
SOME GLOBAL SOBOLEV INEQUALITIES RELATED TO
KOLMOGOROV-TYPE OPERATORS

SU ALCUNE DISUGUAGLIANZE DI SOBOLEV GLOBALI RELATIVE
AD OPERATORI DI TIPO KOLMOGOROV

GIULIO TRALLI

Abstract. In this note we review a recent result in [17] in collaboration with N. Garo-

falo, where we establish global versions of Hardy-Littlewood-Sobolev inequalities at-

tached to hypoelliptic equations of Kolmogorov type. The relevant Sobolev spaces are

defined through the fractional powers of the operator under consideration. We outline

the main steps of the semigroup approach we adopt.

Sunto. Viene qui presentato un recente risultato ottenuto in [17] in collaborazione

con N. Garofalo, in cui si dimostrano disuguaglianze globali di tipo Hardy-Littlewood-

Sobolev relative ad una classe di operatori ipoellittici di tipo Kolmogorov. Nell’approccio

adottato gli spazi di Sobolev sono definiti attraverso le potenze frazionarie dell’operatore

in questione.
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1. Introduction

The importance of a priori estimates is well-recognized in various fields. They play, for

example, a crucial role in order to establish existence and regularity results for solutions

to linear and nonlinear partial differential equations. Sobolev inequalities, among (and

more than) others, occupy also a central position in several geometric analysis problems.

Typically, the aim is to control a certain Lq norm of a function in terms of a Lp norm of

its derivative. Let us recall here the classical Sobolev inequality in RN which can be read
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as follows: for any 1 ≤ p < N there exists a constant SN,p such that, for any function f

in the Schwartz class S , one has

‖f‖q ≤ SN,p ‖∇f‖p if (and only if)
1

p
− 1

q
=

1

N
.

The relation between the exponents 1
p
− 1

q
= 1

N
is the well-known Hardy-Littlewood-

Sobolev condition, and it implies a gain in the exponent of integrability (i.e. q > p) in the

embedding W 1,p(RN) ↪→ Lq(RN). The Hardy-Littlewood-Sobolev condition is also known

to be intimately connected with the interplay between the differential operator ∇ and the

homogeneous structure of RN . Furthermore, we keep in mind that the Laplace operator

∆ = div (∇·) appears naturally in the Euler-Lagrange equation of energies involving the

Dirichlet term ‖∇f‖2
2.

We want to describe new global a priori estimates established in [17] which are related to a

class of linear diffusion operators. For the purpose of this exposition we want to single out,

as particular cases of the class under consideration, the following simple-looking operators

in R2 (with generic point denoted by (v, x))

· A0 = ∂2
v + v∂x,

· A+ = ∂2
v + v∂x + v∂v,

· Aθ = ∂2
v + v∂x − x∂v.

Notice that these operators are degenerate elliptic since they are missing any type of

control on the second derivative ∂2
x. They also possess a linear first-order drift term, which

prevents in general from writing the operators as first variation of reasonable Dirichlet-

type energies. We will see in Corollary 1.1 below that the Sobolev-type inequalities we

have attached to these three operators are very different from each other. The main reason

is that the underlying geometries (in particular the volumes of the intrinsic pseudo-balls),

even if they display a similar behavior for small scales, behave very differently in large

scales (see Remark 2.2). Before introducing all the relevant notions, let us describe the

whole class of equations we want to consider.

Denote by X the generic point in RN , N ≥ 2. We use the notations trM and M∗ to

indicate, respectively, the trace and the transpose of a N ×N matrix M . Let Q and B be
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two given N ×N matrices with real constant coefficients. Assume Q = Q∗ ≥ 0, together

with the following two conditions:

(1) K(t) :=
1

t

∫ t

0

esBQesB
?

ds > 0 for every t > 0,

(2) trB ≥ 0.

We can then define

(3) A u = tr(Q∇2u)+ < BX,∇u > .

