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Abstract. We consider a class of non-local ultraparabolic Kolmogorov operators and

a suitable fractional Hölder spaces that take into account the intrinsic sub-riemannian

geometry induced by the operators. We prove an intrinsic fractional Taylor formula in

such spaces with global bounds for the remainder given in terms of the norm naturally

associated to the differential operator.

Sunto. Consideriamo una classe di operatori ultraparabolici non locali di tipo Kol-

mogorov e opportuni spazi frazionari Hölderiani che tengano conto della geometria sub-

riemanniana indotta dagli operatori. Dimostriamo una formula di Taylor frazionaria

intrinseca in tali spazi con un resto che si esprime in termini della norma naturalmente

associata agli operatori.
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1. Introduction

We consider a class of Kolmogorov-type hypoelliptic integro-differential operator of the

form

(1) Lu :=

∫
Rd

(u(t, x, v′)− u(t, x, v))K(t, x, v, v′) dv′ + Y u, (t, x, v) ∈ R× Rd × Rd,

where x, v are the spatial and the velocity variables respectively and Y is the transport

term

(2) Y = 〈v,∇x〉+ ∂t.

Bruno Pini Mathematical Analysis Seminar, Vol. 12 (2021) pp. 1–14

Dipartimento di Matematica, Università di Bologna
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Note that the integral diffusion term of L acts on the velocity variable only. The

regularization effect on the x variable is a consequence of the interaction between the

integral diffusion and the transport term. The equation Lu = 0 should be understood as a

Kolmogorov-type hypoelliptic integrodifferential equation with diffusion term of fractional

order. Fractional kinetic operators are used in nuclear- and astro-physics to model the

behavior of a collection of particles moving through a plasma. If u is the density function

of particles, with t, x, and v being time, space, and velocity respectively, then equation

Lu = 0 states that these particles move freely through space with their velocities changing

in a stochastic manner. If the velocity of a given particle varied according to the process

of Wiener type, then u would obey a kinetic Fokker-Planck Equation. However, when the

velocity of each particle varies according to a Levy process (without drift), the density

function obeys Lu = 0. A Levy process allows individual particles to change velocity

suddenly and discontinuously, which better approximates the effect of elastic collisions.

The kernel K in (1) belongs to a suitable ellipticity class, whose fundamental example

is the homogeneous function

K(t, x, v, v′) =
1

|v − v′|d+2s
,

where s ∈]0, 1[. The corresponding functional L is the fractional kinetic Fokker-Planck

operator

L = (−∆v)
s + Y

and (−∆v)
s is the classical fractional Laplace operator of order s in the velocity variables.

The limiting case s = 1 corresponds to the diffusive operator and the Hölder spaces

naturally associated to it were studied by several authors. See, for instance, Manfredini

[10], Lunardi [9], Pascucci [13], Di Francesco and Polidoro [4]. In this case the operator

has the remarkable property of being invariant with respect to left translations of a group(
R× R2d, ◦

)
introduced by Lanconelli and Polidoro in [8] studying a class of hypoelliptic

ultraparabolic operators including the classical prototype operators of KolmogorovFokker-

Planck. In this case the composition of the group coincides with the change of the Galilean

variables in the phase space. See also the recent survey by Anceschi and Polidoro [1].
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The non-commutative group law ◦ is defined by

(3) z1 ◦ z2 = (t1 + t2, x1 + x2 + t2v1, v1 + v2) ,

z1 = (t1, x1, v1), z2 = (t2, x2, v2) ∈ R × R2d. The identity and the inverse elements are

(0, 0, 0) and (t, x, v)−1 = (−t, tv − x,−v) respectively.

Imbert and Silvestre in [7] consider a very general ellipticity class of kernel K. Put

K(t,x,v)(w) = K(t, x, v, v + w)

and given the order s ∈]0, 1[ and ellipticity constants 0 < λ < Λ then

◦ K(w) = K(−w).

◦ For all r > 0 ∫
Br

|w|2K(w) dw ≤ Λr2−2s,

where Br is a Euclidean ball in Rd of radius r.

