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ANDRÁS DOMOKOS AND JUAN J. MANFREDI

Abstract. We study the interior regularity of solutions to a class of quasilinear equa-

tions of non-degenerate p-Laplacian type on Lie groups that admit a system of Hilbert-

Haar coordinates. These are coordinates with respect to which every linear function has

zero symmetrized second order horizontal derivatives. All Carnot groups of rank two

are in this category, as well as the Engel group, the Goursat type groups, and those

general Carnot groups of step three for which the non-zero commutators of order three

are linearly independent.

Sunto. Studiamo la regolarità interna delle soluzioni di una classe di equazioni quasi-

lineari non degeneri di tipo p-Laplaciano su gruppi di Lie che ammettono un sistema

di coordinate di Hilbert-Haar. Si tratta di coordinate rispetto alle quali ogni funzione

lineare ha derivate orizzontali simmetrizzate di ordine due nulle. Tutti i gruppi di Carnot

di passo due appartengono a questa classe, come anche il gruppo Engel, i gruppi di tipo

Goursat e tuti quei gruppi di Carnot di passo tre per i quali i commutatori di ordine tre,

diversi da zero, sono linearmente indipendenti.
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1. Introduction

Let G be a Lie group and g be its Lie algebra of dimension n. Let X = {X1, ..., Xm1},

m1 < n, be a system of left-invariant vector fields which, together with their commutators

up to order ν ≥ 2, span g. Also, consider a domain Ω ⊂ G and δ ≥ 0.
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We study the interior regularity of solutions to equations modeled on the p-Laplacian

(1.1) divX

((
δ2 + |Xu|2

) p−2
2 Xu

)
= 0 in Ω ,

when we have on Ω a special coordinate system that we call a Hilbert-Haar system,

because it allows us to extend the Hilbert-Haar theory to these groups. For a modern

description of the Hilbert-Haar theory see [Cla05].

First, we prove that solutions to (1.1) with C2-boundary values are locally Lipschitz

with respect to the Carnot-Carathéodory distance associated to the system X.

Second, we prove that in Carnot groups that admit Hilbert-Haar coordinates we have

interior C∞-regularity of weak solutions to (1.1) for δ > 0 and p in the range

(1.2) 2 ≤ p < min

{
2ν

ν − 1
,

2Q+ 8

Q− 2

}
,

where Q is the homogeneous dimension of G. See Theorem 3.1 below.

Third, we will show that in many cases, Carnot groups admit Hilbert-Haar coordinates.

They include all Carnot groups of rank two, the Engel group, Goursat type groups, and

those general Carnot groups of step three for which the non-zero commutators of order

three are linearly independent.

The C∞-regularity is well-known when p = 2 (the linear case). To the best of our

knowledge, the result presented in this paper is the first regularity result for non-linear

equations in some groups of rank 3 or higher with an explicit interval of p. A general

Cordes estimates valid for an unspecified interval p ∈ [2, 2 + εG), and including the degen-

erate case δ = 0, was established by one of us in [Dom08]. While the Cordes perturbation

argument is naturally limited, it is our hope that the new techniques used in this manu-

script can be extended to the full range p ≥ 2.

Miranda [Mir65] established Lipschitz bounds for solutions of the Dirichlet problem

with smooth boundary data for a class of elliptic equations on domains satisfying the so-

called Bounded Slope Condition (BSC). Key to this argument is that all linear functions

are solutions to these equations. While this is automatic in the Euclidean case, it is not

obvious in Lie groups. It is not even clear that linear functions have vanishing symmetrized

horizontal second derivatives. For the case of the Heisenberg group, that this is the case
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was first noted by Zhong [Zho17], who proved Lemma 2.2 below in that case. Our starting

observation is that linear functions that have vanishing symmetrized horizontal second

derivatives also solve equation (1.1) (Lemma 2.1).

We apply Miranda’s argument in Lie groups to get Lipschitz bounds in a domain D

for solutions with smooth boundary values on D̄ (Lemma 2.2). Next, in Carnot groups,

given a weak solution u, we approximate it by a sequence of smooth functions φn, solve

the Dirichlet problem with boundary values to get a sequence un that converges to u.

