ψ∗(G) := ∪m∈RΨm(G) is a symbolic pseudo-

differential calculus in the following sense:

• Ψ∗(G) is an algebra of operators, with an asymptotic formula for Op(σ1)Op(σ2) =

Op(σ).
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• Ψm(G) is adjoint-stable, i.e. Op(σ)∗ = Op(τ) ∈ Ψm(G) when σ ∈ Sm(G), with an

asymptotic formula for τ .

• Ψ∗(G) contains the left-invariant differential calculus as Xα ∈ Ψ[α](G).

• Ψ∗(G) contains the spectral calculus of the positive Rockland operators. Note that

in the context of graded groups, the positive Rockland operators are the analogues

of the elliptic operators

• Ψ∗(G) acts continuously on the Sobolev spaces adapted to the graded groups with

Ψm(G) 3 T : Lps(G) ↪→ Lps−m(G).

3.2.3. The classical pseudo-differential calculus on G. Part of the paper [25] is devoted

to defining the notions of homogeneous symbols and of classes Ṡm(G) of homogeneous

symbols of degree m. Indeed, the dilations on the group G induce an action of R+ on the

dual Ĝ via

(3) r · π(x) = π(rx), π ∈ Ĝ, r > 0, x ∈ G.

The homogeneous symbols are then measurable fields of operators on G× Σ1 where

Σ1 := (Ĝ/R+) \ {1Ĝ}.

is the analogue of the sphere on the Fourier side in the Euclidean case.

This then allows us to consider symbols admitting a homogeneous expansion. The space

of operators in Ψm(G) which admits a homogeneous expansion and whose integral kernel is

compactly supported is denoted by Ψm
cl (G). It is proved that Ψ∗cl(G) := ∪m∈RΨm

cl (G) is also

a symbolic pseudo-differential calculus in the same sense as in Section 3.2.2. Furthermore,

there is a natural notion of principal symbol associated to a symbol; the principal symbol

is homogeneous by construction.

Again, when G is the abelian group Rn, this calculus is the well-known classical pseudo-

differential calculus, and the notion of principal symbol is the usual one.

We set Ψ≤0
cl (G) := ∪m≤0Ψm

cl (G). Depending on the context, the classical pseudo-

differential calculus on G may refer to the space of operators of any order in Ψ∗cl(G)

or to the space of operators of non-positive orders Ψ≤0
cl (G).
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3.2.4. The semi-classical pseudo-differential calculus on G. The semi-classical pseudodif-

ferential calculus was presented in the context of groups of Heisenberg type in [26], but

in fact extends readily to any graded group G.

We consider the class of symbols A0 of fields of operators defined on G× Ĝ

σ(x, π) ∈ L(Hπ), (x, π) ∈ G× Ĝ,

that are of the form

σ(x, π) = FGκx(π),

where κx(y) is smooth and compactly supported in x while being Schwartz in y; more

technically, the map x 7→ κx is in C∞c (G : S(G)). The group Fourier transform yields a

bijection from C∞c (G : S(G)) onto A0, and we equip A0 with the Fréchet topology so that

this mapping is an isomorphism of topological vector spaces.

Let ε ∈ (0, 1] be a small parameter. For every symbol σ ∈ A0, we consider the dilated

symbol obtained using the action of R+ on Ĝ, see (3),

σ(ε) := {σ(x, ε · π) : (x, π) ∈ G× Ĝ},

and then the associated operator

Opε(σ) := Op(σ(ε)).

As in the case of Rn (see Section 2.3), this yields a (basic) semi-classical calculus in the

following sense:

• Each operator Opε(σ), σ ∈ A0, is bounded on L2(G) with

‖Opε(σ)‖L (L2(G)) ≤ ‖σ‖A0 :=

∫
G

sup
x∈G
|κx(y)|dy,

where κx is the kernel of σ; ‖ · ‖A0 defines a continuous semi-norm on A0.

