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Abstract. We study the interior regularity of weak solutions to subelliptic quasilinear

PDEs in Carnot groups of the form

m1∑
i=1

Xi

(
Φ(|∇Hu|2)Xiu

)
= 0.

Here ∇Hu = (X1u, . . . ,Xm1u) is the horizontal gradient, δ > 0 and the exponent p ∈

[2, p∗), where p∗ depends on the step ν and the homogeneous dimension Q of the group,

and it is given by

p∗ = min

{
2ν

ν − 1
,

2Q+ 8

Q− 2

}
.

Sunto. Studiamo la regolarità interna delle soluzioni deboli di EDP, quasilineari subel-

littiche in gruppi di Carnot, della forma

m1∑
i=1

Xi

(
Φ(|∇Hu|2)Xiu

)
= 0.

Qui ∇Hu = (X1u, . . . ,Xm1
u) è il gradiente orizzontale, δ > 0 e l’esponente p ∈ [2, p∗),

dove p∗ dipende dal passo ν e dalla dimensione omogenea Q del gruppo ed è dato da

p∗ = min

{
2ν

ν − 1
,

2Q+ 8

Q− 2

}
.

2010 MSC. Primary: 35H20; Secondary: 35D30.

Keywords. Carnot groups, Riemannian approximation, subelliptic, p-Laplacian.

Bruno Pini Mathematical Analysis Seminar, Vol. 11-1 (2020) pp. 119–142

Dipartimento di Matematica, Università di Bologna
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120 ANDRÁS DOMOKOS AND JUAN J. MANFREDI

1. Introduction

In this article we consider C∞-smoothness of weak solutions to equations of non-

degenerate p-Laplacian type in Carnot groups of arbitrary step. The basic equation

is

∆H,pu(x) =

m1∑
i=1

Xi

(
(δ2 + |∇Hu|2)

p−2
2 Xiu

)
= 0,

where ∇Hu = (X1u, . . . , Xm1u) is the horizontal gradient and p ∈ [2, p∗), where p∗ depends

on the step ν and the homogeneous dimension Q and it is given by

p∗ = min

{
2ν

ν − 1
,

2Q+ 8

Q− 2

}
.

Non-degenerate refers to the fact that δ > 0.

The C∞-regularity is well-known in the linear case when p = 2, [Hör67]. For groups

that admit a Hilbert-Haar coordinate system, one can generalize a method of Miranda

[Mir65] to established Lipschitz bounds for solutions of the Dirichlet problem with smooth

boundary data. For the case of the Heisenberg group this fact was first noted by Zhong

[Zho17], and extended by us to the Hilbert-Haar case, [DM20] also presented at this

conference. Boundedness of the horizontal gradients is the key step, from which we get

higher regularity, see [Cap99] and [DM09]. We also refer to [DM20] for a more detailed

history of the problem. The purpose of this note is to remove the Hilbert-Haar condition,

in order to prove the regularity result in arbitrary Carnot groups.

Our new ingredient is the method of Riemannian approximations from Capogna-Citti

[CC16]. In addition to removing the Hilbert-Haar condition that requires a variational

structure, this method allows to treat some non-variational problems

(1.1)

m1∑
i=1

Xi (ai(∇Hu)) = 0, in Ω ,

where Ω ⊂ G is a domain and the coefficients a(ξ) = (a1(ξ), a2(ξ), . . . , am1(ξ)) satisfy the

Uhlenbeck structure condition

a(ξ) = Φ(|ξ|2)ξ,
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where Φ : [0,∞) → [0,∞) is an increasing and smooth function such that the ellipticity

condition

(1.2)
1

M

(
δ2 + t

) p
2
−1 ≤ Φ(t) + 2tΦ′(t) ≤M

(
δ2 + t

) p
2
−1

holds. See [Uhl77].

It is easy to see that (1.2) implies that there exists L > 0 such that the following

properties hold for all ξ, η ∈ Rm1 :

m1∑
i,j=1

∂ai
∂ξj

(ξ) ηiηj ≥ L
(
δ2 + |ξ|2

) p−2
2 |η|2 ,(1.3)

m1∑
i,j=1

∣∣∣∣∂ai∂ξj
(ξ)

∣∣∣∣ ≤ L−1
(
δ2 + |ξ|2

) p−2
2
,(1.4)

|ai(ξ)| ≤ L−1
(
δ2 + |ξ|2

) p−1
2 .(1.5)

Also, note that property (1.3) implies that

(1.6)

m1∑
i=1

ai(ξ)ξi ≥
L

p− 1

(
δ2 + |ξ|2

) p−2
2 |ξ|2 .

Consider the following Sobolev space adapted to the horizontal system of vector fields:

W 1,p
H (Ω) =

{
u ∈ Lp(Ω) : Xiu ∈ Lp(Ω) , for all 1 ≤ i ≤ m1

}
.

A function u ∈ W 1,p
H (Ω) is a weak solution of the equation (1.1) if

(1.7)

m1∑
i=1

∫
Ω

ai(∇Hu(x)) Xiφ(x)dx = 0 , for all φ ∈ C∞0 (Ω) .

Our main result is the following.

Theorem 1.1. Let G be a Carnot group of step ν and homogeneous dimension Q. For

values of p satisfying

2 ≤ p < min

{
2ν

ν − 1
,

2Q+ 8

Q− 2

}
,

any weak solution u ∈ W 1,p
H (Ω) to (1.1), with δ > 0, belongs to C∞(Ω).

Given the technical nature of regularity proofs, we will provide full details of the proof

for the special case of Goursat groups. The general case is treated similarly, adding only
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technical modifications that would have made this manuscript longer than what it already

is.

The structure of the paper is as follows. In Section §2 we provide background on Carnot

groups and Riemannian approximations. We establish integral estimates of Cacciopoli and

Gagliardo-Nirenberg type in Section §3. The core of the paper is in Section §4, where we

establish the boundedness of the horizontal gradient. The condition δ > 0 is needed for

the Moser iteration in Lemma 4.5. The results of §3 and Lemma 4.3 (difference quotient

estimates) and Lemma 4.4 (higher integrability for the vertical derivatives) hold uniformly

in δ.

