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Abstract. The composite membrane problem is an eigenvalue optimization problem

deeply studied from the beginning of the ’00’s. In this note we survey most of the results

proved by several authors over the last twenty years, up to the recent paper [14] written

in collaboration with Giovanni Cupini.

We finally introduce an eigenvalue optimization problem for a fourth order operator,

called composite plate problem and we present the symmetry and rigidity results obtained

in this framework.

These last mentioned results are part of the papers [12, 13] written in collaboration with

Francesca Colasuonno.

Sunto. Il problema della membrana composita è un problema di ottimizzazione di auto-

valori i cui primi contributi risalgono agli inizi degli anni ’00. In questa nota presentiamo

una sintesi dei principali risultati ottenuti negli ultimi venti anni, fino al recente contrib-

uto [14] scritto in collaborazione con Giovanni Cupini.

Introdurremo poi un problema di ottimizzazione di autovalori per un operatore del

quart’ordine noto come problema della piastra composita, e presenteremo alcuni risultati

di simmetria e rigidità in questo ambito. Questi ultimi risultati sono contenuti nei lavori

[12, 13] scritti in collaborazione con Francesca Colasuonno.
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ISSN 2240-2829.

157



158 EUGENIO VECCHI

1. Introduction

Suppose you are given the prescribed shape and mass of a membrane, and several

materials of varying densities: how can you build the membrane in such a way that the

basic frequency is the smallest possible?

This is the physical content of the so called composite membrane problem. From the

mathematical point of view, this turns out to be an eigenvalue optimization problem that

has connections to several areas of mathematical analysis. Starting from the ’00’s, there

has been a certain interest devoted to the above mentioned problem, as witnessed by the

list of papers [8, 9, 10, 11, 23, 7]. Keeping in mind that the physically relevant case is

provided by n = 2, we will introduce the problem in Rn with n ≥ 2. Let Ω ⊂ Rn be a

non-empty open bounded domain with Lipschitz boundary ∂Ω, let 0 ≤ h < H be two

positive constants, and M ∈ [h|Ω|, H|Ω|]. We define the set of admissible densities as

(1) P :=

{
ρ : Ω→ R :

∫
Ω

ρ(x) dx = M, h ≤ ρ ≤ H in Ω

}
.

By composite membrane problem we mean the following minimization problem

(2) Θ(h,H,M) := inf
ρ∈P

inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2∫
Ω

ρ u2

.

A couple (u, ρ) which realizes the double infimum in (2) is called (2)-optimal pair.

Once the problem is set, there are a bunch of questions that naturally arise. In this note

we will focus on the following ones:

(3)


do optimal pair exist? Can they be characterized?

are there preservation or breaking of symmetry phenomena?

is the optimal pair unique?

The (partial) answers to these questions are the content of section 2. In section 3 we then

introduce the higher order version of Problem (2), namely the composite plate problem,

and we report on the major results obtained so far (see also [2, 1] for similar results).
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2. The composite membrane problem

In this section we collect most of results concerning the composite membrane problem.

As already mentioned, Problem (2) as stated before has been considered for the first time

in [8] and [9]. Among many other results, the authors proved there that Problem (2) can

be seen as a particular case of a more general eigenvalue optimization problem, which can

be stated as follows: let Ω ⊂ Rn be a non-empty open and bounded set with Lipschitz

boundary ∂Ω. For every A ∈ [0, |Ω|], we denote by

(4) D := {D ⊂ Ω : D measurable set, |D| = A} ,

the class of admissible sets. For any set D ∈ D, let χD be its characteristic function. For

every α > 0 and D ∈ D we consider

(5)

 −∆u+ αχDu = λu on Ω

u = 0 on ∂Ω.

Let us denote with λΩ(α,D) the lowest eigenvalue of this boundary value problem. It is

now possible to consider the following eigenvalue optimization problem:

(6) ΛΩ(α,A) := inf
D∈D

λΩ(α,D),

whose variational characterization is given by

ΛΩ(α,A) = inf
D∈D

inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2 + α

∫
Ω

χDu
2∫

Ω

u2

.