From Miranda’s argument it follows that the functions un are C∞, but we don’t have a

quantitative control of their Lipschitz bound. Since these are smooth solutions, we can use

various integral estimates located in §3.1: Lemma 3.1, Lemma 3.2 of Gagliardo-Niremberg

type, Lemma 3.3 of Cacciopoli type for vertical derivatives, and Lemma 3.4 of Cacciopoli

type for horizontal derivatives. We remark that the estimates in section §3.1 are valid for

all p > 1. It is in the first step (Theorem 3.2) of the iteration process, where we have to

use difference quotients, that we find the limitation on 2 ≤ p < 2ν
ν−1

, part of (1.2). The

other part of (1.2), 2 ≤ p < 2Q+8
Q−2

, comes from our current implementation of the Moser

iteration in Lemma 3.6. Our final step is a Moser iteration for the horizontal derivatives,

Theorem 3.3. We can pass to the limit in these estimates since we have a quantitative

control when (1.2) holds.

In Section §4 we discuss Hilbert-Haar coordinates. We show that every Carnot group

of step 2 (Theorem 4.1), every Goursat group, which includes the Engel group, (Theorem

4.2), and all groups of step 3 with linearly independent third order commutators (Theorem

4.3) admit a system of Hilbert Haar coordinates.

We finish this introduction by conjecturing that every Carnot group has a system of

Hilbert-Haar coordinates. While we present examples of arbitrary step, the general case

remains open.

Acknowledgments: This research was presented by one of us (Domokos) at the con-

ference “Something about nonlinear problems” held at the University of Bologna, June

13–14, 2018. We thank the organizers for their invitation to attend this conference, and

INDAM-GNAMPA, the University of Bologna, and project GHAIA for their support.
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2. Lipschitz continuity of weak solutions with C2-boundary condition

In this section let G be a Lie group endowed with a system of horizontal left invariant

vector fields X = {X1
1 , ..., X

1
m1
}, m1 < n, generating the Lie algebra g. From now on, we

will use the notation X1
k (instead of Xk), to emphasize the first stratum of g.

Rewrite equation (1.1) as follows:

(2.1)

m1∑
i=1

X1
i (ai(Xu)) = 0,

where

ai(ξ) = (δ2 + |ξ|2)
p−2
2 ξi, for 1 ≤ i ≤ m1.

Note that these functions are differentiable, and there exists L > 0 such that the following

properties hold for all ξ, η ∈ Rm1 :

m1∑
i,j=1

∂ai
∂ξj

(ξ) ηiηj ≥ L
(
δ2 + |ξ|2

) p−2
2 |η|2 ,(2.2)

m1∑
i,j=1

∣∣∣∣∂ai∂ξj
(ξ)

∣∣∣∣ ≤ L−1
(
δ2 + |ξ|2

) p−2
2

and,(2.3)

|ai(ξ)| ≤ L−1
(
δ2 + |ξ|2

) p−1
2 .(2.4)

Consider the following Sobolev space adapted to the horizontal system of vector fields X:

W 1,p
X (Ω) =

{
u ∈ Lp(Ω) : X1

i u ∈ Lp(Ω) , for all 1 ≤ i ≤ m1

}
.

Let W 1,p
X,0(Ω) be the closure of C∞0 (Ω) in W 1,p

X (Ω) with respect to its usual norm.

A function u ∈ W 1,p
X (Ω) is a weak solution of the equation (2.1) if

(2.5)

m1∑
i=1

∫
Ω

ai(Xu(x)) X1
i φ(x)dx = 0 , for all φ ∈ C∞0 (Ω) .

For a function u : G→ R we define the matrix of symmetrized second order horizontal

derivatives as (
∇2

Xu
)∗

=

{
1

2

(
X1
k X

1
l u+X1

l X
1
ku
)}

1≤k,l≤m1

.
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Lemma 2.1. Suppose that we have local coordinates in Ω ⊂ G such that for any linear

function

L(x1, ..., xn) =
n∑
i=1

aixi

we have

(2.6)
(
∇2

XL
)∗

= 0 , in Ω .

