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Abstract. In this paper we recall some recent results about variational eigenvalues of

the p-Laplacian, we show new applications and point out some open problems. We focus

on the continuity properties of the eigenvalues under the γp-convergence of capacitary

measures, which have been the subject of the study of [8, 9, 10] and are needed to prove

existence results for the minimization of nonlinear eigenvalues in the class of p-quasi

open sets contained in a box under a measure constraint. Finally, the new contribution

of this paper is to show that these continuity results can be employed to prove existence

of minimizers for nonlinear eigenvalues among measurable sets contained in a box and

under a perimeter constraint, generalizing to the case p 6= 2 some results of [2].

Sunto. In questo articolo richiamiamo alcuni recenti risultati riguardanti gli autovalori

variazionali del p-Laplaciano, mostriamo nuove applicazioni e mettiamo in luce alcuni

problemi aperti. Ci soffermiamo sulle proprietà di continuità degli autovalori rispetto

alla γp-convergenza di misure capacitarie, che sono state l’argomento dei lavori [8, 9, 10]

e che sono necessarie per dimostrare risultati di esistenza per problemi di minimizzazione

di autovalori non lineari nella classe dei p-quasi aperti contenuti in un box e con vincolo

di misura. Infine, il nuovo contributo di questo lavoro consiste nel dimostrare che questi

risultati di continuità possono essere sfruttati per dimostrare l’esistenza di minimi per

autovalori non lineari nella classe degli insiemi misurabili contenuti in un box e con

vincolo di perimetro, estendendo al caso p 6= 2 alcuni risultati di [2].
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1. Introduction

In recent years, there has been a wide interest on shape optimization problems for

spectral functionals, in particular concerning the eigenvalues of the Dirichlet-Laplacian,

see [11] for an overview. On the other hand, the study of analogous problems for eigen-

values of nonlinear operators as the p-Laplacian (still with Dirichlet boundary conditions)

has only recently been investigated.

Given an open, bounded subset Ω of RN and 1 < p < ∞, we say that λ > 0 is an

eigenvalue of the p-Laplacian if there is a nonzero weak solution u, called eigenfunction,

of the problem 
−∆pu := −div(|∇u|p−2∇u) = λ|u|p−2u in Ω ,

u = 0 on ∂Ω .

The eigenvalues can be characterized as the critical values of the functional

f : W 1,p
0 (Ω)→ R , f(u) =

∫
Ω

|∇u|p dLN ,

on the manifold M =

{
u ∈ W 1,p

0 (Ω) :

∫
Ω

|u|p dLN = 1

}
, where W 1,p

0 (Ω) is the closure of

C∞c (Ω), the space of smooth functions with compact support in Ω, with respect to the

W 1,p norm. The first eigenvalue is a minimum, while higher eigenvalues (if p 6= 2) are

less understood. More precisely, one can obtain a nondecreasing sequence of eigenvalues

through the minimax procedure

(1) λpm(Ω) = inf
K∈Km

sup
u∈K

f(u) for all integer m ≥ 1 ,

where Km denotes the collection of subsets K of M which are compact, symmetric (i.e.

K = −K) and such that i(K) ≥ m and i denotes a suitable topological index. Un-

fortunately, it is still a major open problem to understand if all the eigenvalues of the

p-Laplacian are of this form. Here we focus only on the “variational” eigenvalues arising

from the minimax procedure described above.

We are interested in the following shape optimization problems for variational eigen-

values of the p-Laplacian: given a bounded open domain Ω ⊆ RN , c ≤ LN(Ω), k ∈ N and
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a function F : Rk → R which is nondecreasing in each variable and lower semicontinuous,

we deal with

(2) min
{
F (λp1(A), . . . , λpk(A)) : A ⊆ Ω, LN(A) ≤ c

}
,

and

(3) min
{
F (λp1(A), . . . , λpk(A)) : A ⊆ Ω, P (A) ≤ c

}
,

where P (·) denotes the De Giorgi perimeter.