Acknowledgments: This research was presented by one of us (Manfredi) at the con-

ference “Something about nonlinear problems” held at the University of Bologna, June

13–14, 2019. We thank the organizers for their invitation to attend this conference, and

INDAM-GNAMPA, the University of Bologna, and project GHAIA for their support.

2. Carnot Groups and Riemannian Approximations

Consider a Carnot group (G, ·) = (Rn, ·) and a system of left invariant horizontal vector

fields {X1, . . . , Xm1}, m1 < n, which generates the Lie algebra g of G. We assume that g

admits a stratification

(2.1) g =
ν⊕
s=1

V s ,

where ν ∈ N, ν ≥ 2 and

(i) {X1, ..., Xm1} is a basis of V 1,(2.2)

(ii) [V 1, V s] = V s+1 if s ≤ ν − 1,(2.3)

(iii) [V 1, V ν ] = {0} .(2.4)

Let us denote dimV s = ms for all 1 ≤ s ≤ ν . The homogeneous dimension of G is

defined as Q =
∑ν

s=1 sms.

Definition 2.1. We say that a Carnot group G of step ν defined on Rν+1 is a Goursat

group if it admits a system of horizontal vector fields {X1, X2} and the only non-zero
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commutators are

(2.5) [X1, Xi] = Xi+1, 2 ≤ i ≤ ν .

Consider an arbitrary, but fixed 0 < ε < 1. Define the following vector fields:

• For i ∈ {1, 2}, define Xε
i = Xi.

• For i ∈ {3, . . . , ν + 1}, define Xε
i = εi−2Xi.

Formula (2.5) implies the following commutator relations:

(2.6) [Xε
1 , X

ε
i ] =

1

ε
Xε
i+1, 2 ≤ i ≤ ν.

In the process of the Riemannian approximation the following gradients will be used:

• ∇H = (X1, X2), the horizontal or sub-Riemannian gradient,

• ∇V = (X3, ..., Xν+1), the vertical gradient,

• ∇ε = (Xε
1 , ..., X

ε
ν+1) = (X1, X2, εX3, . . . , ε

ν−1Xν+1), the Riemannian gradient.

We define a Riemannian metric gε in g by declaring {Xε
1 . . . , X

ε
ν+1} to be an orthonormal

basis. We also note that the adjoint of the vector field Xi with respect to the Haar measure

is X∗i = −Xi.

Our equation (1.1) is now

(2.7) X1

(
Φ(|∇Hu|2)X1u

)
+X2

(
Φ(|∇Hu|2)X2u

)
= 0.

We approximate a local weak solution u of this equation by the solutions uε of the quasi-

linear elliptic PDE

(2.8)
ν+1∑
i=1

Xε
i (ai(∇εu)) = 0 , in Ω ,

where

ν+1∑
i=1

Xε
i (ai(∇εu)) =

ν+1∑
i=1

Xε
i

(
Φ(|∇εu|2)Xε

i u
)

= X1

(
Φ(|∇εu|2)X1u

)
+X2

(
Φ(|∇εu|2)X2u

)
+

ν+1∑
i=3

ε2i−4Xi

(
Φ(|∇εu|2)Xiu

)
.
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We have extended the functions ai(ξ) = Φ(|ξ|2)ξi from the horizontal layer of dimension

m1 = 2 to all vectors ξ ∈ g. Note that ai(ξ) does not depend on ε because of our choice

of orthonormal basis.

Since this equation is not degenerate and we are in the elliptic (Riemannian) case,

classical regularity theory applies and weak solutions uε of the non-degenerate quasilinear

elliptic equation (2.8) are smooth in Ω. See for example [LU68]. The task at hand is to

find estimates for uε that are independent of ε, so that they also apply to u.

We denote by Bε
r(x) and Br(x) respectively, the Riemannian and sub-Riemannian balls

centered at x with radius r. We often omit the center x when it is clear from the context.

The first inequality independent of ε that we need is the doubling property for concentric

balls

(2.9) |Bε
2r| ≤ C|Bε

r |,

for 0 ≤ r ≤ 1 with a constant independent of ε. See [CCR13, CC16] where the techniques

of [NSW85] are extended to prove (2.9).

The second inequality independent of ε that we need, is the Poincaré inequality. It

follows from [Jer86] and the doubling property (2.9). See [CC16] for a detailed discussion

of Riemannian approximations.

3. Integral Estimates

The following Gagliardo-Nirenberg type inequality depends only on integration by

parts, and hence it is true for any function with the necessary differentiability and integra-

bility conditions. A slightly different version was obtained in the case of the Heisenberg

group in [MZGZ09, Lemma 4.2]. As the usual notations for arbitrary small numbers, ε

and δ, are already used for other things, in proofs we will use 1
100

for a sufficiently small

positive constant, which will help us embedding its term from the right into the left side.

Lemma 3.1. Let u ∈ C∞(Ω), β ≥ 0 and η ∈ C∞0 (Ω). Then there exists a constant c > 0

depending on p, ν and β and independent of ε and δ, such that∫
Ω

η2(δ2 + |∇εu|2)
p+2
2

+β dx ≤ c

∫
Ω

(δ2η2 + |∇εη|2u2) (δ2 + |∇εu|2)
p
2

+β dx
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+ c

∫
Ω

u2η2 (δ2 + |∇εu|2)
p−2
2

+β |∇ε∇εu|2 dx .

Proof. For any index 1 ≤ k ≤ ν + 1 consider the integral∫
Ω

η2(δ2 + |∇εu|2)
p
2

+β (Xε
ku)2 dx

= −
∫

Ω

Xε
k

(
η2(δ2 + |∇εu|2)

p
2

+βXε
ku
)
u dx

= −
∫

Ω

2ηXε
kη (δ2 + |∇εu|2)

p
2

+βXε
kuu dx

−
∫

Ω

η2
(p

2
+ β

)
(δ2 + |∇εu|2)

p−2
2

+β

ν+1∑
i=1

2Xε
i uX

ε
kX

ε
i uX

ε
kuu dx

−
∫

Ω

η2(δ2 + |∇εu|2)
p
2

+βXε
kX

ε
kuu dx

= (I1) + (I2) + (I3).