It is well-known that condition (1) is equivalent to Hörmander’s finite rank condition for

the operators in (3) (see e.g. [20, 25]; see also [15]). The equations under consideration

are thus hypoelliptic, and they were in fact discussed by Hörmander in the introduction

of his celebrated hypoellipticity paper [20]. Nonetheless, the main examples of degenerate

equations in the form (3) were studied in seminal papers in [24, 9] in view of applications

in physics, astronomy, probability, kinetic theory of gases. Several aspects of this class

of equations (and its parabolic counterpart) have been investigated through the years,

and we refer to the survey papers [27, 4] for a detailed account of the literature. We just

mention here the results concerning interior pointwise estimates and Harnack inequalities

for solutions in [13, 25], and the potential theory issues and boundary estimates addressed

in [31, 21, 22, 23]. Moreover, nonlinear equations modeled after the operators in (3) were

studied in [26, 29, 11], and regularity estimates for linear operators with variable matrix-

coefficients Q(·) with bounded measurable entries were proved under various assumptions

in [32, 10, 36, 19, 28, 2, 1, 3].

Besides the classical Laplace operator (Q = IN , B = ON), the most relevant example in

this class is perhaps the one introduced by Kolmogorov in [24] and it corresponds with

the choices

N = 2n, Q =

 In On

On On

 , B =

On On

In On

 .

Notice that this is a genuinely degenerate-elliptic operator since Q has a n-dimensional

kernel, and also that trB = 0. In the phase-space variables X = (v, x) ∈ RN = Rn × Rn
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commonly used in kinetic theory, it can be written as

∆v + 〈v,∇x〉 .

Thus, A0 is just the N = 2 (i.e. n = 1)-dimensional case of the Kolmogorov operator. If

we fix N = 2 and the expected notations, the choices

Q0 = Q+ = Qθ =

1 0

0 0

 ,

B0 =

0 0

1 0

 , B+ =

1 0

1 0

 , Bθ =

0 −1

1 0

(4)

define in fact the three operators A0,A+,Aθ. Other relevant examples of equations sat-

isfying our conditions can be found in [17, Section 3 (Figure 1)].

As we mentioned, we want to discuss global a priori estimates attached to the operators

A defined in (3) under conditions (1)-(2). The condition (2) allows us, very roughly

speaking, to fix the Lebesgue measure as the reference measure for the Lp-spaces in our

Sobolev-type estimates. As a matter of fact, one should keep in mind that for the clas-

sical Ornstein-Uhlenbeck operator (which corresponds to Q = IN , B = −IN and thus

trB = −N < 0) Sobolev inequalities are known to hold true in Lp-spaces with respect

to the standard Gaussian measure (see, e.g., [6]). Throughout this work, instead, the

Lebesgue measure has to be considered as fixed. The real focus in our investigation is the

understanding of the right replacement for the ‘gradient’ term in the energy estimates.

For instance, if we try to replace the term |∇f(X)|2 with a tool like the P.A. Meyer carré

du champ Γ(f) = 1
2
[A (f 2) − 2fA f ], we realize that this is not directly effective here

since Γ(f) = 〈Q∇f,∇f〉 which misses all directions of non-ellipticity in the degenerate

case (note that 〈Q∇f,∇f〉 means for example (∂vf)2 for A0,A+ and Aθ). Furthermore,

being independent from the matrix B, 〈Q∇f,∇f〉 cannot provide any control on the drift.

In this respect, it is worth mentioning that in [32, 10] some localized energy estimates

of Sobolev-type have been proved and exploited to get pointwise bounds for solutions to

parabolic equations modeled after (3): in these works the authors bound the Lp-norm

of f on suitable bounded sets with an energy term exactly of the form 〈Q∇f,∇f〉 for
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all functions f which are nonnegative solutions/subsolutions of the equation (and not for

generic functions). Let us also refer the interested reader to the results in [16, Corollary

4.2] where we proved some localized (2, 2)-Poincaré inequalities for arbitrary smooth func-

tions. Having in mind on one hand this lack of an obvious notion of ‘gradient’ related to

A , and on the other hand the classical result about the equivalence of the Lp-norms

for p > 1 cp ‖∇f‖p ≤
∥∥∥√−∆f

∥∥∥
p
≤ Cp ‖∇f‖p ∀f ∈ S

provided by the Calderón-Zygmund theory (in particular by the Lp-continuity of the Riesz

transforms), we seek Sobolev-type estimates involving the term∥∥∥√−A f
∥∥∥
p
.

