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Abstract. The purpose of this Note is to present and discuss some mathematical re-

sults concerning a compartmental model for the synergistic interplay of Amyloid beta

and tau proteins in the onset and progression of Alzheimer’s disease. We model the pos-

sible mechanisms of interaction between the two proteins by a system of Smoluchowski

equations for the Amyloid beta concentration, an evolution equation for the dynamics

of misfolded tau and a kinetic-type transport equation for a function taking into accout

the degree of malfunctioning of neurons. We provide a well-posedness results for our sys-

tem of equations. This work extends results obtained in collaboration with M.Bertsch,

B.Franchi and A.Tosin.

Sunto. Lo scopo di questa Nota é di presentare e discutere alcuni risultati matematici

riguardanti un modello compartimentale per l’interazione sinergistica delle proteine beta

amiloide e tau nella nascita e progressione della malattia di Alzeimer. Modelliamo i

possibili meccanismi di interazione tra le due proteine attraverso un sistema di equazioni

di Smoluchowski per la concentrazione di beta amiloide, un’ equazione di evoluzione

per la dinamica della proteina tau ed una equazione di trasporto di tipo cinetico per

una funzione che tiene conto del grado di malfunzionamento dei neuroni. Viene dato

un risultato di buon posizionamento per il sistema di equazioni. Questo lavoro estende

risultati ottenuti in collaborazione con M.Bertsch, B.Franchi e A.Tosin.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease extremely diffused

nowadays: it is estimated that approximately 44 million people worldwide live with AD

or a related form of dementia [21]. The disease is devastating for those affected, their

families and the entire society, indeed the social and economic implications in terms of

direct medical and social care costs, and the costs of informal care, are substantial.

To date, not only there is no cure available, but it has not even been possible to

slow down the progression of the disease in a satisfactory way, probably because the

mechanisms of onset and progression of AD are still quite obscure.

Until about ten years ago, the most accepted hypothesis on the onset of AD was the so-

called amyloid cascade hypothesis, see [18]. Beta-amyloid is a protein naturally produced

by healthy neurons, and constantly cleared by several mechanisms. According to the

amyloid cascade hypothesis, it was assumed that the progression of AD was associated

with the presence of soluble toxic oligomers of beta-amyloid that, due to some failure in

the clearance mechanisms or overproduction (for example by a change in the metabolism),

aggregate to give rise to plaques, ultimately resulting in a large quantity of highly toxic Aβ

polymers. In recent years, however, the scientific community has changed this perspective

and now it is generally accepted that two proteins, beta amyloid and tau, play a key role in

the onset and progression of the disease, see for example [13]. Protein τ is a microtubule-

associated protein with the main function to assemble microtubules and regulate motor-

driven axonal transport. In patients suffering of AD it has been observed misfolded τ in

form of neurofribrillary tangles. Misfolding compromises microtubule stabilization, axonal

transport and in general interferes with neuronal functions. The precise role of Aβ and

τ in AD onset and progression is still not well understood, but in the literature various

synergetic actions of the two proteins were suggested. For a recent exhaustive review we

refer to [9]. Up to date Aβ and τ remain the major therapeutic targets for the treatment

of the disease, and their interplay seems more and more crucial when developing new

therapies: this is also one of the main issues behind the current debate on the perspectives

of the use of aducanumab [17]). Due to these uncertainties, a lot of current biomedical
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research focuses on the interactions of the two proteins also in the perspective of the

production of new effective drugs. In this context, flexible mathematical models may give

significant contributions, for example by testing different clinical hypotheses.

The principal purpose of this note is to present and investigate a simplified scheme of

interaction between Aβ and τ in AD, as proposed for instance in [13] and in [9], by means

of a compartmental model expressed in terms of integro-differential equations [4, 8].

In Section 2 we present the model. There are three principal mechanisms we consider

relevant for the evolution of the disease: i) diffusion and agglomeration of soluble Amy-

loid beta protein, ii) effects of misfolded tau protein and iii) neuron-to-neuron prion-like

transmission of the disease. We model the above mentioned processes by a system of

(compartmental) Smoluchowski equations for the Amyloid beta concentration, an evolu-

tion equation for the dynamics of misfolded tau and a kinetic-type transport equation for

the density function (that turns out to be a probability measure) of the degree of mal-

functioning of neurons . We therefore obtain an integro-differential systems of equations,

that we try to descibe in reasonable detail.