To investigate those problems, the key issue consists in identifying a class of sets and

a topology which are suitable for proving both a compactness result and a lower semi-

continuity property of the variational eigenvalues. Concerning the first and most studied

problem (2), the work of Dal Maso and Murat [6] made it clear that a smart way of tack-

ling this optimization problem is to relax it into the larger class of p-capacitary measures,

endowed with the (topology induced by the) γp-convergence. In this setting they proved a

general compactness result. On the other hand, the lower semicontinuity of the variational

nonlinear eigenvalues with respect to the γp-convergence is a rather tricky issue, which

has been understood only recently in [8] with an abstract approach, in [10] for the case

k = 1, 2 and finally in [9] in a rather general setting, where the existence of minimizers

for problem (2) is completely solved in the class of p-quasi open sets. We recall the result

of [9] in Theorem 3.2.

Problem (3) has been studied, up to our knowledge, only in the case p = 2, starting

from the paper [2], where it is highlighted that the minimization can be performed among

measurable sets, as soon as a suitable definition of variational eigenvalues (and of Sobolev

spaces) is given. We prove an existence result for problem (3) in Theorem 4.1 also for the

case p 6= 2, by employing the lower semicontinuity of nonlinear variational eigenvalues with

respect to γp-convergence of p-capacitary measures, though in this setting the situation is

more delicate, since the notion of perimeter and of γp-convergence do not seem to interact

well.

Plan of the paper. Section 2 is devoted to recalling the notions of p-capacitary

measures, p-quasi open sets, generalized Sobolev spaces, γp-convergence, and nonlinear
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variational eigenvalues. In Section 3 we discuss the continuity properties of nonlinear

variational eigenvalues of capacitary measures under γp-convergence and we prove an

existence result under measure constraint in Theorem 3.2. This Section is based on results

from [9]. Finally, in Section 4 we prove an existence result for nonlinear eigenvalues under

perimeter constraint, Theorem 4.1.

2. Preliminaries

Throughout the paper, we fix an integer N ≥ 1 and 1 < p <∞. We denote by LN the

N−dimensional Lebesgue measure. We also fix Ω ⊆ RN to be a bounded domain (with

the term domain we denote a connected open set), which will be sometimes called the

“box”. If (X, d) is a metric space, we set Br(x) := {y ∈ X : d(y, x) < r} and we denote

by B(X) the family of Borel subsets of X.

Capacity, p-quasi open sets and Sobolev spaces. We need to introduce the notion

of p-capacity.

Definition 2.1. For every subset E of RN , the p-capacity of E in RN is defined as

capp(E) := inf

{∫
(|∇u|p + |u|p) dLN : u ∈ W 1,p(RN) ,

0 ≤ u ≤ 1 LN -a.e. on RN , u = 1 LN -a.e. on an open set containing E

}
,

where we agree that inf ∅ = +∞. If E ⊆ RN , we say that a property P(x) holds capp-quasi

everywhere in E, if it holds for all x ∈ E except at most a set of zero p-capacity. We will

write q.e. in E instead of capp-quasi everywhere in E, for the sake of simplicity.

Definition 2.2. A subset A of RN is said to be p-quasi open if, for every ε > 0, there

exists an open subset ωε of RN such that capp(ωε) < ε and A ∪ ωε is open in RN .

Definition 2.3. A function u : RN → R is said to be p-quasi continuous if for every ε > 0

there exists an open subset ωε of RN with capp(ωε) < ε such that u
∣∣
RN\ωε

is continuous.

For every u ∈ W 1,p
loc (RN), there exists a Borel and p-quasi continuous representative

ũ : RN → R of u and, if ũ and û are two p-quasi continuous representatives of the same
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u, then we have ũ = û q.e. in RN . In the following, for every u ∈ W 1,p
loc (RN), we will

consider only its Borel and p-quasi continuous representatives.

Definition 2.4. If A is a p-quasi open subset contained in Ω, we set

W 1,p
0 (A) :=

{
u ∈ W 1,p

0 (Ω) : u = 0 q.e. in RN \ A
}
.