A fractional calculus related to the operators A in (3) has been developed in [15], and

we are going to recall the definition of
√
−A = (−A )

1
2 in Definition 2.1 below. The

precise statements of the Sobolev inequalities established in [17] will be given instead in

Theorem 2.1 and Theorem 2.2, after having introduced the needed objects coming into

play. Here, Theorem 2.1-2.2 are restated in the following corollary in such a way the

results are applied to the model operators defined through the choices in (4) and they are

specialized to the cases s = 1
2

and p > 1.

Corollary 1.1. Consider in R2 the operators A0,A+,Aθ defined above. We have the

following:

· for any 1 < p < 4, let q > p be such that 1
p
− 1

q
= 1

4
; then

‖f‖q ≤ S0

∥∥∥√−A0f
∥∥∥
p

for every f ∈ S .

· for any D ≥ 4 and 1 < p < D, let q > p be such that 1
p
− 1

q
= 1

D
; then

‖f‖q ≤ S+

∥∥∥√−A+f
∥∥∥
p

for every f ∈ S .

· for any 1 < p < 2, let q̄ > q > p be such that 1
p
− 1

q̄
= 1

2
and 1

p
− 1

q
= 1

4
; then

‖f‖Lq+Lq̄ ≤ Sθ

∥∥∥√−Aθf
∥∥∥
p

for every f ∈ S .
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Notice that A0 behaves like the Laplacian in dimension 4 (4 is the homogeneous dimension

which R2 inherits from A0), whereas the behavior of A+ resembles the one of a Laplace-

Beltrami operator in a 4-dimensional manifold which is negatively curved (see, e.g., [30]).

The unusual estimate related to Aθ will be clarified in the next section, together with the

explanation of the main results.

2. Description of the results

The approach we adopt is a semigroup-approach, and it has been influenced by the ideas

of E. Stein in [34] and Varopoulos in [35] in the setting of positive symmetric semigroups.

As a matter of fact, if we denote

(5) K = A − ∂t in RN+1 3 (X, t),

the Cauchy problem related to K admits a unique solution for any datum f ∈ S at

initial time t = 0. This generates a strongly continuous semigroup {Pt}t>0 on Lp defined

by

Ptf(X) =

∫
RN

p(X, Y, t)f(Y )dY ,

where p(X, Y, t) is the transition kernel (i.e. the fundamental solution of K with pole

at (Y, 0)). An important fact, which makes very effective working with the semigroup

associated to A , is that the transition kernel is known explicitly. In [20] the kernel is in

fact constructed via a Fourier analysis, and it was already known to Kolmogorov at least

for the equation under consideration in [24]. In our notations, for any X, Y ∈ RN and

t > 0, we have

p(X, Y, t) =
(4π)−

N
2√

det(tK(t))
exp

(
−
〈K−1(t)

(
Y − etBX

)
, Y − etBX〉

4t

)
.

We can note from the previous formula also the importance of the assumption (1). Some-

times one can find in the literature a slightly different expression for p(X, Y, t), and in

particular the following one

p(X, Y, t) =
(4π)−

N
2 e−t trB√

det(C(t))
exp

(
−
〈C−1(t)

(
X − e−tBY

)
, X − e−tBY 〉

4

)
,
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where C(t) =
∫ t

0
e−sBQe−sB

?
ds. The equivalence of the two expressions can be checked

by using the relation tK(t) = etBC(t)etB
?
. For our purposes it is convenient to rewrite

the transition kernel, for X, Y ∈ RN and t > 0, as follows

(6) p(X, Y, t) =
cN
V (t)

exp

(
−m

2
t (X, Y )

4t

)
where cN is a positive constant and

V (t) = ωN
√

det (tK(t)) = VolN(Bt(X,
√
t)), Bt(X, r) = {Y ∈ RN | mt(X, Y ) < r},

mt(X, Y ) =
√
〈K(t)−1(Y − etBX), Y − etBX〉.