First, let us estimate (I1).

(I1) ≤ c

∫
Ω

|η| |∇εη|(δ2 + |∇εu|2)
p+1
2

+β|u| dx

≤ 1

100

∫
Ω

η2 (δ2 + |∇εu|2)
p+2
2

+β dx

+ c

∫
Ω

|∇εη|2u2 (δ2 + |∇εu|2)
p
2

+β dx .

The estimates of (I2) and (I3) are similar.

(I2) + (I3) ≤ c

∫
Ω

η2 (δ2 + |∇εu|2)
p
2

+β |∇ε∇εu| |u| dx

≤ 1

100

∫
Ω

η2 (δ2 + |∇εu|2)
p+2
2

+β dx

+ c

∫
Ω

η2u2 (δ2 + |∇εu|2)
p−2
2

+β |∇ε∇εu|2 dx .

The final estimate of this lemma is obtained by summing all inequalities for 1 ≤ k ≤ ν+1,

adding the term ∫
Ω

δ2η2
(
δ2 + |∇εu|2

) p
2

+β

to both sides, and embedding the first terms of the right hand sides into the left side. �

The following lemma can be considered a mixed Gagliardo-Nirenberg type inequality.
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Lemma 3.2. Let uε ∈ C∞(Ω) be a solution of (2.8), β ≥ 1 and η ∈ C∞0 (Ω). Then there

exists a constant c > 0 depending on L, p, ν and β and independent of ε and δ, such that∫
Ω

η2(δ2 + |∇εuε|2)
p
2 |∇Vuε|2β dx

≤ c

∫
Ω

(δ2η2 + |∇εη|2u2
ε) (δ2 + |∇εuε|2)

p−2
2 |∇Vuε|2β dx

+ cβ2

∫
Ω

u2
εη

2 (δ2 + |∇εuε|2)
p−2
2 |∇Vuε|2β−2 |∇ε∇Vuε|2 dx .

Proof. To prove this lemma, in the weak form of (2.8) we substitute the test functions

φ = η2 uε (Xkuε)
2β, 3 ≤ k ≤ ν + 1. Therefore,∑

i

∫
Ω

ai(∇εuε) η
2Xε

i uε (Xkuε)
2β dx

+
∑
i

∫
Ω

ai(∇εuε) 2ηXε
i η uε (Xkuε)

2β dx

+
∑
i

∫
Ω

ai(∇εuε) η
2 uε 2β(Xkuε)

2β−1Xε
iXkuε dx = 0 .

After summing over 3 ≤ k ≤ ν + 1, adding to both sides the term

1

(ν − 1)β−1

L

p− 1

∫
Ω

η2(δ2 + |∇εuε|2)
p−2
2 δ2 |∇Vuε|2β dx ,

and using the properties (1.5) and (1.6), we get the following estimates.

First, ∑
k≥3

∑
i≥1

∫
Ω

ai(∇εuε) η
2Xε

i uε (Xkuε)
2β dx

+
1

(ν − 1)β−1

L

p− 1

∫
Ω

η2(δ2 + |∇εuε|2)
p−2
2 δ2 |∇Vuε|2β dx

≥ 1

(ν − 1)β−1

L

p− 1

∫
Ω

η2(δ2 + |∇εuε|2)
p
2 |∇Vuε|2β dx .

Second, ∑
k≥3

∑
i≥1

∫
Ω

ai(∇εuε) 2ηXε
i η uε (Xkuε)

2β dx

≤ c

∫
Ω

(δ2 + |∇εuε|2)
p−1
2 |η| |∇εη| |uε| |∇Vuε|2β dx
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≤ 1

100

∫
Ω

η2(δ2 + |∇εuε|2)
p
2 |∇Vuε|2β dx

+ c

∫
Ω

|∇εη|2u2
ε (δ2 + |∇εuε|2)

p−2
2 |∇Vuε|2β dx .

Third, ∑
k≥3

∑
i≥1

∫
Ω

ai(∇εuε) η
2 uε 2β(Xkuε)

2β−1Xε
iXkuε dx

≤ c

∫
Ω

(δ2 + |∇εuε|2)
p−1
2 η2 |uε| |∇Vuε|2β−1 |∇ε∇Vuε| dx

≤ 1

100

∫
Ω

η2(δ2 + |∇εuε|2)
p
2 |∇Vuε|2β dx

+ c

∫
Ω

η2u2
ε (δ2 + |∇εuε|2)

p−2
2 |∇Vuε|2β−2 |∇ε∇Vuε|2 dx .

Finishing the proof can be done now by an easy combination of the three estimates from

above. �

The next two lemmas contain generalizations of the Cacciopoli-type inequalities, which

were developed and gradually refined in the case of Heisenberg group in the papers [MM07,

MZGZ09, Zho17, Ric15, CCLDO19].

Lemma 3.3. Let 0 < δ < 1, β ≥ 0 and η ∈ C∞0 (Ω) be such that 0 ≤ η ≤ 1. Then there

exists a constant c > 0 depending on ν, p and L and independent of ε and δ, such that

for any solution uε ∈ C∞(Ω) of (2.8) we have∫
Ω

η2 (δ2 + |∇εuε|2)
p−2
2 |∇Vuε|2β |∇ε∇Vuε|2 dx

≤ c(β + 1)2

∫
Ω

(η2 + |∇εη|2) (δ2 + |∇εuε|2)
p−2
2 |∇Vuε|2β+2 dx .

Proof. In order to accommodate all the terms, we will simplify the writing of (2.8):

(3.1)
∑
i

Xε
i (ai) = 0 .

Also, we set

ωε = δ2 + |∇εuε|2

= δ2 + (X1uε)
2 + (X2uε)

2 + ε2(X3uε)
2 + . . .+ ε2ν−2(Xν+1uε)

2.
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By differentiating (3.1) with respect to Xk, k ≥ 3 and switching Xε
i and Xk we get∑

i

Xε
i (Xk(ai)) = Xk+1a1.