Any minimizer D in (6) is called an optimal configuration for the data (Ω, α, A). If more-

over u satisfies (5) then (u,D) is called a (6)-optimal pair. The variational characterization

of (6) clearly shows that changing D by a set of measure zero does not affect λΩ(α,D) nor

u, hence we are allowed to consider sets D that differs by a null-set as equal. Moreover,

u can be chosen to be positive in Ω.

The existence and characterization of optimal pairs is pretty well-understood, as for their

dependence on the initial data. In the next theorem we condensate several results which

are parts of the content of [8, Theorem 1, Theorem 2, Proposition 10].
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Theorem 2.1. Let Ω be an open and bounded set of class C1,1. 1 For any α > 0 and

A ∈ [0, |Ω|] there exists a (6)-optimal pair (u,D) with u positive. Moreover, every optimal

pair satisfies the following properties:

(i) u ∈ H2(Ω) ∩ C1,δ(Ω) ∩ Cγ(Ω), for some γ > 0 and every δ < 1.

(ii) There exists a positive number t = t(A,Ω, u) > 0 such that

D = {x ∈ Ω : u(x) ≤ t} .

(iii) D contains a tubular neighborhood of the boundary ∂Ω of Ω.

(iv) ΛΩ(α, ·) is strictly increasing for fixed α > 0, and the function ΛΩ(·, A) is strictly

increasing for fixed A > 0. Moreover, ΛΩ(α,A)− α is strictly decreasing in α for

any fixed A ∈ (0, |Ω|).

(v) Given A ∈ [0, |Ω|), there exists a unique positive number αΩ(A) > 0 such that

ΛΩ(αΩ(A), A) = αΩ(A).

(vi) If Ω is simply connected and α < αΩ(A), then D is connected.

We refer to [8] for the proofs.

We want to stress that the positive number t > 0 appearing in (ii) is defined as

t = t(A,Ω, u) := sup{s : |{u < s}| < A},

see [8, Equation (8)]. We also note that, due to (iv), the positive number αΩ(A) appearing

in (v) is well defined. Unfortunately, as far as we know, the implicitly defined number

αΩ(A) has never been explicitly calculated nor estimated.

An immediate and important consequence of (iv) and (v) is that

(7) ΛΩ(α,A)− α > 0, for every α < αΩ(A).

By means of Theorem 2.1, the connection between Problem (6) and Problem (2) can

now be made truly explicit.

1We thank the referee for pointing out that the assumption on Ω in [8] is not correct in order to obtain

the claimed regularity.
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Theorem 2.2 ([8], Theorem 13). (a) Let (u, ρ) be a (2)-optimal pair, then ρ has the

following form:

ρ = hχD +H χDc∩Ω,

for a set of the form D = {u ≤ t}.

(b) The pair (u, ρ) is a (2)-optimal pair with parameters (h,H,M) if and only if (u,D)

is a (6)-optimal pair with parameters (α,A) given by

α = (H − h)Θ, A = H|Ω|−M
H−h .

Moreover, the two minimal eigenvalues are related by

Λ = HΘ.

We stress that the case α = αΩ(A) corresponds to h = 0, which actually reduces to

the case of the classical first eigenvalue of the Dirichlet Laplacian. In particular, given

A, when α ∈ (0, αΩ(A)), the two variational problems are in one–to–one correspondence.

Therefore, when dealing with the composite membrane problem, we are allowed to choose

the formulation we like most.

Coming back to the list of questions, the first is now addressed. We want now to illustrate

how the other two questions are correlated. First, the next result, once again proved in

[8], shows that under appropriate assumptions on the set Ω preservation of symmetry

occurs.

Theorem 2.3 ([8], Theorem 4). Assume that Ω is symmetric and convex with respect to

the hyperplane {x1 = 0}, i.e. for each x′ = (x2, . . . , xn) the set

{x1 : (x1, x
′) ∈ Ω}

is either empty or an interval of the form (−c, c). Let (u,D) be a (6)-optimal pair. Then

both u and D are symmetric with respect to {x1 = 0}, Dc ∩ Ω is convex with respect to

{x1 = 0}, and u is decreasing in x1 for x1 ≥ 0.