In Section 3 we provide the main result: the well-posedness of our system of equa-

tions. This is obtained basically as follows: our integro-differential system is shown to be

equivalent to another integro-differential system formulated in terms of characteristics.

Technically the situation is a bit complicated as we are working with measures, and we

have to transport a measure along the characteristics. Then we prove a local existence

result for the system with the characteristics, essentially using a Banach-Caccioppoli fixed

point argument, slightly adapted to the present setting. The local solution thus obtained

can be extended globally, and we finally get the global solution of the original system

through the equivalence of the two systems. Since several proofs are quite technical, we

give here a sort of sketch by steps of some of them, and we refer to [7] for the details.

Notice that in [7] the τ protein is not considered, however the technical details are very

similar.
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2. Description of the model

We identify a portion of the brain by a bounded set Ω in R3. Each point in space is

denoted by x. Concerning time, we need two different time scales to describe the evolution

of the disease: a rapid time scale denoted by s, with unit time coinciding with hours, for

the diffusion and agglomeration of Aβ [14]; and a slow time scale denoted by t, with

unit time coinciding with several months, for the progression of AD. Introducing a small

constant 0 < ε << 1, the relationship between the slow time variable t and the fast one

s can be expressed as follows:

(1) s :=
t

ε
.

Given a point x ∈ Ω and a time t > 0, we denote with w(x, t) the density of intracellular

misfolded τ protein, with u1(x, t) the density of Aβ monomers, with u2(x, t) the density

of Aβ soluble oligomers, which are regarded collectively as a single compartment, and

with u3(x, t) the density of Aβ senile plaques (sometimes called fibrils), also regarded as

a single compartment. The quantity f takes into account, in an appropriate sense that

will be discussed later, the “health state” of the brain.

The compartmental model we present here is given by the following system of integro-

differential equations:

(2a)

(2b)

(2c)

(2d)

(2e)



∂tf + ∂a(fv[f ]) = J [f ] in Ω× [0, 1]× (0, T ]

ε∂tu1 − d1∆u1 = −αu1

3∑
j=1

uj + F [f ]− σ1u1 in QT = Ω× (0, T ]

ε∂tu2 − d2∆u2 =
α

2
u2

1 − αu2

3∑
j=1

uj − σ2u2 in QT

ε∂tu3 =
α

2

∑
3≤j+k<6

ujuk in QT

∂tw = Cw(u2 − Uw)+ +

∫
Ω

hw(|y − x|)w(y, t) dy +H(x) in QT ,

The coefficient ε appears obviously in front of the time derivatives of the fast variables

u1, u2 and u3, which are coupled with the slowly changing variables f and w explicitly
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(equation (2e)) and through the term v[f ]. Such term will be described precisely below;

for the moment we keep in mind that it corresponds to the velocity of spreading of the

disease, and therefore contains the toxic action of both Aβ and misfolded τ proteins.

Equation (2a) is a kinetic-type equation which describes the progression of the disease.

Roughly speaking, f = f(x, a, t) is the probability density of the number of neurons

located in x ∈ Ω at time t > 0, with degree of malfunctioning a ∈ [0, 1], and is such

that f(x, a, t) da represents the number of neurons in x which at time t have a degree

of malfunctioning comprised between a and a + da (i.e. it is the local percentage of

neuronal mass at time t with degree of malfunctioning between a and a + da). For a

precise mathematical formulation of f in terms of probability measures, see [7]. In fact,

in Section 3 we shall replace the absolute continuous measure f(x, a, t) da with a generic

probability measure dfx,t(a). We assume that a close to 0 stands for “the neuron is

healthy” whereas a close to 1 stands for “the neuron is dead”.

Equations (2b), (2c), (2d) describe the dynamics of Aβ. Here

(1) u1(x, t) is the density of monomers in the point x ∈ Ω at time t > 0;

(2) u2(x, t) is the cumulative density of soluble oligomers, which are regarded collec-

tively as a single compartment;

(3) u3(x, t) is the density of senile plaques, also considered as a single compartment.

We include in this compartment all the combinations of monomers and oligomers

producing Aβ entities other than those comprised in the compartments 1 and 2.