◦ (Coercivity estimate) For any r > 0 and φ ∈ C2(Br)∫
Br

∫
Br

|φ(v)− φ(v′)|2K(v − v′) dvdv′ ≥ λ

∫
Br/2

∫
Br/2

|φ(v)− φ(v′)|2|v − v′|−d−2s dvdv′.

In case s <]0, 1/2[, we add the following non-degeneracy assumption

inf
|e|=1

∫
Br

(w · e)2
+K(w) dw ≥ λr2−2s.

We remark that for stable-like kernels of the form

K(w) =
a(w/|w|)
|w|d+2s

where a is a positive continuous function, the two conditions in the coercivity estimate

are equivalent.

The class of equations Lu = 0 are left-invariant with respect the left translation ◦

defined in (3), in the sense that if u = u(z) is a solution of Lu = 0, then u0(z) := u(z0 ◦ z)

is also a solution of a similar equation with a translated kernel in the same ellipticity

class.
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We can also define dilations associated to L. Consider the family of vector fields

∂v1 , . . . , ∂vd , Y then it satisfies the Hörmander conditon

(4) Lie{∂v1 , . . . , ∂vd , Y }(z) = R× R2d, ∀ z ∈ R× R2d.

In particular the only non null commutators are

(5) [∂vi , Y ] = ∂xi , i = 1, . . . , d.

We define the dilations (D(λ))λ>0 on R× R2d given by

(6) D(λ) = diag
(
λ2s, λ2s+1Id, λId

)
,

where Id is the d× d identity matrix. Then the vector fields Y and ∂vi are homogeneous

of degree 2s and 1 with respect to (D(λ))λ>0 respectively.

Moreover, if u solves the equation Lu = 0 then u(λ)(z) = u(D(λ)z) solves a similar

equation with a scaled kernel in the same ellipticity class.

We remark that the group
(
R× R2d, ◦, D(λ)

)
is a homogeneous Lie group in the sense

of Folland and Stein [5]. Because of this property, it is very natural to define the homo-

geneous norm on R× R2d as

‖(t, x, v)‖ = |t|
1
2s + |x|

1
2s+1 + |v|, (t, x, v) ∈ R× Rd × Rd,

and consider the quasi-distance∥∥z−1
2 ◦ z1

∥∥ , z1, z2 ∈ R× R2d.

Actually, a weaker form of triangular inequality holds

||ζ ◦ z|| ≤ c
(
||ζ ◦ η||+ ||η−1 ◦ z||

)
, z, ζ, η ∈ R× R2d,

for a suitable positive constant c.

Imbert and Silvestre in [7] consider a equivalent left invariant quasi-distance

d(z1, z2) = min
w∈Rd

{
max

(
|t1 − t2|

1
2s , |x1 − x2 − w(t1 − t2)w|

1
1+2s , |v1 − w|, |v2 − w|

)}
,

z1 = (t1, x1, v1), z2 = (t2, x2, v2) ∈ R × Rd × Rd. They prove that if s ≥ 1/2 then d is a

distance in the sense that it satisfies the triangle inequality. When s < 1/2, the function

d2s is a distance.
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When the homogeneous structure induced by the dilations is considered, as usual, it is

convenient to think of the Lie algebra generated by the vector fields {∂v1 , . . . , ∂vd , Y } as

a graded algebra i.e., it is equipped with the decomposition

span {∂v1 , . . . , ∂vd} ⊕ span {Y } ⊕ [span {∂v1 , . . . , ∂vd}, span {Y }] =

= span {∂v1 , . . . , ∂vd} ⊕ span {Y } ⊕ span {∂x1 , . . . , ∂xd}.

Then, we associate a formal degree mY = 2s to Y and m∂vi
= 1 for 1 ≤ i ≤ d to the

vector fields ∂vi with respect to the dilations D(λ). Any partial derivative with respect

to the spatial variable ∂xi obtained as a commutator of ∂vi and Y , has to be considered

as D(λ)-homogeneous of degree 2s+ 1.