An immediate consequence is the following
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Corollary 2.1 ([8], Corollary 5). Let Ω = B = {‖x‖ < 1} be the unit ball. Then, for any

α > 0 and A ∈ (0, |Ω|) there is a unique optimal configuration D given by the shell region

D = {x ∈ Ω : r(A) < ‖x‖ < 1}.

We stress that Corollary 2.1 is a uniqueness result and, to the best of our knowledge,

the case of the ball is the only one for which uniqueness is guaranteed so far. Concerning

uniqueness, in [8] it is proved that even under the symmetry assumptions of Theorem

2.3, one can lose symmetry if the directional convexity is missing. The counterexample

provided in [8] is the content of the following

Theorem 2.4 ([8], Theorem 7). For k ∈ (0, 1) define the dumbbell with handle width 2k,

Ωk := B1(−2, 0) ∪ ((−2, 2)× (−k, k)) ∪B1(2, 0),

where Br(p) := {x ∈ R2 : ‖x − p‖R2 < r}. Fix α > 0 and A ∈ (0, 2π). Then there is

k0 = k0(α,A) > 0 such that we have for k < k0:

• Any optimal pair (u,D) is not symmetric with respect to the x2-axis.

• If A > π, then for any optimal pair (u,D) the complement Dc ∩Ω is contained in

one of the balls B1(±2, 0).

This example shows the necessity of the directional convexity assumed in Theorem 2.3,

and provides also an explicit example of breaking of symmetry phenomena.

Let us spend a few words concerning the proof of Theorem 2.3. The main technical

tool used to prove Theorem 2.3 is Steiner symmetrization, combined with a result of

Brothers and Ziemer [6]. We recall below the definition of Steiner rearrangement. Given

a measurable function u : Ω→ R, we define the distribution function µu : R→ R of u as

µu(τ) := | {x ∈ Ω : u(x) > τ} |.

In order to simplify the notation, we will write {u > τ} in place of {x ∈ Ω : u(x) > τ}.

An analogous notation will be adopted for sub-level and level sets as well. The decreasing



SYMMETRY AND RIGIDITY RESULTS FOR COMPOSITE MEMBRANES AND PLATES 163

Steiner rearrangement u] : [0, |Ω|]→ R of u is defined as

u](s) :=

 ess supu, s = 0,

inf {τ : µu(τ) < s} , 0 < s ≤ |Ω|.

The increasing Steiner rearrangement u] : [0, |Ω|]→ R of u is defined as

u](s) :=

 ess supu, s = |Ω|,

inf {τ : |{u < τ}| > s} , 0 ≤ s < |Ω|.

The idea of the proof of Theorem 2.3 is the following: by Theorem 2.1, we know

that there exists an optimal pair (u,D). Now, let D] be the set defined through its

characteristic function,

(8) χD]
(x) := (χD)](x), x ∈ Ω.

One can now prove that (u], D]) is an admissible pair whose energy is less than the one

of (u,D), thanks to the classical Pólya–Szegö principle.

This fact leads to a somehow natural question:

Is it possible to prove a Faber-Krahn-type inequality in this context?

We recall that the classical Faber-Krahn inequality for the Dirichlet Laplacian states that

the balls minimize Ω 7→ λ(Ω) among all the sets of given measure. We refer to [21] for a

proof and related results.

In order to state a precise result in this direction, let us recall the notion of Schwarz

rearrangement. Given a bounded set Ω, we denote by Ω? the ball centered at the origin

and volume |Ω?| = |Ω|. We also denote by ωn the measure of the unit ball. Let now

u : Ω→ R be a measurable function. The decreasing Schwarz symmetrization u? : Ω? → R

of u is defined as

u?(x) := u](ωn‖x‖n), x ∈ Ω?,

and the increasing Schwarz symmetrization u? : Ω? → R of u is defined as

u?(x) := u](ωn‖x‖n), x ∈ Ω?.

Once the above notation is fixed, we can state a result which answers positively to the

above question. The precise statement is the content of the following



164 EUGENIO VECCHI

Theorem 2.5. Given a ball Ω? centered at the origin, A ∈ (0, |Ω?|) and α ∈ (0, αΩ?(A)),

then

(9) ΛΩ?(α,A) ≤ ΛΩ(α,A),

for every open and bounded connected set Ω ⊂ Rn with Lipschitz boundary, with |Ω| = |Ω?|.