Using the notation aij = ∂ai
∂ξj

, for any φ ∈ C∞0 (Ω) we get

∑
i,j

∫
Ω

aij XkX
ε
juεX

ε
i φ dx = −

∫
Ω

Xk+1a1 φ dx.

Another switch between Xε
j and Xk leads to∑

i,j

∫
Ω

aij X
ε
jXkuεX

ε
i φ dx =−

∫
Ω

Xk+1a1 φ dx

+
∑
i

∫
Ω

ai1Xk+1uεX
ε
i φ dx.(3.2)

Let us use φ = η2 |∇Vuε|2βXkuε in (3.2). Then,

Xε
i φ = 2η Xε

i η |∇Vuε|2βXkuε + η2 β |∇Vuε|2β−2Xε
i (|∇Vuε|2)Xkuε

+ η2|∇Vuε|2βXε
iXkuε ,

and hence ∑
i,j

∫
Ω

aij X
ε
jXkuε 2ηXε

i η |∇Vuε|2βXkuε dx

+
∑
i,j

∫
Ω

aij X
ε
jXkuε η

2 β|∇Vuε|2β−2Xε
i (|∇Vuε|2)Xkuε dx

+
∑
i,j

∫
Ω

aij X
ε
jXkuε η

2 |∇Vuε|2βXε
iXkuε dx

= −
∫

Ω

Xk+1a1 η
2 |∇Vuε|2βXkuε dx

+
∑
i

∫
Ω

ai1Xk+1uε 2η Xε
i η |∇Vuε|2βXkuε dx

+
∑
i

∫
Ω

ai1Xk+1uε η
2 β |∇Vuε|2β−2Xε

i (|∇Vuε|2)Xkuε dx

+
∑
i

∫
Ω

ai1Xk+1uε η
2 |∇Vuε|2βXε

iXkuε dx .
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After writing identical equations for each Xk, k ≥ 3 and summing them, we get an

equation in the following form:

(L1) + (L2) + (L3) = (R1) + (R2) + (R3) + (R4).

We estimate each term.

(L3) ≥ L

∫
Ω

η2 ω
p−2
2

ε |∇Vuε|2β |∇ε∇Vuε|2 dx.

(L2) =
1

2

∑
i,j

∫
Ω

aij X
ε
j (|∇Vuε|2) η2 β |∇Vuε|2β−2Xε

i (|∇Vuε|2) dx

≥ βL

2

∫
Ω

η2 ω
p−2
2

ε |∇Vuε|2β−2 |∇ε(|∇Vuε|2)|2 dx.

(L1) ≤ c

∫
Ω

ω
p−2
2

ε |∇ε∇Vuε| 2η |∇εη| |∇Vuε|2β+1 dx

≤ 1

100

∫
Ω

η2ω
p−2
2

ε |∇Vuε|2β|∇ε∇Vuε|2 dx

+ c

∫
Ω

|∇εη|2 ω
p−2
2

ε |∇Vuε|2β+2 dx.

(R1) =
∑
k

∑
j

∫
Ω

a1j Xk+1X
ε
juε η

2 |∇Vuε|2βXkuε dx

=
∑
k

∑
j

∫
Ω

a1j X
ε
jXk+1uε η

2 |∇Vuε|2βXkuε dx

−
∑
k

∫
Ω

a11Xk+2uε η
2 |∇Vuε|2βXkuε dx

≤ c

∫
Ω

ω
p−2
2

ε |∇ε∇Vuε| η2 |∇Vuε|2β+1 dx+ c

∫
Ω

η2 ω
p−2
2

ε |∇Vuε|2β+2 dx

≤ 1

100

∫
Ω

η2ω
p−2
2

ε |∇Vuε|2β|∇ε∇Vuε|2 dx+ c

∫
Ω

η2 ω
p−2
2

ε |∇Vuε|2β+2 dx.

In a similar way we get that

(R2) + (R3) + (R4) ≤ 1

100

∫
Ω

η2 ω
p−2
2

ε |∇Vuε|2β |∇ε∇Vuε|2 dx

+ c(β + 1)2

∫
Ω

(η2 + |∇εη|2)ω
p−2
2

ε |∇Vuε|2β+2 dx.

We finish the proof by combining all the above estimates. �
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Lemma 3.4. Let 0 < δ < 1, β ≥ 0 and η ∈ C∞0 (Ω) be such that 0 ≤ η ≤ 1. Then there

exists a constant c > 0 depending on ν, p and L and independent of ε and δ, such that

for any solution uε ∈ C∞(Ω) of (2.8) we have∫
Ω

η2 (δ2 + |∇εuε|2)
p−2
2

+β |∇ε∇εuε|2 dx

≤ c(β + 1)4

∫
Ω

η2 (δ2 + |∇εuε|2)
p−2
2

+β |∇Vuε|2 dx

+ c(β + 1)2

∫
Ω

(η2 + |∇εη|2 + η|∇Vη|) (δ2 + |∇εuε|2)
p
2

+β dx.

Proof. Let’s differentiate equation (3.1) with respect to Xε
1 and switch Xε

1 and Xε
i . In

this way we get ∑
i

Xε
i (X

ε
1ai) = −1

ε

∑
i≥2

Xε
i+1ai.

The weak form of this equation looks like∑
i,j

∫
Ω

aij X
ε
1X

ε
juεX

ε
i φ dx = −1

ε

∑
i≥2

∫
Ω

aiX
ε
i+1φ dx .