If A is an open set, then the space W 1,p
0 (A) defined above coincides with the closure

of C∞c (A), the space of smooth functions with compact support in A, with respect to

the W 1,p norm; so there is no risk of confusion in the notation. In order to deal with

the perimeter constraint, we will need to work also with measurable sets, thus a weaker

notion of Sobolev space is needed.

Definition 2.5. If M is a measurable set contained in Ω, we set

W̃ 1,p
0 (M) :=

{
u ∈ W 1,p

0 (Ω) : u = 0 a.e. in RN \M
}
.

It is immediate to check that the spaces W 1,p
0 (A) and W̃ 1,p

0 (M) defined above are closed

subspaces of W 1,p
0 (Ω), because from any sequence converging strongly in W 1,p

0 (Ω) it is

possible to extract a subsequence converging q.e. to the same limit. For a p-quasi open

set A ⊆ Ω, in general W 1,p
0 (A) ⊆ W̃ 1,p

0 (A). If A ⊆ Ω is a Lipschitz domain, then

W 1,p
0 (A) = W̃ 1,p

0 (A), while even for open sets, as for example a disk in R2 minus a radius,

one can have a strict inclusion.

The following lemma, which clarifies the relation between the spaces W 1,p
0 and W̃ 1,p

0 , is

well known in the case p = 2, and can be proved similarly for the case p 6= 2. The proof

that we present here is inspired by [4, Proposition 6.9].

Lemma 2.1. Let Ω ⊆ RN be a bounded domain, M ⊆ Ω be a measurable set. There

exists a quasi-open set ΩM which is contained a.e. in M , that is, |ΩM \M | = 0 and such

that W̃ 1,p
0 (M) = W̃ 1,p

0 (ΩM) = W 1,p
0 (ΩM). Moreover, if ΩM , Ω̃M ⊆ M a.e. are such that

W̃ 1,p
0 (M) = W 1,p

0 (ΩM) = W 1,p
0 (Ω̃M), then ΩM = Ω̃M q.e..
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Proof. Since W̃ 1,p
0 (M) ⊆ W 1,p

0 (Ω) is a closed subspace of a separable Banach space, it is

separable, too and we can find a dense and countable set {ϕk}∞k=1 ⊆ W̃ 1,p
0 (M). We define

ΩM :=
∞⋃
k=1

{ϕk 6= 0} = {w > 0}, w :=
∞∑
k=1

|ϕk|
2k‖ϕk‖W 1,p

.

It is clear from the definition that ϕk ∈ W 1,p
0 (ΩM), ΩM is a p-quasi open set and ΩM ⊆M

a.e., thus the inclusion W 1,p
0 (ΩM) ⊆ W̃ 1,p

0 (ΩM) ⊆ W̃ 1,p
0 (M) is proved.

In order to prove the reverse inclusion, let ϕ ∈ W̃ 1,p
0 (M) and we can find a subsequence

{ϕki}∞i=1 such that ϕki → ϕ inW 1,p
0 (Ω) as i→∞. Then, up to pass again to a subsequence,

we have that ϕki → ϕ q.e. and therefore ϕ ∈ W 1,p
0 (ΩM) so the first part of the statement

is proved.

Concerning the second part of the statement, let ΩM = {w > 0} and Ω̃M = {w′ > 0}.

Then w′ ∈ W̃ 1,p
0 (M) = W 1,p

0 (ΩM), hence Ω̃M ⊆ ΩM q.e.. Analogously, w ∈ W̃ 1,p
0 (M) =

W 1,p
0 (Ω̃M), hence Ω̃M ⊇ ΩM q.e. and we have concluded. �

Capacitary measures and γp-convergence.

Definition 2.6. Let Ω be an open subset of RN . We say that a non-negative Borel measure

µ in Ω is p-capacitary if, for every B ∈ B(Ω) with capp(B) = 0, we have µ(B) = 0.

Definition 2.7. Two p-capacitary measures µ1, µ2 in Ω are said to be equivalent, if

µ1(A) = µ2(A) for all A ∈ B(Ω) with A p-quasi open .