Following Balakrishnan [5], we studied in [15] the fractional powers of A by exploiting

the properties of the semigroup {Pt}t>0. We recall here the definition, where we indicate

by Γ(·) the Euler’s gamma-function.

Definition 2.1. Let 0 < s < 1. For any f ∈ S we define the nonlocal operator (−A )s

by the following pointwise formula

(−A )sf(X) = − s

Γ(1− s)

∫ ∞
0

t−(1+s) (Ptf(X)− f(X)) dt, X ∈ RN .

In [15, Section 3] we showed that the previous integral is in fact convergent, and it also

defines an Lp-function for any p ∈ [1,+∞] whenever (2) holds (see also [17, Lemma 4.3]).

Some notable properties of the nonlocal operators driven by the fractional powers of A

and K have been proved in [15, 16, 8]. In [18] we made use of the operators (−A )s

to introduce a notion of nonlocal perimeter associated to A and to establish nonlocal

isoperimetric inequalities. Fractional powers of hypoelliptic operators of different nature,

namely subLaplacians in Carnot groups and sums of squares of Hörmander vector fields,

have been treated in [12, 14].

After having introduced (−A )s, we can now take from [17, Section 4] the definition of

the Sobolev spaces associated to A (see also [18, Proposition 2.13]).

Definition 2.2. Let 1 ≤ p < +∞ and 0 < s < 1. For f ∈ S we denote

‖f‖L 2s,p = ‖f‖Lp(RN ) + ‖(−A )sf‖Lp(RN ).
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We can then define the Banach space L 2s,p as the completion of the space of functions

defined in RN belonging to the Schwartz class S with respect to the norm ‖ · ‖L 2s,p, i.e.

L 2s,p = S
‖ ‖L 2s,p

.

The advantages of adding the time-variable and working with the operator K go beyond

the explicit representation for the solutions of the Cauchy problem via (6). In RN+1 the

underlying geometry associated with the class of operators we are considering becomes in

fact more clear. It was shown in [25] that K is left-invariant with respect to the following

Lie-group law in RN+1

(7) (X, t) ◦ (Y, τ) =
(
Y + e−τBX, t+ τ

)
.

Moreover, Lanconelli and Polidoro identified and characterized in [25] the subclass of

operators K in (5) which are also homogeneous of degree 2 with respect to power-like

dilations (Kolmogorov’s example falls in particular in such homogeneous class).

Remark 2.1. Given an operator which is invariant with respect to a homogeneous Lie

group structure, one can think to consider a quasi-distance d from a homogeneous quasi-

norm and to build a ‘gradient’ associated to the metric space structure. For the case

under consideration, this could be done in RN+1 (and not in RN) since it would be the

operator K in the space-time variables to be invariant. Even without the homogeneous

structure, if we look at the group law in (7) we can notice that the projection in the space

variables still depends on time: thus, there is a sort of 1-parameter family of ‘geometries’

associated with the operator A in RN . This can also be seen in the formula (6) where

the t-dependent function mt(X, Y ) plays the role of the distance function and defines the

family of pseudo-balls Bt(X, r). One way to see the choice of
√
−A = (−A )

1
2 as a

replacement of a gradient is to read in Definition 2.1 a weighted average in time of such

a 1-parameter family of hidden geometries.

The volume function V (t) in formula (6), being the Lebesgue measure of the pseudo-

balls Bt(X,
√
t), plays a big role in our analysis. If we are in presence of a homogeneous

structure, V (t) is exactly a power of t. In the general situation, thanks to the analysis
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performed in [25], we know that p(X, Y, t) behaves for small times as the transition kernel

of a specific operator in the homogeneous class. Therefore we can always say that

∃D0 ≥ N such that V (t) ∼= tD0/2 as t→ 0+.