Therefore (2c) and (2d) are compartmental Smoluchowski-type equations with diffusion,

agglomeration and clearence. A classical reference for Smoluchowski equations is [20, 10].

Originally, these equations were introduced for the study of the aerosols; applications of

Smoluchowski system to the description of the agglomeration of Aβ amyloid appeared for

the first time in [15], and subsequently in [1, 3, 6, 5]. Such a compartmental model (see also

[4]), which in particular does not distinguish the densities of the soluble oligomers based

on their length, is justified by the fact that, according to the literature, there is no clinical

evidence on the maximum length of toxic Aβ oligomers [11]. Notice that equation (2d) for

the concentration of fibrils u3 does not feature a diffusion term since fibrils are assumed

not to move. Finally, consistently with the compartmental nature of the model, we take
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the coagulation parameters constant and equal to α > 0, neglecting the fact that they

may feature a dependence on the specific lengths of the aggregating oligomers, see [3].

Since senile plaques were also found in “healthy brains”, we have chosen to take α > 0

and introduced in (3) the modelling hypothesis that there is a positive threshold U for

the density of oligomers below which toxic effects do not occur. Given the complexity

of the fluid flow in the parenchima, in the present paper we have chosen to assume that

the diffusion of Aβ simply isotropic, while the terms −σ1u1 in (2b) and −σ2u2 in (2c)

are meant to keep into account several clearance phenomena, mainly due to phagocytic

activity of the microglia. We are fully aware of the oversimplification of these choices, but

we have preferred to focus on the possible interaction between Aβ and τ .

Equation (2e) is the equation for the density w(x, t) of misfolded τ protein. The first

right-hand-side term takes into account the potential triggering effect of Aβ olygomers

on the misfolding process for τ . It is known that Aβ-plaques proximal to neuronal cell

bodies can instigate τ -pathology [16, 18, 13]. However, there is no current evidence that

τ influences Aβ-pathology in humans [18]. Due to these considerations, we propose an

explicit modelling hypothesis in our model: some minimal level of Aβ-aggregation is

required to initiate τ -pathology. This assumption is contained in the term Cw(u2 − Uw)+

in (2e), with Cw > 0 a proportionality constant. It is a built-in feature of our model that in

equation (2e) the evolution of misfolded τ is only due to the toxic effect of Aβ. The second

term describes the prion-like non-local spreading of the misfolded τ in possibly distant

points of the brain according to the spatial kernel hw. We assume that the dynamics

of τ take place on the slow time scale t. In the absence of precise indications from the

biomedical literature, this choice seems reasonable in view of the fact that τ is especially

involved in the progression of the disease rather than in the Aβ agglomeration and the

consequent formation of senile plaques. The term H represents a non-negative source

term for w.

The progression of AD occurs on the slow time scale t, over decades, and is determined

by the deterioration rate v[f ] = v[f ](x, a, t), for which we assume the following form:

(3) v[f ](x, a, t) = CG

∫ 1

0

(b−a)+f(x, b, t) db+CS(1−a)
(
u2(x, t)− U

)+
+CW(1−a)w(x, t).
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The integral term describes the propagation of AD among close neurons, while the sec-

ond term models the action of toxic Aβ oligomers. The threshold U > 0 indicates the

minimal amount of toxic Aβ needed to damage neurons. The third term accounts for the

toxicity of misfolded τ : it assumes that it is proportional to the concentration w through

a proportionality constant CW > 0 and that it is modulated by the current degree of

malfunctioning of the neurons. To stress the fact that the space variable x plays merely

the role of a parameter, we shall also write vx = vx(a, t) := v[f ](x, a, t). Moreover, for

sake of simplicity we will occasionally write (3) as

(4) vx(a, t) =

∫
[0,1]

Gx(a, b) f(x, b, t)db+ S(x, a, u2(x, t), w(x, t)).