It is natural define the degree of a monomial m, as the number k so that m(D(λ)z) =

λkm(z). In other words, the exponent of the variable t should count times 2s, every

exponent of the variables xi counts times 1 + 2s and every exponent of the variables vi

counts times 1. Note that the degree of a polynomial can be any number in the discrete

set N0 + 2sN0.

If β = (β1, . . . , βd) ∈ Nd
0 will denote a multi-index then as usual |β| :=

∑d
j=1 βj and, for

any x ∈ Rd, xβ = xβ11 · · ·x
βd
d .

Let α ∈ R>0 we say that pα = pα(z) = pα(t, x, v) is a homogeneous polynomial of

degree α if p has the form

(7) pα(z) :=
∑

0≤2sk+(1+2s)|γ|+|β|<α

ak,γ,β t
k xγ vβ

with coefficients ak,γ,β ∈ R and (k, γ, β) ∈ N0 × Nd
0 × Nd

0.

Imbert and Silvestre in [7] have defined a properly scaled version of Hölder spaces. For

any α > 0, a function f : D ⊂ R × R2d → R is α-Hölderian at a point z0 ∈ R × R2d if

there exists a polynomial pα of degree < α and a positive constant C such that such that

|f(z)− pα(z)| ≤ C ||z−1
0 ◦ z||α ∀z ∈ D.

When this property holds at every point z0 in the domain D, with a uniform constant C,

we say f ∈ Cα(D). The semi-norm of f is the smallest value of the constant C so that

the inequality above holds for all z0, z ∈ D.
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In the context of Hölderian spaces, Taylor-type formulas constitute a fundamental tool

for the development of regularity theory.

In the setting of homogeneous groups, Folland and Stein in [5] proved a classical result

about intrinsic Taylor polynomials. Recently, Bonfiglioli in [3] derived an explicit formula

for Taylor polynomials on homogeneous groups adapting the classical Taylor formula with

integral remainder. In [5] and [3], Taylor polynomials of order n are defined for functions

that are differentiable up to order n in the Euclidean sense so that the remainders depend

on the norms of the function in the Euclidean Hölder spaces.

Pagliarani, Pascucci and Pignotti in [12] proved a new and more explicit representation

of the intrinsic Taylor polynomials for Kolmogorov-type homogeneous groups. They define

n-th order Taylor polynomials for functions that are regular in the intrinsic sense and the

constants appearing in the error estimates depend only on the norms of the intrinsic

derivatives up to order n. A similar result under such intrinsic regularity assumptions

only appeared in Arena, Caruso and Causa in [2] in the particular case of Carnot group

of step two. The approach in [12] is different from the classic one of Folland and Stein.

Indeed, in [5] a classical representation is given as a sum over all possible permutations

of the derivatives. In our context since the vector fields ∂v1 , . . . , ∂vd do not commute with

the drift Y , there are different representations for the Taylor polynomials depending on

the order of the derivatives. In [12] the authors order the vector fields in a privileged

way, in this way they are able to get compact Taylor polynomials with a number of terms

increasing linearly with respect to the order of the polynomial itself.

In collaboration with Polidoro and Pagliarani in [11], we extend such formula to the

fractional Hölder spaces introduced in [7] associated to the the non-local ultraparabolic

Kolmogorov operator L in (1).

2. Hölder spaces and Taylor polynomials

We introduce the notions of intrinsic Hölder regularity and intrinsic Hölder space. We

recall that if X is a locally Lipschitz vector field on R × R2d. For any z ∈ R × R2d,

we denote by δ → eδX(z) the integral curve of X defined as the unique solution of the
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problem

(8)


d
dδ
eδX(z) = X

(
eδX(z)

)
, δ ∈ R,

eδX(z)|δ=0 = z.

In particular, a direct calculation shows that the integral curves of ∂vi and of Y are

(9) eδ∂vi (t, x, v) = (t, x, v + δei), i = 1, . . . , d, eδY (t, x, v) = (t+ δ, x+ δv, v),

for any (t, x, v) ∈ R× R2d.