We call the number D0 the intrinsic dimension of the semigroup {Pt}t>0 at zero. We also

know that D0 > N unless Q is strictly positive definite (in which case A is elliptic and

D0 = N). On the other hand, the behavior of V (t) for large times dictates the rate of

decay of the semigroup {Pt} and is crucial for our purposes (see also [35]). In [17, Section

3] the following notion has been introduced.

Definition 2.3. Consider the set

Σ∞ =

{
α > 0 :

∫ ∞
1

tα/2−1

V (t)
dt <∞

}
.

We call the number D∞ = sup Σ∞ the intrinsic dimension at infinity of the semigroup

{Pt}t>0.

It is proved in [17, Proposition 3.1] that D∞ ≥ 2 if (2) holds. Furthermore, if the

matrix B has at least one eigenvalue with strictly positive real part, then V (t) blows up

exponentially fast for large t and D∞ = +∞: in other words, in such situation the drift

induces a sort of negative ‘curvature’ in the ambient space RN .

Remark 2.2. Let us detail what happens for the operators A0,A+,Aθ in R2 discussed

in the Introduction. The 2-dimensional Kolmogorov operator A0 − ∂t is homogeneous of

degree 2 with respect to the dilations (v, x, t) 7→ (rv, r3x, r2t): the homogeneous dimension

attached to R2 is thus 4 = 1 + 3. We have in fact

V0(t) =
π

2
√

3
t2 =⇒ D0 (A0) = D∞ (A0) = 4.

The operators A+ − ∂t and Aθ − ∂t behave for small times as the reference homogeneous

operator A0 − ∂t according to the work by Lanconelli and Polidoro. We can notice that

the drift matrix B+ in (4) has a positive eigenvalue, whereas Bθ has eigenvalues ±i. We

can compute, respectively,

V+(t) = π

(
2et − t

2
− 1 +

t

2
e2t − e2t

)
=⇒ D0 (A+) = 4, D∞ (A+) = +∞;
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Vθ(t) = π

(
t2

4
+

1

8
(cos(2t)− 1)

) 1
2

=⇒ D0 (Aθ) = 4, D∞ (Aθ) = 2.

We stress that D∞ < D0 in the special case of Aθ. A somehow similar situation might

occur in a Riemannian setting in presence of a manifold with a cylindrical end.

We have singled out in [17] two possible behaviors for the volume function V (t) under

which we can prove very different Sobolev-type embeddings. The first situation is when

(8) ∃D, γD > 0 such that V (t) ≥ γD tD/2 ∀t > 0.

Condition (8) imposes a restriction for the relation between D0 and D∞: the validity of

(8) implies in fact that D0 ≤ D ≤ D∞. Hence, for the operator Aθ, the condition (8)

does not hold. On the other hand, it holds true for A0 if and only if D = 4, and for A+

for every D ≥ 4. In [17, Theorem 7.5] it is proved the following result.

Theorem 2.1. Suppose that (8) hold. Let 0 < s < 1. Given 1 ≤ p < D/2s let q > p be

such that 1
p
− 1

q
= 2s

D
.

(a) If p > 1 we have L 2s,p ↪→ L
pD

D−2sp (RN). More precisely, there exists a constant

Sp,s > 0, depending on N,D, s, γD, p, such that for any f ∈ S one has

‖f‖q ≤ Sp,s‖(−A )sf‖p.

(b) When p = 1 we have L 2s,1 ↪→ L
D

D−2s
,∞(RN). More precisely, there exists a

constant S1,s > 0, depending on N,D, s, γD, such that for any f ∈ S one has

sup
λ>0

λ|{X ∈ RN : |f(X)| > λ}|1/q ≤ S1,s‖(−A )sf‖1.

We also refer the interested reader to [18, Section 7] for a strong embedding in the geo-

metric case p = 1 of a suitable Besov-type space.