After switching Xε
j and Xε

1 we get∑
i,j

∫
Ω

aij X
ε
jX

ε
1uεX

ε
i φ dx =− 1

ε

∑
i≥2

∫
Ω

aiX
ε
i+1φ dx

− 1

ε

∑
i;j≥2

∫
Ω

aij X
ε
j+1uεX

ε
i φ dx.(3.3)

Let us use φ = η2 ωβε X
ε
1uε in (3.3).∑

i,j

∫
Ω

aij X
ε
jX

ε
1uε η

2 ωβε X
ε
iX

ε
1uε dx

+
∑
i,j

∫
Ω

aij X
ε
jX

ε
1uε η

2 βωβ−1
ε Xε

i (|∇εuε|2)Xε
1uε dx

+
∑
i,j

∫
Ω

aij X
ε
jX

ε
1uε 2η Xε

i η ω
β
ε X

ε
1uε dx

=− 1

ε

∑
i≥2

∫
Ω

ai η
2 ωβε X

ε
i+1X

ε
1uε dx

− 1

ε

∑
i≥2

∫
Ω

ai η
2 βωβ−1

ε Xε
i+1(|∇εuε|2)Xε

1uε dx
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− 1

ε

∑
i≥2

∫
Ω

ai 2η X
ε
i+1η ω

β
ε X

ε
1uε dx

− 1

ε

∑
i;j≥2

∫
Ω

aij X
ε
i+1uε η

2 ωβε X
ε
iX

ε
1uε dx

− 1

ε

∑
i;j≥2

∫
Ω

aij X
ε
i+1uε η

2 βωβ−1
ε Xε

i (|∇εuε|2)Xε
1uε dx

− 1

ε

∑
i;j≥2

∫
Ω

aij X
ε
i+1uε 2η Xε

i η ω
β
ε X

ε
1uε dx .

Repeat the above calculations for Xε
2 , ..., X

ε
ν+1 and add all equations. In this way we

get an equation in the following format

(L1) + (L2) + (L3) = (R1) + · · ·+ (R6).

We estimate each term.

(L1) =
∑
i,j,k

∫
Ω

aij X
ε
jX

ε
kuε η

2 ωβε X
ε
iX

ε
kuε dx

≥ L

∫
Ω

η2 ω
p−2
2

+β
ε |∇ε∇εuε|2 dx.

(L2) =
∑
i,j

∫
Ω

aij
∑
k

Xε
jX

ε
kuεX

ε
kuε η

2 βωβ−1
ε Xε

i (|∇εuε|2) dx

=
β

2

∑
i,j

∫
Ω

aij X
ε
j (|∇εuε|2) η2 ωβ−1

ε Xε
i (|∇εuε|2) dx

≥ βL

2

∫
Ω

η2ω
p−2
2

+β−1
ε |∇ε(|∇εuε|2) dx.

L(3) ≤ c

∫
Ω

ω
p−2
2

ε |∇ε∇εuε| η |∇εη|ωβ+ 1
2

ε dx

≤ 1

100

∫
Ω

η2 ω
p−2
2

+β
ε |∇ε∇εuε|2 dx+ c

∫
Ω

|∇εη|2 ω
p
2

+β
ε dx .

For (R1), each of its terms must be evaluated in the same way. We will show it for k = 1.

Also, we use the notation that Xε
m = 0 if m > ν + 1.

− 1

ε

∑
i≥2

∫
Ω

ai η
2 ωβε X

ε
i+1X

ε
1uε dx

= −1

ε

∑
i≥2

∫
Ω

ai η
2 ωβε (Xε

1X
ε
i+1uε −

1

ε
Xε
i+2uε) dx
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=
1

ε

∑
i≥2

∫
Ω

Xε
1(ai η

2 ωβε )Xε
i+1uε dx+

1

ε2

∑
i≥2

∫
Ω

ai η
2 ωβε X

ε
i+2uε dx

=
∑
i≥2;j

∫
Ω

aij X
ε
1X

ε
juε η

2 ωβε ε
i−2Xi+1uε dx

+
∑
i≥2

∫
Ω

ai 2η X
ε
1η ω

β
ε ε

i−2Xi+1uε dx

+
∑
i≥2

∫
Ω

ai η
2 βωβ−1

ε 2〈∇εuε, X
ε
1∇εuε〉 εi−2Xi+1uε dx

+
∑
i≥2

∫
Ω

ai η
2 ωβε ε

i−2Xi+2uε dx

≤ c

∫
Ω

ω
p−2
2

+β
ε |∇ε∇εuε| η2 |∇Vuε| dx+ c

∫
Ω

ω
p−1
2

+β
ε η |∇εη| |∇Vuε| dx

+ cβ

∫
Ω

ω
p−2
2

+β
ε η2 |∇ε∇εuε| |∇Vuε| dx

+ c

∫
Ω

ω
p−1
2

+β
ε η2 |∇Vuε| dx

≤ 1

100

∫
Ω

η2 ω
p−2
2

+β
ε |∇ε∇εuε|2 dx+ c(β + 1)2

∫
Ω

η2 ω
p−2
2

+β
ε |∇Vuε|2 dx

+ c

∫
Ω

(η2 + |∇εη|2)ω
p
2

+β
ε dx .

The estimate of (R2) depends also on integration by parts.

(R2) = −2β

ε

∑
i≥2

∑
j≥1

∫
Ω

ai η
2 ωβ−1

ε Xε
juεX

ε
i+1X

ε
juεX

ε
1uε dx

= −2β

ε

∑
i≥2

∑
j≥1

∫
Ω

ai η
2 ωβ−1

ε Xε
juεX

ε
jX

ε
i+1uεX

ε
1uε dx

+
2β

ε2

∑
i≥2

∫
Ω

ai η
2 ωβ−1

ε Xε
1uεX

ε
i+2uεX

ε
1uε dx

=
2β

ε

∑
i≥2

∑
j≥1

∫
Ω

Xε
j

(
ai η

2 ωβ−1
ε Xε

juεX
ε
1uε
)
Xε
i+1uε dx

+
2β

ε2

∑
i≥2

∫
Ω

ai η
2 ωβ−1

ε Xε
1uεX

ε
i+2uεX

ε
1uε dx.
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After applying the product rule in the first integral we find that

(R2) ≤ c(β + 1)2

∫
Ω

η2 ω
p−2
2

+β
ε |∇ε∇εuε| |∇Vuε| dx

+ c(β + 1)

∫
Ω

ω
p−1
2

+β
ε (η2 + η |∇εη|) |∇Vuε| dx

≤ 1

100

∫
Ω

η2 ω
p−2
2

+β
ε |∇ε∇εuε|2 dx

+ c(β + 1)4

∫
Ω

η2 ω
p−2
2

+β
ε |∇Vuε|2 dx

+ c(β + 1)2

∫
Ω

(η2 + |∇εη|2)ω
p
2

+β
ε dx.