Next we recall the general notion of Lie differentiability. Let X be a Lipschitz vector

field and u be a real-valued function defined in a neighborhood of z ∈ R1+2d. We say that

u is X-differentiable in z if the function δ 7→ u
(
eδX(z)

)
is differentiable at δ = 0. We will

refer to the function z 7→ d
dδ
u
(
eδX(z)

) ∣∣
δ=0

as X-Lie derivative of u.

Definition 2.1. Let X be a Lipschitz vector field on R×R2d with formal degree mX > 0.

For α ∈ ]0,mX ], we say that u ∈ Cα
X if the semi-norm

||u||CαX := sup
z∈R1+2d,δ∈R\{0}

∣∣u (eδX(z)
)
− u(z)

∣∣
|δ|

α
mX

< +∞.

Hereafter, let us denote by (αn)n∈N0 the sequence given by the ordered elements (with

no repetition) of the set

(10) {α > 0 : α = n+ 2sm, with n,m ∈ N0}.

The number αn denotes the orders at which there is a jump in the regularity and new

derivatives along ∂vi or Y appear.

Now, intuitively it appears that the intrinsic Hölder spaces induced by the formal

degrees of the vector fields will be considerably different in the cases s ∈]0, 1/2[ and

s ∈ [1/2, 1[. In this note we assume that s ∈ [1
2
, 1[, the case ]0, 1/2[ will be considered in

[11].

Now we define the intrinsic Hölder spaces on the homogeneous group
(
R× R2d, ◦

)
, by

extending the definitions of Hölder spaces given in [12].

Definition 2.2. Let s ∈ [1
2
, 1[. Then:
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i) if α ∈]0, α1 = 1], then u ∈ Cα(R×R2d) if u ∈ Cα
Y (R×R2d) and u ∈ Cα

∂vi
(R×R2d)

for any i = 1, . . . , d. For any u ∈ Cα(R× R2d) we define the semi-norm

(11) ‖u‖Cα := ‖u‖CαY +
d∑
i=1

‖u‖Cα∂vi
;

ii) if α ∈]α1 = 1, α2 = 2s], then u ∈ Cα(R × R2d) if u ∈ Cα
Y (R × R2d) and ∂viu ∈

Cα−1(R × R2d) for any i = 1, . . . , d. For any u ∈ Cα(R × R2d) we define the

semi-norm

(12) ‖u‖Cα := ‖u‖CαY +
d∑
i=1

‖∂viu‖Cα−1 ;

iii) if α ∈]αn, αn+1], for n ∈ N with n ≥ 2, then u ∈ Cα(R× R2d) if Y u ∈ Cα−2s(R×

R2d) and ∂viu ∈ Cα−1(R×R2d) for any i = 1, . . . , d. For any u ∈ Cα(R×R2d) we

define the semi-norm

(13) ‖u‖Cα := ‖Y u‖Cα−2s +
d∑
i=1

‖∂viu‖Cα−1 .

Note that α integer does not imply the existence of derivatives of order α but only the

Lipscitzianity of the derivative of lower order, which is explained in Remark 2.3 below.

Remark 2.1. With the aim of clarifying the definition of Hölder space we consider for

example s = 3/4. In this case

α1 = 1, α2 = 2s = 3/2, α3 = 2, α4 = 2s+ 1 = 5/2, α5 = 4s = 3, . . .

If u ∈ Cα with α = 2 ∈]3/2, 2] then by definition the Lie derivative Y u exists as well and

belongs to C1/2. Moreover, the first order derivatives ∂v1u, . . . , ∂vdu ∈ C1. This doesnt

mean that are differentiable functions, but that belong to the Hölder space Cα with with

α = 1.

Otherwise, if u ∈ Cα with α ∈]2, 5/2], then α−1 ∈]1, 3/2] so that ∂viu ∈ Cα−1. Besides,

the second order derivatives ∂vivju exist for i, j = 1, . . . , d. In particular, ∂vivju ∈ Cα−2

and ∂viu ∈ Cα−1
Y . Also Y u ∈ Cα−3/2 since α− 3/2 ∈]0, 1].