We denote byMp
0(Ω) the quotient of the set of all p-capacitary measures in Ω with respect

to such an equivalence relation.

Definition 2.8. If µ, ν ∈Mp
0(Ω), we write µ ≤ ν if

µ(A) ≤ ν(A) for all A ∈ B(Ω) with A p-quasi open .

It is easily seen that this is an order relation in Mp
0(Ω).
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Example 2.1. Let us provide the two most important examples of p-capacitary measures.

The first one is given by the measure ∞E corresponding to a subset E of Ω, defined as

∞E(B) :=


0 if capp(B ∩ E) = 0 ,

+∞ if capp(B ∩ E) > 0 ,

for all B ∈ B(Ω) .

The other one consists in a measure absolutely continuous with respect to LN , that is, for

a LN -measurable function V : Ω→ [0,+∞], the measure V LN is defined as

(V LN)(B) =

∫
B

V dLN for all B ∈ B(Ω) .

We need now to introduce a “good” notion of convergence on the space of p-capacitary

measures. For every µ ∈Mp
0(Ω), we denote by wµ(Ω) the torsion function in Ω associated

with µ, defined as the (unique) minimizer of the functional

W 1,p
0 (Ω) 3 v 7→ 1

p

∫
Ω

|∇v|p dLN +
1

p

∫
Ω

|v|p dµ−
∫

Ω

v dLN .

Thus wµ formally solves the PDE−∆pwµ + µ|wµ|p−2wµ = 1, in Ω,

wµ ∈ W 1,p
0 (Ω).

Definition 2.9. The p-quasi open set Aµ := {wµ(Ω) > 0} is called the set of σ-finiteness

of µ.

Remark 2.1. The usual definition of the set Aµ is done using the p-fine topology, but

it is equivalent to the one above up to sets of zero p-capacity. For more details on this

(delicate) subject and more properties of Aµ, we refer to [9, Section 5]. The important

property that we stress here is that ∞Ω\Aµ ≤ µ, which will be crucial later.

Definition 2.10. If Ω is a bounded and open subset of RN , a sequence (µ(n)) in Mp
0(Ω)

is said to be γp-convergent to µ if (wµ(n)(Ω)) is weakly convergent to wµ(Ω) in W 1,p
0 (Ω).

For other equivalent definitions of the γp-convergence, and in particular a character-

ization through the Γ-convergence of suitable energy functionals, we refer to [9, Sec-

tion 5]. We recall here the main result which is fundamental for our purposes and is in
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the line of [5], which treated the case p = 2. For all µ ∈ Mp
0(Ω) we define the functional

fµ : Lp(Ω)→ [0,+∞] as

fµ(u) =


1
p

∫
Ω
|∇u|p dLN + 1

p

∫
Ω
|u|p dµ, if u ∈ W 1,p

0 (Ω),

+∞, otherwise in Lp(Ω),

and note that if µ =∞Ω\A for a p-quasi open set A ⊆ Ω, then

f∞Ω\A(u) =


1
p

∫
A
|∇u|p dLN , if u ∈ W 1,p

0 (A),

+∞, otherwise in Lp(Ω).

The proof of the following result can be found in [9, Theorem 5.24].

Theorem 2.1. A sequence (µ(n)) is γp-convergent to µ in Mp
0(Ω) if and only if

fµ(u) =
(

Γ− lim
n→∞

fµ(n)

)
(u), for all u ∈ Lp(Ω).

The main compactness result for capacitary measures under γp-convergence is due to

Dal Maso and Murat [6, Theorem 6.5].

Theorem 2.2. For any sequence of capacitary measures (µ(n)) in Mp
0(Ω) there exists a

subsequence (µ(nj)) and µ ∈Mp
0(Ω) such that (µ(nj)) γp-converges to µ.

Nonlinear variational eigenvalues.