The estimates for (R3) ... (R6) are similar and left to the reader. �

4. Difference quotients and De Giorgi-Moser iterations

In this section we will construct de Giorgi-Moser type iteration schemes leading to local

bounds independent of ε for ∇Vuε and ∇εuε.

For any Z ∈ g we denote by eZ the group exponential. Consider an arbitrary x ∈ Ω

and s > 0 such that x e±sZ ∈ Ω. For any function u : Ω → R and θ > 0 we define the

difference quotient

(4.1) DZ,±s,θu(x) =
u(xe±sZ)− u(x)

±sθ
.

We recall the following lemma about the connection between the differentiability of a

function u and the control of the Lp norm of its difference quotients (see, for example,

[Hör67] or [Cap97]).

Lemma 4.1. Let K be a compact set included in Ω, Z be a left invariant vector field and

u ∈ Lploc(Ω). If there exist σ and C, two positive constants, such that

sup
0<|s|≤σ

‖DZ,s,1u‖Lp(K) dx ≤ C

then Zu ∈ Lp(K) and ||Zu||Lp(K) ≤ C.

Conversely, if Zu ∈ Lp(K) then for some σ > 0

sup
0<|s|≤σ

‖DZ,s,1u‖Lp(K) dx ≤ 2||Zu||Lp(K) .
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The De Giorgi-Moser type iterations, which later will lead to the boundedness of the

horizontal gradient, require the following lemmas providing estimates with constants in-

dependent of ε.

The first result is a direct consequence of the Baker-Campbell-Hausdorff formula [Hör67]

and the fact that |∇Hu| ≤ |∇εu|.

Lemma 4.2. Let Z ∈ Vi, u ∈ C∞(Ω), σ > 0 and r > 0 such that Bε
3r ⊂ Ω. Then there

exists a positive constant c independent of u and ε, such that

(4.2) sup
0<|s|≤σ

∫
Bεr

∣∣∣DZ,s, 1
i
u(x)

∣∣∣p dx ≤ c

∫
Bε2r

(|u|p + |∇εu|p) dx .

The following lemma provides a uniform local Lp-bound for the vertical gradient.

Lemma 4.3. Let uε ∈ C∞(Ω) be a solution of (2.8) and r > 0 such that Bε
3r ⊂ Ω .

If 2 ≤ p < 2ν
ν−1

, then there exists a positive constant c depending on r, ν, p and L, but

independent of ε and δ, such that

(4.3)

∫
Bεr

|∇Vuε|p dx ≤ c

∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx .

Proof. We start the proof by substituting into the weak form of the equation (2.8) the

test function

φ(x) = DXν+1,−s, 1ν

(
η2DXν+1,s,

1
ν
uε(x)

)
,

where η is a cut-off function between Bε
r/2 and Bε

r . As Xν+1 commutes with any other

vector field Xε
i , similarly to the proof of [Dom08, Theorem 2.1], we can use Lemma 4.2

and the properties of second order difference quotients to obtain that

sup
0<|s|≤σ

∫
Bε
r/2

∣∣∣DXν+1,s,
1
ν

+ 2
νp
u(x)

∣∣∣p dx ≤ c

∫
Bε2r

(
δ2 + |∇εu|2

) p
2 dx .

We can now restart the estimates with the test function

φ(x) = DXν+1,−s, 1ν+ 2
νp

(
η2DXν+1,s,

1
ν

+ 2
νp
uε(x)

)
,

where η is a cut-off function between Bε
r/4 and Bε

r/2. Continuing in this way we will

increase the fractional differentiability order to

γk =
1

ν
+

2

νp
+ · · ·+ 2k−1

νpk−1
.
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Note that, there exists k ∈ N such that γk > 1 if and only if

2 ≤ p <
2ν

ν − 1
.

Therefore, for this interval of p, after some rescaling we obtain that

(4.4)

∫
Bεr

|Xν+1uε|p dx ≤ c

∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx .

If we repeat the proof of Lemma 3.3 for β = 0 and φ = η2Xν+1uε we obtain that

(4.5)

∫
Bεr

(
δ2 + |∇εuε|2

) p−2
2 |∇εXν+1uε|2 dx ≤ c

∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx .

We continue the proof by considering a test function

φ(x) = DXν ,−s, 1
ν−1

(
η2DXν ,s,

1
ν−1

uε(x)
)
.

The only non-zero commutator will show up from the term

Xε
1φ(x) = DXν ,−s, 1

ν−1
Xε

1

(
η2DXν ,s,

1
ν−1

uε(x)
)

− s1− 1
ν−1Xν+1

(
η2DXν ,s,

1
ν−1

uε

)
(xe−sXν ) .

Therefore, the weak form of (2.8) will look like∑
i

∫
Ω

DXν ,s,
1

ν−1
ai(∇εuε)(x) · η2(x)DXν ,s,

1
ν−1

(Xε
i uε)(x) dx

=−
∑
i

∫
Ω

DXν ,s,
1

ν−1
ai(∇εuε)(x) · 2η(x)Xε

i η(x)DXν ,s,
1

ν−1
(uε)(x) dx

− s1− 1
ν−1

∫
Ω

DXν ,s,
1

ν−1
a1(∇εuε)(x) · η2(x)Xν+1uε(xe

sXν+1) dx

− s1− 1
ν−1

∫
Ω

a1(∇εuε(x))Xν+1

(
η2DXν ,s,

1
ν−1

uε

)
(xe−sXν ) dx .