• The singularities of the operators concentrate around the diagonal of the integral

kernels as ε→ 0:

∀N ∈ N ∃CN > 0 ∀ε ∈ (0, 1], σ ∈ A0 ‖σ −FG (κxχ(ε ·)) ‖A0 ≤ CεN

where χ ∈ C∞c (G) is a fixed function identically equal to 1 on a neighbourhood of

0.



46 V. FISCHER

• There is a calculus in the sense of expansions in powers of ε in L (L2(G)) for

products Op(ε)(σ1)Op(ε)(σ2) and for adjoints Op(ε)(σ)∗; here σ1, σ2, σ ∈ A0.

3.3. Operator-valued measures. In Section 2, we explained why quantum limits in

Euclidean or elliptic settings are often described with positive Radon measures on the

spaces of symbols as these spaces are then commutative C∗-algebras. In the context of

nilpotent Lie groups, the symbols are operator-valued, and we will see below that our

examples of quantum limits will then be described in terms of operator-valued measures

as introduced in [24, 25]. Let us recall the precise definition of this notion:

Definition 3.1. Let Z be a complete separable metric space, and let ξ 7→ Hξ be a mea-

surable field of complex Hilbert spaces of Z.

• The set M̃ov(Z, (Hξ)ξ∈Z) is the set of pairs (γ,Γ) where γ is a positive Radon

measure on Z and Γ = {Γ(ξ) ∈ L(Hξ) : ξ ∈ Z} is a measurable field of trace-class

operators such that

‖Γdγ‖M :=

∫
Z

TrHξ |Γ(ξ)|dγ(ξ) <∞.

Here TrHξ |Γ(ξ)| denotes the standard trace of the trace-class operator |Γ(ξ)| on the

separable Hilbert space Hξ.

• Two pairs (γ,Γ) and (γ′,Γ′) in M̃ov(Z, (Hξ)ξ∈Z) are equivalent when there exists

a measurable function f : Z → C \ {0} such that

dγ′(ξ) = f(ξ)dγ(ξ) and Γ′(ξ) =
1

f(ξ)
Γ(ξ)

for γ-almost every ξ ∈ Z. The equivalence class of (γ,Γ) is denoted by Γdγ, and

the resulting quotient set is denoted by Mov(Z, (Hξ)ξ∈Z).

• A pair (γ,Γ) in M̃ov(Z, (Hξ)ξ∈Z) is positive when Γ(ξ) ≥ 0 for γ-almost all ξ ∈ Z.

In this case, we may write (γ,Γ) ∈ M̃+
ov(Z, (Hξ)ξ∈Z), and Γdγ ≥ 0 for Γdγ ∈

M+
ov(Z, (Hξ)ξ∈Z).

By convention and if not otherwise specified, a representative of the class Γdγ is chosen

such that TrHξΓ = 1. In particular, if Hξ is 1-dimensional, Γ = 1 and Γdγ reduces to the
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measure dγ. One checks readily that Mov(Z, (Hξ)ξ∈Z) equipped with the norm ‖ · ‖M is

a Banach space.

When the field of Hilbert spaces is clear from the setting, we may write

Mov(Z) =M(Z, (Hξ)ξ∈Z), and M+
ov(Z) =M+(Z, (Hξ)ξ∈Z),

for short. For instance, if ξ 7→ Hξ is given by Hξ = C for all ξ, then M(Z) coincides

with the space of finite Radon measures on Z. Another example is when Z is of the form

Z = Z1 × Ĝ where Z1 is a complete separable metric space, and H(z1,π) = Hπ, where the

Hilbert space Hπ is associated with the representation π ∈ Ĝ.

3.4. Micro-local defect measures on graded Lie groups. In [25], the following ana-

logue to Theorem 2.1 is proved in the setting of graded groups. It uses the classical

pseudo-differential calculus and the sphere Σ1 of the dual as mentioned in Section 3.2.3

and the notion of operator-valued measure (see Definition 3.1).