The term J [f ] = J [f ](x, a, t) on the right-hand side of (2a) describes the possible onset

of AD in random locations of the domain Ω as a result of a microscopic stochastic jump

process. The latter takes into account the possibility that the degree of malfunctioning of

neurons randomly jumps to higher values due to external agents or genetic factors. The

explicit expression of this term is

(5) J [f ](x, a, t) = η(t)χ(x, t)

(∫ 1

0

P (t, x, a∗ → a)f(x, a∗, t) da∗ − f(x, a, t)

)
,

where P (t, x, a∗ → a) denotes the probability that the degree of malfunctioning of neurons

in the point x ∈ Ω jumps at time t > 0 from a∗ to a > a∗. The coefficient η > 0 is the

jump rate, while for an explicit form of P see [7]. It is worth stressing that (2a), together

with the detailed expressions (3), (5) of the terms v[f ], J [f ], may be obtained from a

mesoscopic description of a microscopic model of neuron-to-neuron interactions as shown

in [6].

To conclude the presentation of the model, we mention that the term F [f ] = F [f ](x, a, t)

in (2b) describes the production of Aβ monomers by neurons, taking into account that,

up to a certain extent, damaged neurons increase such a production. In view of these

considerations, we choose

(6) F [f ](x, t) = CF

∫ 1

0

(µ0 + a)(1− a)f(x, a, t) da.
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Here, the small constant µ0 > 0 accounts for Aβ production by healthy neurons while

the factor 1− a expresses the fact that dead neurons do not produce amyloid. As usual,

CF > 0 is a proportionality constant.

3. Results

3.1. Initial and boundary conditions. Concerning boundary conditions, we assume

that ∂Ω is formed by two smooth disjoint sets, ∂Ω0 and ∂Ω1, where ∂Ω0 is the outer bound-

ary, delimiting the considered portion of cerebral tissue, and ∂Ω1 is the inner boundary

delimiting the cerebral ventricles. On ∂Ω0 we prescribe classical no-flux conditions for

the concentrations of soluble Aβ oligomers. On ∂Ω1 we prescribe a Robin type condition

for the concentrations of the Aβ oligomers in order to take into account their removal by

the cerebrospinal fluid through the choroid plexus [12, 19]. We have then:

(7)

∇ui · n = 0 on ∂Ω0, i = 1, 2

∇ui · n = −βui on ∂Ω1, i = 1, 2,

where β > 0 is a proportionality parameter and n the outward normal unit vector to ∂Ω.

The choice of the right-hand side of the above Robin condition is a simple one, due to the

lack of experimental data.

We complement system (2a)–(2e) with a proper set of initial conditions:

(8) f(x, a, 0) = f0(x, a), ui(x, 0) = u0,i(x) (i = 1, 2, 3), w(x, 0) = 0,

where the condition on w is taking into account that for t = 0 the brain is healthy and

therefore there is no misfolded τ .

3.2. Hypotheses on the data.

Definition 3.1. The space P([0, 1]) of probability measures on [0, 1] endowed with the

Wasserstein distance W1 is denoted by X[0,1].

We will use the following assumptions on the data (below ∂a, ∇u etc. denote distribu-

tional derivatives; C denotes a generic constant):

(H1) ε, CF , CG, CS , CW , Cw, µ0, di, σi, α, U are positive constants (1 ≤ i < 3, 1 ≤ j ≤ 3);
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(H2) u0,i ∈ C(Ω) is nonnegative (i = 1, 2, 3), and f0(x, a) ∈ X[0,1] for a.e. x ∈ Ω;

(H3) χ is the characteristic function of a measurable set Q0 ⊆ QT = Ω × [0, T ]; the

function η ∈ C([0, T ]) is nonnegative;

(H4) for a.e. x ∈ Ω, Gx ∈ C ([0, 1]2), Gx(1, b) = 0 for b ∈ [0, 1], and

(9) −C ≤ ∂aGx ≤ 0, |∂bGx| ≤ C in [0, 1]2;

(H5) S ∈ L∞ (Ω;C ([0, 1]× [0,∞)3)), S(x, 1, u1, u2, w) = 0 for ui ≥ 0, w ≥ 0, and a.e.

x ∈ Ω, and for all compact sets K ⊂ [0,∞)3 there exists a constant C(K) such

that for a.e. x ∈ Ω

(10) −C(K) ≤ ∂aS(x, a, u, w) ≤ 0, |∇uS(x, a, u, w)|+ |∇wS(x, a, u, w)| ≤ C(K)

for a ∈ [0, 1], (u,w) ∈ K;

(H6) P ∈ C([0, T ]× [0, 1]2), P is nonnegative, for all t ∈ [0, T ]

(11)

∫ 1

0

P (t, b, a) da = 1 for b ∈ [0, 1] , P (t, b, a) = 0 if a < b

and there exists L > 0 such that for all a′, a′′, b′, b′′ ∈ [0, 1] and t ∈ [0, T ]

(12)
∣∣P (t, b′, a′)− P (t, b′′, a′′)

∣∣ ≤ L
(∣∣b′ − b′′∣∣+

∣∣a′ − a′′∣∣).
(H7) hw ≥ 0 and supx∈Ω

∫
Ω
hw(x, y) dy < +∞. Moreover, we assume that the non-

negative source term H for w belongs to C(Ω).