Definition 2.11. Let A be a p-quasi open set contained in Ω. We say that a number

λ ∈ R is an eigenvalue of the p-Laplacian if there is a nonzero u ∈ W 1,p
0 (A) solution to

(4)

−∆pu = λ|u|p−2u, in A,

u = 0, on ∂A.

Let us consider a topological index i, on a metrizable topological vector space X (which

will be often W 1,p
0 (Ω) or Lp(Ω) in our setting), satisfying the following properties.

(1) i(K) is an integer greater or equal than 1 and is defined whenever K is a nonempty,

compact and symmetric subset of a metrizable topological vector space X such that

0 6∈ K;
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(2) if K ⊆ X \ {0} is nonempty, compact and symmetric, then there exists an open

subset U of X \ {0} such that K ⊆ U and

i(K̂) ≤ i(K) for all nonempty, compact and symmetric K̂ ⊆ U ;

(3) if K1, K2 ⊆ X \ {0} are nonempty, compact and symmetric, then

i(K1 ∪K2) ≤ i(K1) + i(K2) ;

(4) if Y is also a metrizable topological vector space, K ⊆ X \ {0} is nonempty,

compact and symmetric and π : K → Y \{0} is continuous and odd, then we have

i(π(K)) ≥ i(K);

(5) if X is a real normed space with 1 ≤ dimX <∞, then we have

i({u ∈ X : ‖u‖ = 1}) = dimX .

Well known examples are the Krasnosel’skii genus and the Z2-cohomological index

introduced by Fadell and Rabinowitz.

We are now able to recall the definition of variational eigenvalues of the p-Laplacian of

a p-quasi open set A ⊆ Ω,

(5) λpm(A) := inf
K∈Km

sup
u∈K

∫
A

|∇u|p dLN ,

for all m ≥ 1 and where Km denotes the family of compact and symmetric (i.e. K = −K)

subsets of the manifold

M =

{
u ∈ W 1,p

0 (A) :

∫
A

|u|p dLN = 1

}
,

such that i(K) ≥ m. The fact that the values λpm(A) defined above (if finite) are eigen-

values of the problem (4) follows because the functional
∫
A
|∇u|p dLN restricted to the

manifold M satisfies the Palais Smale condition at any c ∈ R and then using classical

results of critical point theory. Unfortunately, it is not known whether all the eigenvalues

of (4) are of the inf-sup form (5) and this is a major open problem in this field.

We want now to extend this construction to p-capacitary measures. Let µ ∈ Mp
0(Ω)

and we define the space

W 1,p
0 (µ) :=

{
u ∈ W 1,p

0 (Ω) :

∫
Ω

|u|p dµ < +∞
}
.
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We now introduce the “variational eigenvalues” for the problem (formally written as)

(6)

−∆pu+ |u|p−2uµ = λ|u|p−2u in Ω ,

u ∈ W 1,p
0 (µ) .

We define (assuming that W 1,p
0 (µ) 6= {0})

(7) λpm(µ) := inf
K∈Km

sup
u∈K

fµ(u),

for all m ≥ 1 and where Km denotes the family of compact and symmetric (i.e. K = −K)

subsets of the manifold

M =

{
u ∈ W 1,p

0 (µ) :

∫
Ω

|u|p dLN = 1

}
,

such that i(K) ≥ m. For the definition of variational eigenvalues in a more general

setting also with sign-changing capacitary measures and more properties, in particular

the fact that the inf-sup values defined in (7) play the role of eigenvalues for problem (6),

see [9, Section 4 and 8]. It is standard to check that, if A ⊆ Ω is a p-quasi open set and

µ =∞Ω\A, then

W 1,p
0 (µ) = W 1,p

0 (A), λpm(µ) = λpm(A), for all integer m ≥ 1.

Moreover, if µ1 ≤ µ2, we have λpm(µ1) ≤ λpm(µ2) for all m ≥ 1, in particular,

λpm(µ) ≥ λpm(Aµ), for all integer m ≥ 1.

Eventually, it is important to recall the following lower semicontinuity of the Lebesgue

measure of the σ-finiteness sets with respect to the γp-convergence, see [9, Corollary 5.26].