Moreover, the equality holds if and only if Ω = Ω? up to translations.

The previous result can be proved along the same lines of the proof of [8, Theorem

4], that is by using Schwarz symmetrization and the Pólya-Szegö principle, in a standard

way. Identification of equality cases could then be done by appealing to a celebrated

result by Brothers and Ziemer (see [6, Theorem 1.1]). However, in [14] we gave a different

proof of Theorem 2.5 for general sets, by adapting to our setting the proof of the classical

Faber-Krahn inequality due to Kesavan [20], which in turn relies on a well-known result

by Talenti [24] which we recall right now:

Theorem 2.6 ([24]). Let Ω ⊂ Rn be an open set of finite measure, and let Ω? be the ball

centered at the origin and measure |Ω?| = |Ω|. Let f ∈ L2(Ω) be nonnegative, and let f ?

be its Schwarz symmetrization. If u ∈ H1
0 (Ω) is the weak solution of −∆u = f, in Ω,

u = 0, on ∂Ω,

and v ∈ H1
0 (Ω?) is the weak solution of −∆v = f ?, in Ω?,

v = 0, on ∂Ω?,

then v(x) ≥ u?(x) for almost every x ∈ Ω?.

Moreover, if u? = v a.e. then Ω must be a ball.

Sketch of the proof of Theorem 2.5. We already recalled that the inequality (9) is proved

in [8, Theorem 4].

We will now focus on the equality case, namely we start by assuming that that ΛΩ = ΛΩ? .
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By Corollary 2.1, we know that (u?, D?) is an optimal pair of (6) on Ω?. We know that

u solves  −∆u = (Λ− αχD)u, in Ω,

u = 0, on ∂Ω.

Let v be the solution of  −∆v = [(Λ− αχD)u]? , in Ω?,

v = 0, on ∂Ω?.

By Theorem 2.6

u?(x) ≤ v(x), for almost every x ∈ Ω?.

Since we can also prove, see [14, Proposition 2], that

[(Λ− αχD(x))u(x)]? =
(

Λ− αχΩ?\(Ω\D)?

)
u?(x),

the function v actually solves

(10)

 −∆v =
(

Λ− αχΩ?\(Ω\D)?

)
u?, in Ω?,

v = 0, on ∂Ω?.

Therefore

−∆v(x) =
(

Λ− αχΩ?\(Ω\D)?(x)
)
u?(x) ≤

(
Λ− αχΩ?\(Ω\D)?(x)

)
v(x),

for almost every x ∈ Ω?. Multiplying by v the former inequality and integrating by parts,∫
Ω?

|∇v(x)|2 dx+ α

∫
Ω?

χΩ?\(Ω\D)?(x)v(x)2 dx∫
Ω?

v(x)2 dx

≤ Λ,

for v ∈ H1
0 (Ω?). Since |D?| = |Ω? \ (Ω \D)?|,

(11)

∫
Ω?

|∇v(x)|2 dx+ α

∫
Ω?

χD?(x)v(x)2 dx∫
Ω?

v(x)2 dx

≤ Λ,
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for v ∈ H1
0 (Ω?) and D? ⊂ Ω? with |D?| = A. But (v,D?) is an admissible pair, so equality

holds in (11) and (v,D?) must be an optimal pair. Therefore v solves

(12)

 −∆v = (Λ− αχD?) v, in Ω?,

v = 0, on ∂Ω?.

By (10) and (12), subtracting term by term we get

0 = (Λ− αχΩ?\(Ω\D)?)u? − (Λ− αχD?)v = (Λ− αχD?)(u? − v) a.e. in Ω?.

Recalling (7), the equality above directly implies

v = u? a.e. in Ω?,

and the conclusion now follows from Theorem 2.6. �

We close this section recalling that many other results concerning the regularity of

the optimal configuration D and weaker notions of uniqueness of optimal pairs has been

proved, see e.g. [9, 10, 11].