3.3. Main result. The main result of this note is a well-posedness result for the system

(2), with boundary condition (7) and initial conditions (8). In order to state the main

theorem, we need to define an appropriate weak solution for the model under considera-

tion.

Definition 3.2. A (3 + 2)-ple (f, u1, u2, u3, w) is called a solution of problem (2), (7), (8)

in [0, T ] if

(i) f ∈ L(Ω;C([0, T ];X[0,1]));

(ii) ui, w ∈ C(QT ) and ui, w ≥ 0 in QT for 1 ≤ i ≤ 3;
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(iii) the first equation in (2) is satisfied in a weak sense: for a.e. x ∈ Ω∫ τ

0

(∫
(∂tφ+ vx∂aφ) dfx,t +

∫
φ dJx,t

)
dt =

∫
φ(·, τ) dfx,τ −

∫
φ(·, 0) d(f0)x

for all τ ∈ [0, T ] and φ ∈ C1([0, 1]× [0, T ]), where the function v is defined by (4)

and the signed measure J by (5);

(iv) if 1 ≤ i < 3, ui ∈ L2([0, T ];H1(Ω)) and

di

∫ T

0

[∫
Ω

∇ui(x, s) · ∇ψ(x, s)dx+ γi

∫
∂Ω1

ui(x, s)ψ(x, s)dσ(x)

]
ds

= ε

∫∫
QT

uiψt + ε

∫
Ω

u0iψ(x, 0) dx+

∫∫
QT

Riψ

(13)

for all ψ ∈ H1([0, τ ];H1(Ω)), ψ(x, τ) = 0, where Ri is defined as the right hand

side in (2b) and (2c);

(v) ∂tu3 ∈ C(QT ), u3(·, 0) = u0,3 in Ω, and the equation for u3 in (2d) is satisfied in

QT ;

(vi) w satisfies (2e) in the integral sense.

We are now in a position to provide the following well-posedness result:

Theorem 3.1 (well-posedness). Let Ω ⊂ Rn be an open and bounded set with a smooth

boundary ∂Ω, which is the disjunct union of ∂Ω0 and ∂Ω1. Let T > 0, and let hypotheses

(H1−7) be satisfied. Then problem (2)-(7)-(8) has a unique solution in [0, T ] in the sense

of Definition 3.2.

Below we shall reformulate problem (2)-(7)-(8) in terms of the characteristics and we

will establish the equivalence between the original problem and the one in terms of charac-

teristics. Then we will present a local (in terms of time t) existence theorem for the latter

system (the one in terms of characteristics). Since this local solution can be continued in

[0, T ], the proof of Theorem 3.1 will then follow due to the equivalence between the two

systems.

Therefore we begin by introducing the characteristics: let f ∈ L(Ω;C([0, T ];X[0,1])) and

ui ∈ C(QT ), and let v[f ] be defined by (4). By the Lipschitz continuity of a 7→ vx(a, t),
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for a.e. x ∈ Ω the problem for the characteristic issued from y ∈ [0, 1], given by:

(14)

∂tAx(y, t) = vx(Ax(y, t), t) for 0 < t ≤ T

Ax(y, 0) = y

has a unique solution which satisfies

(15)

0 ≤ Ax(y1, t) < Ax(y2, t) ≤ Ax(1, t) = 1 if 0 ≤ y1 < y2 ≤ 1, 0 ≤ t ≤ T

Ax(y, t1) ≤ Ax(y, t2) if y ∈ [0, 1], 0 ≤ t1 ≤ t2 ≤ T .

Observe that, for a.e. x ∈ Ω, the function y 7→ Ax(y, t) is continuous and

(16) ∂yAx(y, t) = exp

(∫ t

0

∂avx(Ax(y, s), s) ds

)
> 0 for all t ∈ [0, T ].