Lemma 2.2. Let µ(n) be γp-convergent to µ in Mp
0(Ω), then we have

LN(Aµ) ≤ lim inf
n→∞

LN(Aµ(n)).

On the other hand, the notion of γp-convergence and the notion of perimeter do not

seem to interact well with each other. We will deal with this topic in Section 4.
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3. Continuity of nonlinear eigenvalues with respect to the

γp-convergence

Differently from the case p = 2, where the classical theory of linear operators provides

general results asserting the continuity of eigenvalues with respect to the γ2-convergence

of capacitary measures, the case p 6= 2 requires a different approach and more complicated

arguments when dealing with the inf-sup values (7). The results that we recall here are

mostly taken from [8, 9]. Instead of presenting the proof, we give a sketch of the main

ideas behind it. The first step consists in working with inf-sup values in the Lp(Ω) setting.

We define

(8) λ̂pm(µ) := inf
K̂∈K̂m

sup
u∈K̂

fµ(u),

for all m ≥ 1 and where K̂m denotes the family of compact and symmetric (i.e. K̂ = −K̂)

subsets of the manifold

M̂ =

{
u ∈ Lp(Ω) :

∫
Ω

|u|p dLN = 1

}
,

such that i(K̂) ≥ m. A priori it is not clear if the inf-sup values defined in (8) coincide with

the “real” variational eigenvalues (7), but one can prove for them a lower semicontinuity

result (see [9, Section 7]). Then, one needs to prove the equality of the two inf-sup values,

and an upper semicontinuity result. These are related to an approach proposed in [8]

and expanded in [9], which consists in reducing to inf-sup over finite dimensional spaces,

on which all the topologies coincide. We recall first the continuity result for the inf-sup

values (8), for the proofs, we refer to [9, Section 3].

Lemma 3.1. Let (µ(n)) be a sequence that γp-converges to µ in Mp
0(Ω). Then

λ̂pm(µ) = lim
n→∞

λ̂pm(µ(n)), for all m ≥ 1.

We introduce now the subfamily K̂finm of K’s in K̂m such that K is contained in a finite

dimensional subspace of Lp(Ω), and it is possible to prove the following result.

Lemma 3.2. For every integer m ≥ 1 and every µ ∈Mp
0(Ω), we have

inf
K̂∈K̂m

sup
u∈K̂

fµ(u) = inf
K̂∈K̂finm

sup
u∈K̂

fµ(u).
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Since in finite dimension all the topologies are equivalent, the above lemmas provide the

desired continuity of nonlinear variational eigenvalues with respect to the γp-convergence,

which is summarized here (see [9, Section 8]).

Theorem 3.1. Let (µ(n)) be a sequence that γp-converges to µ in Mp
0(Ω). Then

λpm(µ) = lim
n→∞

λpm(µ(n)), for all m ≥ 1.

3.1. Optimization of nonlinear eigenvalues with measure constraint. At this

point we have all the tools to prove a first shape optimization result, which was solved

in [9] in a more general framework and with a slightly different point of view.

Theorem 3.2. Let k ∈ N, c ∈ (0,LN(Ω)] and F : Rk → R be nondecreasing in each

variable and lower semicontinuous. There exists an optimal p-quasi open set for the

problem

(9) min
{
F (λp1(A), . . . , λpk(A)) : A ⊆ Ω, p-quasi open, LN(A) = c

}
.

Proof. Of course the class of admissible sets is not empty, since c ≤ LN(Ω). We take a

minimizing sequence (A(n)) and consider the associated capacitary measures∞Ω\A(n) , that

(up to subsequences) γp-converge to a certain µ ∈ Mp
0(Ω), by Theorem 2.2. Moreover,

we have that, by Theorem 3.1 and the monotonicity of the eigenvalues,

λpm(Aµ) ≤ λpm(µ) = lim
n→∞

λpm(A(n)), for all integer m ≥ 1.