We can observe that each line from the right hand side can be estimated using Lemma

3.2, Lemma 3.3 and the previously found estimates (4.4) and (4.5). Therefore, as in the

case of Xν+1, after k-steps we can increase the order of the fractional differentiability to

γk =
1

ν − 1
+

2

(ν − 1)p
+ · · ·+ 2k−1

(ν − 1)pk−1
.
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In the case of 2 ≤ p < 2ν
ν−1

, for some k, the order γk will become greater than one. In

conclusion, we obtain that

(4.6)

∫
Bεr

|Xνuε|p dx ≤ c

∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx .

Once more, if in the proof of Lemma 3.3 we use β = 0, a test function φ = η2Xνuε and

apply (4.4), we obtain that

(4.7)

∫
Bεr

(
δ2 + |∇εuε|2

) p−2
2 |∇εXνuε|2 dx ≤ c

∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx .

We can continue now with the estimates for Xν−1uε, because all the terms of the right

hand side of the corresponding equation can be estimated in terms of (4.4) - (4.7). In

similar ways, we can estimate the derivatives in the direction of each non-horizontal layer

of the Lie algebra and therefore obtain (4.3). �

Lemma 4.4. Let 2 ≤ p < 2ν
ν−1

and r > 0 such that B3r ⊂ Ω. If uε ∈ C∞(Ω) is a solution

of (2.8), then there exists c > 0, depending on r, ν, p, and L, but independent of ε and

δ, such that ∫
Bεr

(
δ2 + |∇εuε|2

) p+4
2 dx

≤ c
(

1 + ||uε||4L∞(Bε2r)

) ∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx .(4.8)

Proof. First we use Lemma 3.4 with β = 0 and a cut-off function η between Bε
15r/16 and

Bε
r , followed by Lemma 4.3 and Lemma 3.1 for β = 0 and a cut-off function between Bε

7r/8

and Bε
15r/16 to obtain the following Lp+2 estimate.∫

Bε
7r/8

(
δ2 + |∇εuε|2

) p+2
2 dx

≤ c
(

1 + ||uε||2L∞(Bε2r)

) ∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx .(4.9)

Next we apply Lemma 3.3 for β = 0 and a cut-off function between Bε
15r/16 and Bε

r to

get ∫
Bε

15r/16

(
δ2 + |∇εuε|2

) p−2
2 |∇ε∇Vuε|2 dx
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≤ c

∫
Bεr

(
δ2 + |uε|2

) p−2
2 |∇Vuε|2 dx

≤ c

∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx.

We continue by applying Lemma 3.2 for β = 1 and a cut-off function between Bε
7r/8 and

Bε
15r/16 to obtain∫

Bε
7r/8

(
δ2 + |∇εuε|2

) p
2 |∇Vuε|2 dx

≤ c
(

1 + ||uε||2L∞(Bε2r)

)∫
Bε

15r/16

(
δ2 + |uε|2

) p−2
2 |∇Vuε|2 dx

+ c ||uε||2L∞(Bε2r)

∫
Bε

15r/16

(
δ2 + |∇εuε|2

) p−2
2 |∇ε∇Vuε|2 dx

≤ c
(

1 + ||uε||2L∞(Bε2r)

) ∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx .

Then Lemma 3.4 for β = 1 and a cut-off function between Bε
3r/4 and Bε

7r/8 gives∫
Bε

3r/4

(
δ2 + |∇εuε|2

) p
2 |∇ε∇εuε|2 dx

≤ c

∫
Bε

7r/8

(
δ2 + |uε|2

) p
2 |∇Vuε|2 dx+ c

∫
Bε

7r/8

(
δ2 + |∇εuε|2

) p+2
2 dx

≤ c
(

1 + ||uε||2L∞(Bε2r)

) ∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx .

We apply once more Lemma 3.1 for β = 1 and a cut-off function between Bε
r/2 and Bε

3r/4

to get that ∫
Bε
r/2

(
δ2 + |∇εuε|2

) p+4
2 dx

≤ c
(

1 + ||uε||4L∞(Bε2r)

) ∫
Bε2r

(
δ2 + |∇εuε|2

) p
2 dx .

Finally, estimate (4.8) is given by some rescaling arguments. �

The next Moser iteration lemma gives a uniform upper bound for the derivatives in the

non-horizontal directions. Notice the loss of homogeneity in (4.10), due to the fact that

we have used the inequality δ2 ≤ δ2 + |∇εuε|2. It is at this point that 1/δ appears in an

essential way in our estimates.
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Lemma 4.5. Let us assume that 2 ≤ p < min{ 2ν
ν−1

, 2Q+8
Q−2
}, δ > 0, Bε

3r ⊂ Ω and

uε ∈ C∞(Ω) is a solution of (2.8). Then there exist a constant c depending on ν, Q, p,

L, r, δ and ||uε||L∞(Bε2r)
such that for a = 2Q

Q−2
and b = p+4

3
we have

(4.10) ||∇Vuε||L∞(Bε
r/4

) ≤ c

(∫
Bε2r

(δ2 + |∇εuε|2)
p
2 dx

) 1
p

+
(p−2)a
6p(a−b)

.

Proof. Lemma 3.3 implies the following inequality.∫
Ω

η2|∇Vuε|2β |∇ε∇Vuε|2dx

≤ c

δp−2

(
1 + ||∇εη||2L∞(supp η)

) (∫
supp η

(δ2 + |∇εuε|2)
p+4
2 dx

) p−2
p+4

·
(∫

supp η

|∇Vuε|(2β+2) p+4
6 dx

) 6
p+4

.

Hence, for any cut-off function η with support included in Bε
r , by Lemma 4.4 we have

that∫
Ω

∣∣∇ε
(
η|∇Vuε|β+1

)∣∣2 dx
≤ c

δp−2

(
1 + ||∇εη||2L∞(supp η)

) (
1 + ||uε||4L∞(Bε2r)

) p−2
p+4

·

(∫
Bε2r

(δ2 + |∇εuε|2)
p
2 dx

) p−2
p+4 (∫

supp η

|∇Vuε|(2β+2) p+4
6 dx

) 6
p+4

.