As we mentioned, Theorem 2.1 does not cover the situation when D0 > D∞. When this

happens we have the following substitute result, which applies in particular to Aθ. By

Lq1(RN) + Lq2(RN) we mean the Banach space of functions f which can be written as

f = f1 + f2 with f1 ∈ Lq1(RN) and f2 ∈ Lq2(RN) which is endowed with the norm

‖f‖Lq1+Lq2 = inf
f=f1+f2∈Lq1+Lq2

‖f1‖Lq1 + ‖f2‖Lq2 .
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The second condition under which we discuss the Sobolev-type embedding is the following

(9) ∃ γ > 0 such that V (t) ≥ γmin{tD0/2, tD∞/2} ∀t > 0.

The next result is taken from [17, Theorem 7.7].

Theorem 2.2. Suppose that (9) hold. Let 0 < s < 1. Given 1 ≤ p < D∞/2s < D0/2s,

let q∞ > q0 > p be such that 1
p
− 1

q∞
= 2s

D∞
, 1
p
− 1

q0
= 2s

D0
.

(a) If p > 1 we have L 2s,p ↪→ L
pD∞

D∞−2sp (RN) + L
pD0

D0−2sp (RN). More precisely, there

exists a constant Sp,s > 0, depending on N,D∞, D0, s, γ, p, such that for any f ∈

S one has

‖f‖Lq0+Lq∞ ≤ Sp,s‖(−A )sf‖p.

(b) If instead p = 1, we have L 2s,1 ↪→ L
D0

D0−2s
,∞

(RN)+L
D∞

D∞−2s
,∞(RN). More precisely,

there exists a constant S1,s > 0, depending on N,D∞, D0, s, γ, such that for any

f ∈ S one has

min

{
sup
λ>0

λ |{X : |f(X)| > λ}|
1
q0 , sup

λ>0
λ |{X : |f(X)| > λ}|

1
q∞

}
≤ S1,s||(−A )sf ||1.

Similarly to Theorems 2.1-2.2, the two conditions (8)-(9) have allowed us to prove in [18,

Theorem 1.1 and Theorem 1.2] two distinct nonlocal isoperimetric inequalities. We remark

that all these results do involve the global geometry related to the class of operators A

in (3), as it becomes evident in the examples discussed in Remark 2.2. For other global

results related to A in absence of an underlying homogeneous structure, we refer the

reader to [33, 7] where the authors deal respectively with Liouville-type theorems and

global Lp-estimates for second derivates. The proofs in [33], in [7] and in [17, 18] rely on

completely different methods.

For the detailed proofs of Theorems 2.1-2.2 we refer to [17, Section 7]. We want to briefly

mention few crucial steps of the proof which are again based on a semigroup approach. In

[17, Theorem 6.3] we show an inversion formula for the fractional powers of A in terms of

suitable Riesz-type potentials having a semigroup representation, see [17, Definition 6.1

and Lemma 6.2]. In this way the proof of our Sobolev-type embeddings can be deduced

from the Lp − Lq mapping properties of the Riesz potentials. The key technical tool to

show these mapping properties is the introduction of a maximal function related to A ,
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which we believe has interest in its own. This maximal function, which maps in fact

continuously L1(RN) in L1,∞(RN) and any Lp(RN) in itself for p > 1 ([17, Theorem 5.5]),

is defined with the aid of the Poisson semigroup ez
√
−A following an idea by Stein in [34].

Depending on p and on the standing assumption (8)/(9), we can prove that the Riesz-

potentials are suitably bounded in terms of such a maximal function ([17, equations (7.2)

and (7.14)]). As a final remark, we recall that the function U(X, z) = ez
√
−A f(X) solves

the Poisson problem in the sense that is solution to the equation ∂zzU + A U = 0 in the

extended half-space RN × {z > 0} with initial condition f at z = 0, and its infinitesimal

generator
√
−A f is retrieved as the Neumann datum at z = 0 (see the more general

extension problems considered in [15], as well as [17, Lemma 5.2]).
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