Aµ is a p-quasi open set with LN(Aµ) ≤ c thanks to the lower semicontinuity of the

measure (see Lemma 2.2). If LN(Aµ) = c, we have finished, otherwise it is enough to

consider the set

Ãµ := (Aµ ∪BR) ∩ Ω,

for a suitable radius R > 0 such that LN(Ãµ) = c. We note that finding such a radius is

possible thanks to the continuity of the Lebesgue measure and the fact that c ≤ LN(Ω).

Then Ãµ is p-quasi open and

λpm(Ãµ) ≤ λpm(Aµ), for all integer m ≥ 1,

whence the proof is concluded. �
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Generalizations and open problems.

(1) A major open problem is to get rid of the equiboundedness assumption in the class

of the admissible sets, i.e. one wants to be able to consider the case Ω = RN . This

problem has been solved only for p = 2, see [1, 3, 13], but the extension to the

nonlinear case seems highly nontrivial.

(2) Another important topic is the regularity of solutions, which has been deeply

investigated in the case p = 2, see for example [14, 12], while for the case of

nonlinear eigenvalues very little is known, up to our knowledge, and the techniques

for the case p = 2 do not seem to be easily extendable.

4. Optimization of nonlinear eigenvalues with perimeter constraint

We want now to consider the case of a perimeter constraint. We recall the definition of

De Giorgi perimeter.

Definition 4.1. Let M ⊆ RN be a measurable set, we call (De Giorgi) perimeter of M

P (M) := sup

{∫
RN
χMdivϕdLN : ϕ ∈ C∞c (RN ;RN), ‖ϕ‖L∞ ≤ 1

}
,

where χM denotes the characteristic function of the set M .

First of all, it is important to note that, in principle, the γp-convergence (even of p-quasi

open sets) does not seem to get along well with the De Giorgi perimeter.

Example 4.1. Let Bi ⊆ R2 be (open) balls of radius i, for i = 1, 2, centered at the

origin. We take (xk)k ∈ N an enumeration of the rational numbers in (0, 1) and we

consider A(n) := B2 \∪nk=1∂Bxk . It is clear that A(n) γp-converges to A := B2 \B1, that is

the capacitary measures ∞RN\A(n) γp-converge to ∞RN\A in the sense of Definition 2.10.

Keeping in mind the definition of De Giorgi perimeter,

P (A) = P (B2) + P (B1), while P (A(n)) = P (B2), for all n.

This construction can be easily extended also to higher dimension.
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In this section we follow the approach proposed in [2] for the case p = 2 and adapt it

to nonlinear variational eigenvalues. First of all, we need to define eigenvalues also on

measurable sets. We employ Lemma 2.1 to provide the following definition.

Definition 4.2. Let M ⊆ Ω be a measurable set. Then for all integer m ≥ 1, we define

λ̃pm(M) := λpm(ΩM),

where ΩM ⊆ M a.e. is the p-quasi open set such that W̃ 1,p
0 (M) = W 1,p

0 (ΩM), see

Lemma 2.1.

It is important to note that, recalling Lemma 2.1, it holds λ̃pm(A) ≤ λpm(A) for a

generic p-quasi open set A ⊆ Ω, while λ̃pm(ΩM) = λpm(ΩM) for all integer m ≥ 1. It is

then possible, thanks to the lower semicontinuity of nonlinear eigenvalues with respect to

the γp-convergence, to prove an existence result in the class of measurable sets under a

perimeter constraint. We need first a technical lemma.

Lemma 4.1. Let Ω ⊆ RN be a bounded domain, (A(n)) ⊆ Ω be a sequence of p-quasi

open sets γp-converging to a capacitary measure µ ∈Mp
0(Ω). Let (M (n)) be a sequence of

measurable sets such that M (n) ⊇ A(n) for all n ∈ N, which is converging to a measurable

set M∗ in L1 (that is, the sequence χM(n) converges to χM∗ in L1(Ω) as n→ +∞). Then

we have

|Aµ \M∗| = 0.