In particular for a.e. x ∈ Ω the function y 7→ Ax(y, t) is injective for all t ∈ [0, T ].

We now reformulate the original problem in terms of the characteristics. Specifically,

we shall see below that the measure f can be obtained by transporting along the charac-

teristics a suitable measure g (i.e., f is the push forward of g through A) which satisfies:

(17)



∂tAx(y, t)=

∫
Gx(Ax(y, t), Ax(ξ, t)) dgx,t(ξ)+S(x,Ax(y, t), u2, w)

∂tgx,t(y) = ηχ

[
∂yAx(y, t)

∫
P (t, Ax(ξ, t), Ax(y, t)) dgx,t(ξ)−gx,t(y)

]
ε∂tu1−d1∆u1 = −u1

3∑
j=1

a1,juj−σ1u1

+ CF

∫
(µ0+Ax(ξ, t))(1−Ax(ξ, t)) dgx,t(ξ)

ε∂tu2 − d2∆u2 = 1
2
a1,1u

2
1 − u2

3∑
j=1

a2,juj − σ2u2

ε∂tu3 = 1
2

∑
j+k≥3
k, j<3

aj,kujuk,

∂tw = Cw(u2 − Uw)+ +
∫

Ω
hw(|y − x|)w(y, t) dy +H(x),
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where x ∈ Ω, y ∈ [0, 1], t ∈ (0, T ], with initial-boundary conditions

(18)



gx,0(y) = f0(x, y), Ax(y, 0) = y if x ∈ Ω, 0 ≤ y ≤ 1

ui(x, 0) = u0,i(x) if x ∈ Ω, 1 ≤ i ≤ 3

∂nui(x, t) = 0 if x ∈ ∂Ω0, t ∈ (0, T ], 1 ≤ i < 3

∂nui(x, t) = −γiui(x, t) if x ∈ ∂Ω1, t ∈ (0, T ], 1 ≤ i < 3

w(x, 0) = 0, if x ∈ Ω.

The appropriate notion of weak solution of system (17)-(18) can be derived from that

of solution of the original system (see definition (3.2)) through a change of variables.

We now state a local (in time) existence theorem for system (17)-(18) and give a sketch

of the proof proceeding by steps (for a detailed proof, but without τ , see [7]).

Theorem 3.2 (local existence). Let Ω ⊂ Rn be an open and bounded set with a smooth

boundary ∂Ω, which is the disjunct union of smooth manifolds ∂Ω0 and ∂Ω1. Let T > 0

and N ∈ N, and let hypotheses (H1−7) be satisfied. Then there exists τ ∈ (0, T ] such that

problem (17)-(18) has a unique solution in [0, τ ].

The proof relies on a suitable contraction argument. To this purpose we introduce the

following metric space:

Definition 3.3. Let τ ∈ (0, T ] be given. We denote by (Xτ , d) the complete metric space

Xτ := L∞(Ω;C([0, 1]×[0, τ ]; [0, 1]))×L(Ω;C([0, T ];X[0,1]))×C(Ω×[0, τ ]; R3)×C(Ω×[0, τ ]; R),

where L∞(Ω;C([0, 1] × [0, τ ]; [0, 1])), C(Ω × [0, τ ]; R3), and C(Ω × [0, τ ]; R) are endowed

with their natural metrics as normed spaces. Finally L(Ω;C([0, T ];X[0,1])) is endowed

with the Wasserstein metric

sup
x∈Ω

max
t∈[0,T ]

W1(fx,t, gx,t).

We denote by Xτ,ρ the closed ball in Xτ of radius ρ > 0 centered at (y, f0, u0, 0).

Lemma 3.1 (Step 1). Let (Â, g, u, w) ∈ XT and set, for a.e. x ∈ Ω,

(19) v̂x(a, t) :=

∫
Gx(a, Âx(ξ, t)) dgx,t(ξ) + S(x, a, u2, w) ≥ 0.
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Then, for a.e. x ∈ Ω, the Cauchy problem

(20)

∂tAx(y, t) = v̂x(Ax(y, t), t) for t > 0

Ax(y, 0) = y ∈ [0, 1]

has a unique solution defined for all t ∈ (0, T ]. Thus (Â, g, u, w) ∈ XT defines a new point

(A, g, u, w) ∈ XT .