3. The composite plate problem

In the previous section we described a few results concerning the composite membrane

problem. It is quite natural to ask up to what extent is it possible to generalize the same

result to a higher order eigenvalue optimization problem, namely eigenvalues of the Navier

Bilaplacian or the Dirichlet Bilaplacian. These operators find a natural application in the

theory of plates, respectively hinged and clamped plates, see e.g. the monograph [18].

The composite hinged plate problem can be stated as follows: let Ω ⊂ Rn be open and

bounded set with C4-smooth boundary ∂Ω. As for Problem (2), let 0 ≤ h < H be

two fixed constants and let M ∈ [h |Ω|, H |Ω|]. Then , we define the class of admissible

densities as in (1). We can then consider the minimization problem

(13) ΘN(h,H,M) := inf
ρ∈P

inf
u∈H2∩H1

0 (Ω)\{0}

∫
Ω

(∆u)2∫
Ω
ρ u2

.

We say that any couple (u, ρ) which realizes the double infimum is a (13)-optimal pair.

Remark 3.1. If in (13) we consider the Sobolev space H2
0 (Ω) instead of H2 ∩H1

0 (Ω), we

get the clamped case.



SYMMETRY AND RIGIDITY RESULTS FOR COMPOSITE MEMBRANES AND PLATES 167

It is now natural to ask the same questions as listed for the composite membrane

problem. Nevertheless there is an immediate first striking difference: it is not more so

evident that, given a (13)-optimal pair (u, ρ), u has a sign. Since this is quite a crucial

property, we make use of a strong minimum principle proved in [17] which can be applied

also in our case.

Lemma 3.1 ([17], Lemma 1). Let C+ := {w ∈ H2 ∩H1
0 (Ω) : w ≥ 0 a.e. in Ω}. Assume

that u ∈ H2 ∩H1
0 (Ω) is such that∫

Ω

∆u∆v ≥ 0 for every v ∈ C+,

then u ∈ C+. Moreover, either u ≡ 0 or u > 0 a.e. in Ω.

We stress that we apply this minimum principle in order to get positivity of minimizers

of our variational problem (see [12, Proposition 5.1]), and we are not able to get similar

information for solutions of the Euler-Lagrange fourth order PDE associated to it which

are not minimizers.

Once the positivity of u is established, we can also address the issue of existence of

optimal pairs and of their characterization.

Theorem 3.1 ([12], Theorems 1.3 and 1.4). Let Ω ⊂ Rn be a bounded domain with C4-

boundary ∂Ω. For any 0 ≤ h < H and every M ∈ [h |Ω|, H |Ω|], there exists a (13)-optimal

pair (u, ρ) with the following properties:

(a) u ∈ C3,γ(Ω) ∩W 4,q(Ω), for every γ ∈ (0, 1) and q ≥ 1;

(b) ρ = hχD + H χDc, for a set of the form D = {u ≤ t}, for a suitable t =

t(h,H,Ω, u) > 0.

We stress that combining the regularity of u up to the boundary with the boundary

condition u = 0 on ∂Ω, we immediately get that the set {u ≤ t} contains a tubular

neighborhood of ∂Ω. We also point out that the existence part of the above theorem

would hold even if the boundary ∂Ω is merely Lipschitz continuous. Nevertheless, we

added it in order to get the sharpest possible regularity of u up to the boundary.
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It is now quite natural to move to the symmetry properties seen in Section 2 in the case

of the composite membrane problem. Before stating our result we must say that there is

an immediately evident difficulty appearing. As briefly mentioned, the proof of Theorem

2.3 in [8] deeply relied on the Steiner symmetrization technique and this prevents us to

follow the same scheme. Roughly speaking, this occurs because the higher order Sobolev

space H2 ∩H1
0 (Ω) is not closed under symmetrization. Therefore we need to find a new

approach in order to prove any kind of symmetry. To this aim, we decide to work with the

Euler-Lagrange equation rather than the functional appearing in the variational problem.

Therefore, we have to deal with the following fourth order boundary value problem:

(14)

 ∆2u = Θρu in Ω,

u = ∆u = 0 on ∂Ω.

At this stage, we can also profit of the choice of the Navier boundary condition to write

(14) as a second order cooperative elliptic system with Dirichlet boundary conditions: set

u1 := u, then

(15)


−∆u1 = u2 in Ω,

−∆u2 = Θρu1 in Ω,

u1 = u2 = 0 on ∂Ω.