Proof. By definition of γp-convergence, we have that (wA(n)(Ω)) is weakly convergent in

W 1,p
0 (Ω) to wµ(Ω) and we recall that Aµ = {wµ(Ω) > 0}. Up to pass to subsequences,

the convergence is also pointwise a.e. in Ω. Hence, for all x ∈ Ω such that the pointwise

convergence holds, if wµ(Ω)(x) > 0, then for n sufficiently big it must be wA(n)(Ω)(x) > 0,

that is, x ∈ A(n). In other words, we have

χAµ(x) ≤ lim inf
n→+∞

χA(n)(x).

We are in position to conclude, as (using also Fatou lemma)

|Aµ \M∗| ≤ lim inf
n→+∞

|A(n) \M∗| ≤ lim inf
n→+∞

|M (n) \M∗| = 0. �
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Theorem 4.1. Let k ∈ N, L > 0 and F : Rk → R be a function nondecreasing in each

variable and lower semicontinuous. Then there exists a minimizer for the problem

(10) min
{
F (λ̃p1(M), . . . , λ̃pk(M)) : M ⊆ Ω, measurable, P (M) ≤ L

}
.

Proof. Since Ω ⊂ RN is a bounded domain, we can find a ball Br ⊆ Ω with P (Br) ≤ L, up

to take r > 0 small enough, whence the class of admissible sets is not empty. We consider

a minimizing sequence (M (n)) with P (M (n)) ≤ L and we can extract a subsequence (not

relabeled) and a measurable set M∗ such that

χM(n) → χM∗ , in L1(Ω), as n→ +∞,

hence P (M∗) ≤ lim infn P (M (n)) ≤ L. By Lemma 2.1 there exist p-quasi open sets

A(n) ⊆ M (n) with λpm(A(n)) = λ̃pm(M (n)) for all integer m ≥ 1. By the compactness

of the γp-convergence (Theorem 2.2), we find a capacitary measure µ ∈ Mp
0(Ω) and a

subsequence (not relabeled) so that

∞Ω\A(n)

γp→ µ, as n→ +∞,

and |Aµ \M∗| = 0 by Lemma 4.1. Then, by monotonicity of the eigenvalues and the

assumptions on F , we have

F (λ̃p1(M∗), . . . , λ̃pk(M
∗)) ≤ F (λ̃p1(Aµ), . . . , λ̃pk(Aµ)) ≤ F (λp1(Aµ), . . . , λpk(Aµ))

≤ F (λp1(µ), . . . , λpk(µ)) = lim
n→+∞

F (λp1(A(n)), . . . , λpk(A
(n)))

= lim
n→+∞

F (λ̃p1(M (n)), . . . , λ̃pk(M
(n))),

therefore M∗ is a solution to (10). �

Generalizations and open problems.

(1) One can consider also the double constraint of measure and perimeter in prob-

lem (10), as it was done in [3] for p = 2,

min
{
F (λ̃p1(M), . . . , λ̃pk(M)) : M ⊆ Ω, measurable, P (M) ≤ L, LN(M) ≤ c

}
and existence of a minimizer follows as in Theorem 4.1 (if L, c are such that

the class of admissible sets is not empty), since the Lebesgue measure is lower

semicontinuous with respect to the L1 convergence. In this case it is important to
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have also the measure constraint with an inequality, as the equality constraint on

the measure creates additional difficulties.

(2) It is clear that in the case of the perimeter constraint, we have proved a rather

weak result, in the class of measurable sets and we are not able to say whether

optimal sets are even (p-quasi )open. This is unfortunately due to the fact that

the proof requires to manage both p-quasi open and measurable sets.

(3) A main open problem, as in the case of measure constraint, is to prove first ex-

istence of minimizers among measurable sets of RN , that is, without the a priori

assumption of being contained in the box Ω. Then a second step is to prove a

regularity result for optimal sets. In the case p = 2 these two results are contained

in the seminal paper by De Philippis and Velichkov [7]. Unfortunately, their tech-

niques rely heavily on the fact that they work with a linear operator, thus do not

seem easily extendable to the case p 6= 2.
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