Noticing that the Poincaré inequality with exponent 2Q
Q−2

can be used uniformly for all

sufficiently small ε > 0 [Jer86, Theorem 2.1], we obtain that

(∫
Ω

(
η|∇Vuε|β+1

) 2Q
Q−2 dx

)Q−2
2Q

≤ c

δ
p−2
2

(
1 + ||∇εη||L∞(supp η)

) (
1 + ||uε||4L∞(Bε2r)

) p−2
2(p+4)

·

(∫
Bε2r

(δ2 + |∇εuε|2)
p
2 dx

) p−2
2(p+4) (∫

supp η

|∇Vuε|(β+1) p+4
3 dx

) 3
p+4

.
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Let us define χ = a
b
, and notice that χ > 1 iff p < 2Q+8

Q−2
. Also, by defining β0 + 1 = 3p

p+4
,

βk + 1 = (β0 + 1)χk and αk = (βk + 1)b we get that(∫
Ω

ηa|∇Vuε|αk+1 dx

) 1
αk+1

≤
(

c

δ
p−2
2

(
1 + ||∇εη||L∞(supp η)

)) b

αk
(

1 + ||uε||4L∞(Bε2r)

) p−2
6αk

·

(∫
Bε2r

(δ2 + |∇εuε|2)
p
2 dx

) p−2
6αk
(∫

supp η

|∇Vuε|αk dx
) 1

αk

.

Estimate (4.10) follows now from the standard Moser iteration. �

Lemma 4.6. Let us assume that 2 ≤ p < min{ 2ν
ν−1

, 2Q+8
Q−2
}, δ > 0, Bε

3r ⊂ Ω and

uε ∈ C∞(Ω) is a solution of (2.8). Then there exist a constant c depending on ν, Q, p,

L, r, δ and ||uε||L∞(Bε2r)
such that for a = 2Q

Q−2
and b = p+4

3
we have

(4.11) ||∇εuε||L∞(Bε
r/16

) ≤ c

(∫
Bε2r

(δ2 + |∇εuε|2)
p
2 dx

)( 2
p

+
(p−2)a
3p(a−b))

Q
p

+ 2
p

.

Proof. For any cut off function η with support included in Bε
r/4, Lemma 3.4 and Lemma

4.5 imply that∫
η2
(
δ2 + |∇εuε|2

) p−2
2

+β |∇ε∇εuε|2 dx

≤ c||∇Vuε||2L∞(Bε
r/4

)

∫
supp η

(δ2 + |∇εuε|2)
p−2
2

+β dx+ c

∫
supp η

(δ2 + |∇εuε|2)
p
2

+β dx

≤ c

 1

δ2

(∫
Bε2r

(δ2 + |∇εuε|2)
p
2 dx

) 2
p

+
(p−2)a
3p(a−b)

+ 1

 ∫
supp η

(
δ2 + |∇εuε|2

) p
2

+β
dx.

We define χ = Q
Q−2

, β0 = 0 and αk = p
2

+ βk = p
2
χk for k = 0, 1, 2, · · · . As we allow the

constant c to depend on δ, we get that(∫
η2χ
(
δ2 + |∇εuε|2

)αk+1 dx

) 1
αk+1

≤ c
1
αk

(∫
Bε2r

(δ2 + |∇εuε|2)
p
2 dx

) 2
p

+
(p−2)a
3p(a−b)


1

αk (∫
supp η

(
δ2 + |∇εuε|2

)αk dx) 1
αk

.
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Therefore, the standard Moser iteration leads to

||∇εuε||L∞(Bε
r/16

) ≤ c

(∫
Bε2r

(δ2 + |∇εuε|2)
p
2 dx

)( 2
p

+
(p−2)a
3p(a−b))

Q
p

+ 2
p

.

�

Theorem 4.1. Let us assume that 2 ≤ p < min{ 2ν
ν−1

, 2Q+8
Q−2
}, δ > 0 and u ∈ W 1,p(Ω) is

a weak solution to the horizontal quasi-linear equation (1.1).

Then we have ∇Hu ∈ L∞loc(Ω).

Proof. Let B3r ⊂ Ω. Notice that for each small ε > 0, Bε
r ⊂ Br. Let uε ∈ C∞(B2r) be

the unique weak solution of the Dirichlet problem

(4.12)


ν+1∑
i=1

Xε
i (ai(∇εuε)) = 0 , in Bε

2r

uε − u ∈ W 1,p
0 (Bε

2r) .

Since the constants arising in the doubling property (2.9) and Poincaré inequalities are

independent of ε, the Harnack inequality give bounds independent of ε for the local L∞

and local Hölder norms of weak solutions. A standard Cacciopoli inequality for (4.12)

using the test function ηpuε, where η is the cut-off function between Bε
r and Bε

2r, gives

bounds for
∫
Bεr

(|∇εuε|2)
p
2 dx in terms of

∫
Bε2r

(δ2 + |uε|2)
p
2 dx with constant independent of

ε. Therefore, in estimate (4.11) we can let let ε→ 0 and get

||∇Hu||L∞(Br/16) ≤ c

(∫
B2r

(δ2 + |∇Hu|2)
p
2 dx

)( 2
p

+
(p−2)a
3p(a−b))

Q
p

+ 2
p

.

�

Proof of Theorem 1.1: Once Theorem 4.1 gives the local boundedness of the hori-

zontal gradient of the weak solution u ∈ W 1,p(Ω), Theorem 1.1 follows from the results

obtained in [Cap99, DM09].

Notice that the homogeneous dimension of a Goursat group of step ν is

Q =
ν2 + ν + 2

2
.
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Let us define

P (ν) = min

{
2ν

ν − 1
,

2Q+ 8

Q− 2

}
=

 2ν
ν−1

if 3 ≤ ν < 10

2ν2+2ν+20
ν2+ν−2

if ν ≥ 10 .

In a Goursat group, Theorem 1.1 implies the following result.

Corollary 4.1. In a Goursat group of step ν, if 2 ≤ p < P (ν), δ > 0 and u ∈ W 1,p(Ω)

is a weak solution to (1.1), then u ∈ C∞(Ω).
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