Remark 2.2. It is known that the Euclidean Hölder functions of order greater than one

are constant. In our setting a function u = u(v, x) ∈ Cα with α > 1 is a function of
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just the variable x. The α-Hölder regularity is stronger along the fields ∂vi than along

the field Y . In fact, if α > 1 = α1, then a function cannot belong to Cα
∂vi

unless it is

differentiable and its derivative is constantly null, which implies the function is constant

along the directions ∂v1 , . . . , ∂vd. But, it is possible that u ∈ Cα
Y with α ≤ 3/2 = α2, as

the Lie derivative along Y only appears when α > 3/2.

Consider the Euclidean Lipschitz continuous function

u(t, v, x) = |x|

Then u ∈ C2s
loc(R3) with s ≥ 1

2
. In fact, obviously ∂vu ∈ C2s−1 and for every Ω ⊂⊂ R3

and mY = 2s

||u||C2s
Y (Ω) := sup

z∈Ω
|u(z)|+ sup

z∈Ω,δ∈R\{0}

∣∣u (eδY (z)
)
− u(z)

∣∣
|δ|

2s
mY

= sup
z∈Ω
|u(z)|+ sup

z∈Ω,δ∈R\{0}

||x+ δv| − |x||
|δ|

< +∞.

Then u ∈ C2s
Y,loc. Note that u 6∈ Cα

loc with α > 2s since u is not differentiable along Y .

Next, consider the function

u(t, v, x) = |x|1+ 1
2s ,

then u ∈ C1, 1
2s

Eucl. But, the derivative Y u exists (derivative of order 2s):

Y u = (1 + 1/(2s)) v |x|
1
2s sgn(x) ∈ C1

Y,loc

then Y u ∈ C1
loc and u ∈ C2s+1

loc .

Theorem 2.1. (Taylor formula) Let u ∈ Cα(R× R2d) then there exist the derivatives

Y k∂γξ ∂
β
ν u ∈ Cα−2sk−(1+2s)|γ|−|β|(R× R2d), 0 ≤ 2sk + (1 + 2s)|γ|+ |β| < α;

and there exists a positive constant c which depends on the dimension d such that

|u(z)− Tαu(ζ, z)| ≤ c ‖u‖Cα‖ζ−1 ◦ z‖α, ∀ z, ζ,

where Tαu(ζ, ·) is the α-th order intrinsic Taylor polynomial of u around ζ defined as

Tαu(ζ, z) :=
∑

0≤2sk+(1+2s)|γ|+|β|<α

Y k∂γξ ∂
β
ν u(ζ)

k! γ! β!
(t− τ)k

(
x− ξ − (t− τ)ν

)γ
(v − ν)β,
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z = (t, x, v), ζ = (τ, ξ, ν).

Remark 2.3. There are qualitative differences in the Taylor polynomials of different

orders. In fact, the existence of the Euclidean spatial derivatives is not a consequence of

definition of Hölder spaces. Such problem arises when defining the Taylor expansion of

order > 2s+ 1, i.e. when the Euclidean derivatives appear for the first time in the Taylor

polynomial. Although, formally we have [∂vi , Y ]u = ∂xiu.

Indeed, if we suppose Taylor formula for α ≤ 2s+1 and we would prove Taylor formula

for α̃ ∈]2s+ 1, 2s+ 2] then the polynomial Tα̃u contains the derivatives of intrinsic order

equal to 2s+ 1 + ε with ε ∈]0, 1]:

Y k∂γξ ∂
β
ν u, 0 ≤ 2sk + (1 + 2s)|γ|+ |β| < 2s+ 1 + ε.

In particular, contains

Y k∂βν u, 0 ≤ 2sk + |β| < 2s+ 1 + ε;

whose existence follows by definition of C α̃. Otherwise, Tα̃u also contains the 2s+1 order

spatial derivatives ∂ξi, for i = 1, . . . , d whose existence must be proved.