Symmetry of positive solutions of elliptic systems is a widely studied topic, whose main

technical device is given by the moving plane method, originally introduced by Serrin [22]

and then further developed and refined by many authors, see e.g. [19, 3] for scalar equa-

tions. The case of systems has also a quite long history, see e.g. [25, 16, 15] up to the

more recent contributions [4, 5] that deals with positive sigular solutions.

In order to properly state our symmetry result, we need to introduce the classical formal-

ism of the moving plane method. Given any λ ∈ R, we introduce the (possibly empty)

set

Σλ := {x ∈ Ω : x1 > λ}

and its reflection with respect to Tλ = {x ∈ Ω : x1 = λ},

Σ′λ := {ϕλ(x) ∈ Rn : x ∈ Σλ},
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where

ϕλ(x1, x2, . . . , xn) = (2λ− x1, x2, . . . , xn)

Since Ω ⊂ Rn is bounded, Tλ does not intersect Ω if λ is large enough. We define

λ0 := sup{λ ∈ R : Tλ ∩ Ω 6= ∅}.

Lowering the value of λ, the hyperplane Tλ cuts Σλ off from Ω. Clearly, at the beginning

of the process, the reflection Σ′λ of Σλ will be contained in Ω. Now, we define the value

λ1 as follows

(16) λ1 := sup{λ < λ0 : (i) or (ii) is verified},

where

(i) Σ′λ is internally tangent to the boundary ∂Ω at a certain point P /∈ Tλ;

(ii) Tλ is orthogonal to the boundary ∂Ω at a certain point Q ∈ Tλ ∩ ∂Ω.

By construction,

Σ′λ ⊂ Ω for every λ ∈ [λ1, λ0).

Nevertheless, by further decreasing the value of λ below λ1, Σ′λ might still be contained

in Ω. Therefore we define the value

λ2 := inf{λ < λ0 : Σ′λ ⊂ Ω}.

In order to clarify the previous definitions we include a picture where 0 = λ2 < λ1 < λ0.
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Having fixed the standard notation related to the moving plane method, we can state

our

Theorem 3.2 ([13], Theorem 1.2). Let Ω be symmetric and convex with respect to the

hyperplane {x1 = 0}, and with C4-smooth boundary ∂Ω. Let λ1 be defined as in (16),

we assume that λ1 = 0. If (u, ρ) is an optimal pair, then u is symmetric with respect

to {x1 = 0} and strictly decreasing in x1 for x1 > 0. Consequently, ρ is symmetric with

respect to the same hyperplane as well. Furthermore, the set {u > t} is convex with respect

to {x1 = 0}.

Let us now spend a few words concerning the proof of Theorem 3.2, which can be easily

obtained combining the following technical lemmas. We stress that the upcoming lemmas

hold in slightly more general cases, i.e. even when λ1 and/or λ2 are not equal to zero. We

refer to [13] for all the proofs.

The first one guarantees that the moving plane method can effectively start.

Lemma 3.2 ([13], Lemma 3.1). Let ∂Ω ∈ C4, λ ∈ (λ1, λ0], x0 ∈ Tλ ∩ ∂Ω, and (u1, u2) be

a weak solution of (15). Fix ε > 0 so small that the first component of the outer normal

is strictly positive, i.e. ν1(x) > 0, for every x ∈ {x ∈ ∂Ω : ‖x − x0‖ < ε}. Then, there

exists a positive constant δ > 0 such that

∂ui
∂x1

< 0 in {x ∈ Ω : ‖x− x0‖ < δ} for every i = 1, 2.

The next two lemmas provide the desired monotonicity of both u1 and u2 up to Σλ1 .

Lemma 3.3 ([13], Lemma 3.2). Let λ ∈ [λ1, λ0) and (u1, u2) be a weak solution of (15).

Suppose that

(17) ui ≤ ui ◦ ϕλ but ui 6≡ ui ◦ ϕλ in Σλ for some i = 1, 2.