Theorem 3.1. Let Ω be an open subset of G. Let (fj)j∈N be a bounded sequence in

L2(Ω, loc) converging weakly to 0. Then there exists a subsequence (jk)k∈N and an operator-

valued measure Γdγ ∈M+
ov(G× Σ1) such that

(Afj, fj)L2 −→j=jk,k→∞

∫
Ω×Σ1

Tr (σ0(x, π̇) Γ(x, π̇)) dγ(x, π̇) ,

holds for all classical pseudo-differential operator A ∈ Ψ≤0
cl (G), σ0 denoting its principal

symbol.

The proof of Theorem 3.1 given in [25] follows the same ideas as the ones presented in

Section 2.2 with the adaptations that come from dealing with a more non-commutative

C∗-algebra of symbols.

Examples of micro-local defect measures developed in [25] include

• an L2-concentration in space,

• an L2-concentration in oscillations using matrix coefficients of representations.

An application to compensated compactness is also deduced. It would be interesting to

relate this to the works by B. Franchi and his collaborators [7, 8, 31, 32] on compensated

compactness on the Heisenberg group.
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3.5. Semi-classical measures on graded Lie groups. In [24], the semi-classical anal-

ysis developed on G yields the same property of existence of (group) semi-classical mea-

sures:

Theorem 3.2. Let (fε)ε>0 be a bounded family in L2(G). Then there exists a sequence

εk, k ∈ N with εk → 0 as k → ∞, and an operator-valued measure Γdγ ∈ M+
ov(G × Ĝ)

satisfying

∀σ ∈ A0 (Opε(σ)fε, fε)L2 −→ε=εk,k→∞

∫
Ω×Ĝ

Tr (σ(x, π) Γ(x, π)) dγ(x, π).

The (group) semi-classical analogues of the (group) micro-local defect measures for an

L2-concentration in space and an L2-concentration in oscillations is also given in [24] in

the context of the groups of Heisenberg type; naturally, the former holds on any graded

group.

In [26], we prove an analogue of the application given in Section 2.4 but for the sub-

Laplacian on any group of Heisenberg type. We obtain a description of the t-dependent

group semi-classical measures corresponding to the solutions to the Schrödinger equations,

and therefore of their weak limits after taking the x-marginals. However, there is not one

threshold τ = 1 as in the Euclidean case, but two. More precisely, the semi-classical

measures and the weak limits can be written into two parts:

• one with a Euclidean behaviour and threshold τ = 1, and

• one with threshold τ = 2.

With our methods, this comes from the splitting of the unitary dual Ĝ into the following

two subsets:

• the subsets of infinite dimensional representations (for instance realised as the

Scrödinger representations), and

• the subset of finite dimensional representations, in fact of dimension one and given

by the (abelian or Euclidean) characters of the first stratum.

This splitting is also present in other works that do not involve representation theory; see

for instance [12] about the Grushin-Schrödinger equation and [56, 16] about sublaplacians
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on contact manifolds. In fact, this phenomenon of slower dispersion than in Euclidean

settings has already been observed for other sub-Riemannian PDEs, see e.g. [6, 39, 5].

3.6. Future works. The tools developed so far in [24, 25, 26] can be adapted to (graded)

nilmanifolds along the lines of [27]. Nilmanifolds are quotients of nilpotent Lie groups by

a discrete subgroup. When the subgroup is also co-compact, this results in a compact

manifold which is locally given by the group. This provides an excellent setting for the

applications to PDEs of the theory developed in [24, 25, 26] .

The extension to sub-Riemannian manifolds will certainly be more difficult. However,

given the recent progress in groupoids on filtered manifolds [53, 14, 54], the author feels

confident that the semi-classical and micro-local analysis already developed on graded

groups will be transferable to the setting of equiregular sub-Riemannian manifolds in the

near future.
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