3. Sketch of the proof

Remark 2.3 suggests that the proof of Theorem 2.1 cannot be carried out by a simple

induction on αn, due to the qualitative differences in the Taylor polynomials of different

orders.

We recall that s ∈ [1/2, 1[ and (αn)n∈N0 is the sequence given by the ordered elements

of the set N0 + 2sN0.

We have the following initial steps:

]α0, α1] =]0, 1], ]α1, α2] =]1, 2s], ]α2, α3] =]2s, 2], ]α4, α5] =]2, 2s+ 1].

If α ≤ α5 = 2s + 1 the derivatives in the Taylor expansion of order α exist by definition

of Hölder spaces. For α ∈]α5, α6], there is a jump in the regularity, indeed the Euclidean

derivatives w.r.t. the spatial variables appear for the first time in the Taylor polynomial

and then we must also prove the existence of such derivatives. Besides, in the future steps
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the existence of the Euclidean partial derivatives w.r.t. any variable has already been

proved and thus the proof goes smoothly without any further complication.

First, we note that it is not restrictive to prove Taylor formula for t constant:

Remark 3.1. Suppose α > 2s, (for α ≤ 2s the proof is easier). Let z = (t, x, v),

ζ = (τ, ξ, w) be such that with t 6= τ . Consider the integral curve of Y and put

ζ̄ = e(t−τ)Y (ζ) = (t, ξ + (t− τ)w,w).

We have

ζ̄−1 ◦ z = (0, x− ξ − (t− τ)w, v − w), ζ−1 ◦ z = (t− τ, x− ξ − (t− τ)w, v − w).

Note that, if u ∈ Cα, with α > 2s then Y ku ∈ Cα for 0 < 2sk < α. By the Euclidean

mean-value theorem along the vector field Y , for any ζ and r ∈ R there exists r̄, |r̄| ≤ |r|

such that

u(erY (ζ))− u(ζ)−
∑

0<2sk<α

rk

k!
Y ku(ζ) = rk1

(
Y k1u(er̄Y (ζ))− Y k1u(ζ)

)
where k1 = max{k ∈ N : 0 < 2sk < α}.

By Taylor formula with t constant there exists c > 0 such that

|u(z)− Tα(ζ, z)| = |u(z)− Tα(ζ̄ , z)|+ |Tα(ζ̄ , z)− Tα(ζ, z)|

≤ c||u||Cα ||ζ−1 ◦ z||α + |Tα(ζ̄ , z)− Tα(ζ, z)|.

Rearranging the Taylor polynomials we can write

Tα(ζ̄ , z)− Tα(ζ, z) =
∑

(1+2s)|γ|+|β|<α

1

γ! β!

[
∂γξ ∂

β
ν u(e(t−τ)Y (ζ))−

−
∑

2sk<α−(1+2s)|γ|−|β|

Y k∂γξ ∂
β
ν u(ζ)(t− τ)k

k!

](
x− ξ − (t− τ)w

)γ
(v − w)β.

By mean-value theorem, for a suitable k1

|Tα(ζ̄ , z)− Tα(ζ, z)| ≤

≤
∑

(1+2s)|γ|+|β|<α

|(t− τ)k1
(
Y k1∂γξ ∂

β
ν u(er̄Y (ζ))− Y k1∂γξ ∂

β
ν u(ζ)

)
| ||ζ̄−1 ◦ z||(1+2s)|γ|+|β|
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by definition of Hölder spaces

≤ c ||u||Ca
∑

(1+2s)|γ|+|β|<α

(t− τ)k1 r̄(α−2sk1−(1+2s)|γ|−|β|)/(2s)||ζ̄−1 ◦ z||(1+2s)|γ|+|β|

≤ c ||u||Ca ||ζ−1 ◦ z||α.

In general, any two points of R×R2d can be connected via integral curves of the vector

fields and their commutators but we have no information about the regularity along the

directions of the commutators

[∂vi , Y ] = ∂xi , i = 1, . . . , d.