Then,

ui < ui ◦ ϕλ in Σλ for every i = 1, 2

and
∂ui
∂x1

< 0 on Ω ∩ Tλ for every i = 1, 2.
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Lemma 3.4 ([13], Lemma 3.4). Let ∂Ω ∈ C4, λ ∈ (λ1, λ0), and (u1, u2) be a weak solution

of (15). Then

∂ui
∂x1

< 0 and ui < ui ◦ ϕλ in Σλ for every i = 1, 2.

We stress that the presence of the function ρ prevents from a direct use of the classical

symmetry results for semilinear cooperative elliptic systems. Nevertheless, the explicit

knowledge of it, see (b) of Theorem 3.1, makes it possible to prove the following

Lemma 3.5 ([13],Lemma 2.3). Let λ ∈ [λ2, λ0), (u, ρ) be an optimal pair, and u◦ϕλ−u ≥

0 in Σλ. Then

(ρ ◦ ϕλ)(u ◦ ϕλ)− ρu ≥ 0 in Σλ.

This is crucial in order to prove Lemma 3.3, which in turn leads to Lemma 3.4. We

refer to [13] for more details.

Remark 3.2. The condition λ1 = 0 seems to be a mere technical problem but at the

moment it prevents us to consider sets which are flat in the x1-direction, see [13, Figure

1] for a few examples of sets covered by the above Theorem. On the other hand, thanks to

finer versions of the maximum principle in small domains, see [16] for the case of systems,

we can also relax the regularity assumption on the boundary, at the price of a stronger

assumption on the set Dc ∩ Ω, see [13, Proposition 5.9].

Due to the nature of the moving plane technique, we can adopt it to prove rigidity

results as well. The following theorem resembles the famous overdetermined problem of

Serrin [22].

Theorem 3.3 ([13], Theorem 1.1). Let ∂Ω be C4-smooth and let (u, ρ) be a (13)-optimal

pair. If u satisfies the additional condition

∂u

∂ν
= c on ∂Ω for some c < 0,

then Ω is a ball and u is radially symmetric and radially decreasing.
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Remark 3.3. As for the composite membrane problem, it is possible to consider a more

general eigenvalue optimization problem, whose formulation resembles Problem (6). Let

Ω ⊂ Rn be as in (13), let α > 0 and A ∈ [0, |Ω|] be fixed real numbers. Let D be the class

of admissible sets as in (4). Let λN = λN(α,D) be the lowest eigenvalue of the following

boundary value problem with Navier boundary conditions: ∆2u+ αχDu = λu, in Ω,

u = ∆u = 0, on ∂Ω,
λ ∈ R.

We can then consider the variational problem

(18) ΛN(α,A) = inf
D∈D

inf
u∈H2∩H1

0 (Ω)\{0}

∫
Ω

(∆u)2dx+ α
∫

Ω
χDu

2dx∫
Ω
u2dx

.

Once again it is possible to make the connection between Problem (18) and Problem (13)

explicit, see [12, Theorem 1.4], but we can prove the symmetry and rigidity results only

for Problem (13). The main technical reason behind this fact is that when we consider

an optimal pair (u,D) for Problem (18), we are not able to prove the positivity of u.

However, we expect them to be true even once Problem (18) is considered.

We close this section with a brief account of the results holding in the clamped case.

As far as we know, the only contributions in this direction have been obtained in [12].

The existence and characterization of optimal pairs is guaranteed by Theorem 3.1, which

holds in this case as well, see [12, Theorems 1.3 and 1.4]. Positivity of the minimizers u

and symmetry results have also been obtained in [12]: the biggest difference with respect

to the hinged case concerns the fact that we are able to prove them only in the case of Ω

being a ball. To be more precise, given a optimal pair (u,D), it is possible to prove that

u has a sign exploiting once again Lemma 3.1. Unfortunately, in the clamped case this

result is known to hold only in the case of the ball, see e.g. [17], because it requires to

work with the explicit Green function, known only in the case of the ball. In particular,

this forces us to study preservation of symmetry only in the case Ω being a ball. In this

case, in [12, Theorem 1.5] is proved that there exists a unique optimal pair (u,D), where u

is radial and D is an annulus of given volume. The technique used to prove [12, Theorem

1.5] is an adaptation of the one proposed in [17] in a different context.
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