Lemma 3.2 (Step 2). Let (Â, g, u, w) ∈ XT . Let, for a.e. x ∈ Ω, A be defined as in

Lemma 3.1 and (F [g])x,t be the signed measure on [0, 1] defined by

d(F [g])x,t=η(t)χ(x, t)

[
∂yAx(y, t)

∫
P (t, Ax(ξ, t), Ax(y, t))dgx,t(ξ) dy − dgx,t(y)

]
for 0 < t ≤ T . Then, for a.e. x ∈ Ω,

(i) the integral equation

(21) g
x,t

= (f0)x +

∫ t

0

(F [g])x,s ds

has a unique solution t 7→ g
x,t

which belongs to C([0, T ], X[0,1]); (ii) the measure g
x,t

is a

weak solution of the system
∂tgx,t(y) = ηχ

[
∂yAx(y, t)

∫
P (t, Ax(ξ, t), Ax(y, t))dgx,t(ξ)− gx,t(y)

]
g
x,0

= (f0)x.

Thus (A, g, u, w) ∈ XT (and hence (Â, g, u, w)) defines a new point (A, g, u, w) ∈ XT .

Denote by F1, F2, F3 the right hand sides of (2b), (2c), (2d), respectively.

Step 3: let u := (u1u2, u3) be the weak solution of the problem

(22)


ε∂tum − dm∆um = Fm(A, g, u, w) (m = 1, 2)

ε∂tu3 = F3(A, g, u, w), in Qτ = Ω× (0, τ ]

∂tw = Cw(u2 − Uw)+ +
∫

Ω
hw(|y − x|)w(y, t) dy +H(x) in Qτ .
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with initial-boundary conditions

(23)


ui(x, 0) = u0,i(x) if x ∈ Ω

∂nui(x, t) = 0 if x ∈ ∂Ω0, t > 0

∂nui(x, t) = −γiui(x, t) if x ∈ ∂Ω1 × (0, τ ]

(1 ≤ i ≤ 3).

Such a solution exists by standard arguments and (A, g, u, w) ∈ Xτ,ρ, provided τ is small

enough. Thus, eventually, (Â, g, u, w) ∈ Xτ,ρ defines a new point (A, g, u, w) ∈ Xτ,ρ.

Finally (Step 4), Banach-Caccioppoli fixed point theorem, togheter with classical a

priori estimates for the solutions of system (22), yields the existence of a solution of the

Cauchy problem in Qτ

∂tw = Cw(u2 − Uw)+ +

∫
Ω

hw(|y − x|)w(y, t) dy +H(x)

with w(x, 0) = 0. Thus, combining Steps 1–4, we are now ready to define the map to

which we shall apply a contraction argument. Let ρ > 0 be fixed. We set

(24) H(Â, g, u, w) := (A, g, u, w) for (Â, g, u, w) ∈ Xτ,ρ.

Let Td denote the metric topology of Xτ,ρ and T the weaker topology on Xτ,ρ which is

obtained by endowing L∞(Ω;C([0, 1]× [0, τ ]; [0, 1])) with the L1-topology on Ω× [0, 1]×

[0, τ ].

Proposition 3.1. Let ρ > 0 be fixed and let H(Â, g, u, w) be defined by (24). If τ >

0 is sufficiently small, then H : Xτ,ρ → Xτ,ρ, (An, gn, un, wn) → (A, g, u, w) in T if

(Ân, gn, un, wn)→ (Â, g, u, w) in Td, and H is a contraction on H(Xτ,ρ).

The proof of theorem 3.2 will then follow by means of the following fixed point theorem

(see [7]):

Proposition 3.2 (Fixed Point Theorem). Let (X, d) be a complete metric space and let

Td be the topology induced by d. Let T be a Hausdorff topology on X which is weaker than

Td. If H : X → X is a contraction on H(X) which is (Td, T )-sequentially continuous,

then H has a unique fixed point.
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It has been shown in [7], Section 5, that the local solution of the system (17)-(18) can

be continued in [0, T ]. Moreover, in Theorems 3.3 and 3.4 in the same paper it has been

shown that system (2)-(7)-(8) and system (17)-(18) are equivalent. Therefore, the proof

of Theorem 3.1 is accomplished.
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