Then, the idea is to approximate in the classical way the integral curves of the commuta-

tors by using the integral curves of ±∂vi and ±Y .

Remark 3.2. Let z = (t, x, v) and ζ = (t, ξ, w). Intuitively, spatial variables and velocity

variables belong to different ”level”, then to connect z and ζ, we progressively correct the

velocity variables v and then the spatial variable x.

We first correct the velocity variables using the integral curve (of the first layer) of

Y
(0)
η =

∑d
i=1 ηi∂vi where η ∈ Rd will be chosen appropriately:

γ(0)
η,r(ζ) := er Y

(0)
η (ζ) = (t, ξ, w + rη).

If r = ||v − w|| and η = v−w
||v−w|| then we have γ

(0)
η,r(ζ) = (t, ξ, v).

Finally, we correct the space variables using the integral curve which approximate the

integral curves of the commutators Y
(1)
η = [Y

(0)
η , Y ] by using a classical technique adapted

to the fractional context and by moving along a curve defined as concatenation of integral

paths of ∂vi and Y as follows

γ(1)
η,r(ζ̃) := e−r

2s Y
(
γ

(0)
η,−r

(
er

2s Y
(
γ(0)
η,r(ζ̃)

)))
= (t, ξ + r2s+1η, v)

where ζ̃ = (t, ξ, v). Then choosing r = ||x − ξ ||
1

2s+1 and η = x−ξ
||x−ξ || we have

γ(1)
η,r(t, ξ, v) = (t, x, v).

In other words, we can connect two points z = (t, x, v) and ζ = (t, ξ, w), by only moving

along the integral curves γ
(0)
η,r and γ

(1)
η,r .
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In these notes we proof only the first steps of the induction, the next steps will be

proved in [11].

Proof of the Taylor formula: the first step of induction. The proof of the first

step α ∈]α0, α1] =]0, 1] contains the idea of proof of the following ones, but technically it

is much simpler. In this case Taylor’s formula takes the form

|u(z)− u(ζ)| ≤ c ||u||Cα ||ζ−1 ◦ z||α,

that is u is Hölder continuous according to definition in [14].

Roughly speaking,, we connect any pair of points z = (t, x, v) and ζ = (t, ξ, w) using the

integral curve γ
(0)
η,r and γ

(1)
η,r to have a control of the increment of u along the connecting

path. We write

|u(t, x, v)− u(t, ξ, w)| ≤ |u(t, ξ, v)− u(t, ξ, w)|+ |u(t, ξ, v)− u(t, x, v)|.

Since γ
(0)
η,r is a integral curve of the vector fields ∂vi and u ∈ Cα

∂vi
we get

|u(t, ξ, v)− u(t, ξ, w)| = |u(γ(0)
η,r(ζ))− u(ζ)| ≤ c ||u||Cα |v − w|α ≤ c ||u||Cα ||ζ−1 ◦ z||α.

To evaluate the term |u(t, ξ, v)− u(t, x, v)| we write

|u(t, ξ, v)− u(t, x, v)| =|u(ζ̃)− u(γ(1)
η,r(ζ̃))| ≤

≤ |u(ζ̃)− u(γ(0)
η,r(ζ̃))|

+ |u(γ(0)
η,r(ζ̃))− u(er

2s Y (γ(0)
η,r(ζ̃)))|

+ |u(er
2s Y (γ(0)

η,r(ζ̃)))− u((γ
(0)
η,−r(e

r2s Y (γ(0)
η,r(ζ̃)))|

+ |u((γ
(0)
η,−r(e

r2s Y (γ(0)
η,r(ζ̃)))− u(γ(1)

η,r(ζ̃))|.

(14)

Then we use the regularity assumption of u along ∂vi (u ∈ Cα
∂vi

) to estimate the first and

the third terms in the right hand side and the regularity assumption of u along Y (u ∈ Cα
Y )

to estimate the other terms, obtaining |u(t, ξ, v) − u(t, x, v)| ≤ c ||u||Cα ||ζ−1 ◦ z||α, for

suitable positive constant c.
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