Then L is also a solution to (2.1).

Proof. Let us compute

m1∑
i=1

X1
i (ai(XL)) =

m1∑
i,j=1

∂ai(XL)

∂ξj
X1
iX

1
jL

=

m1∑
i=1

∂ai(XL)

∂ξi
X1
iX

1
i L+

m1∑
i,j=1,i<j

∂ai(XL)

∂ξj
(X1

iX
1
jL+X1

jX
1
i L) = 0,

where we have used that ∂ai
∂ξj

is a symmetric matrix. �

Definition 2.1. Given a set of horizontal vector fields X = {X1
1 , ..., X

1
m1
}, a system of

local coordinates {x1, . . . , xn} is called a Hilbert-Haar coordinate system if (2.6) holds.

Let us denote by Br(x0) (or Br if the center is clear from context) a Euclidean ball of

radius r centered at x0. Also, |x−y| denotes the Euclidean distance, while d(x, y) denotes

the Carnot-Carathéodory distance associated to the horizontal vector fields X1
1 , ..., X

1
m1

.

The notations ∇φ and ∇2φ indicate the Euclidean gradient and Euclidean Hessian matrix

respectively.

Lemma 2.2. Suppose that Hilbert-Haar coordinates exist in Ω. Let p > 1, δ ≥ 0, B3r ⊂ Ω,

φ ∈ C2(B2r) and u ∈ W 1,p
X (Br) be the unique weak solution of the Dirichlet problem

(2.7)


∑m1

i=1X
1
i (ai(Xu)) = 0 , in Br

u− φ ∈ W 1,p
X,0(Br) .

Then, there exists a constant λ > 0, depending on r, ‖∇φ‖L∞(Br)
and ‖∇2φ‖L∞(Br)

such

that

(2.8) |u(x)− u(y)| ≤ λ d(x, y) , for all x, y ∈ Br .
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Proof. Let us fix an arbitrary y ∈ ∂Br and choose the inner normal unit vector

νy =
1

|x0 − y|
(x0 − y) .

Then, we have

(2.9) 〈x− y, νy〉 ≥
1

2r
|x− y|2 , for all x ∈ Br .

Let M = ‖∇2φ‖L∞(B̄r). Define the linear function

L1(x) = φ(y) + 〈∇φ(y) +M r νy , x− y〉 .

Then, for a point ξ between x and y we have

φ(x) = φ(y) + 〈∇φ(y), x− y〉+
1

2
〈∇2φ(ξ)(x− y), x− y〉

≤ φ(y) + 〈∇φ(y), x− y〉+
1

2
M |x− y|2 ≤ L1(x) .

Hence, we have

φ(x) ≤ L1(x) , for all x ∈ Br .

Since the boundary of Br is smooth, we know that u ∈ C(Br) and u(x) = φ(x), for all

x ∈ ∂Br (see [TW02] for example). Therefore, u(x) ≤ L1(x) for all x ∈ ∂Br and taking

into consideration that, by (2.6), L1 is a solution of (2.1), by the comparison principle we

have u(x) ≤ L1(x) for all x ∈ Br. Repeating the above arguments for

L2(x) = φ(y) + 〈∇φ(y)−M r νy , x− y〉 ,

we get that

L2(x) ≤ u(x) ≤ L1(x) , for all x ∈ Br .

Since we always have |x− y| ≤ c d(x, y) (see [NSW85]), taking

λ = c
(
‖∇φ‖L∞(Br)

+ r‖∇2φ‖L∞(Br)

)
,

we obtain

(2.10) |u(x)− u(y)| ≤ λd(x, y) , for all x ∈ Br, y ∈ ∂Br .
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Let us fix two arbitrary x, y ∈ Br. Then, for g = yx−1 we define D = Br ∩ g−1Br. Note

that x ∈ D and by the openess of the left multiplication operator, intD 6= ∅. Also, if

z ∈ ∂D, then z ∈ ∂Br or gz ∈ ∂Br and hence

|u(z)− u(gz)| ≤ λd(z, gz) = λd(x, y) .

Therefore,

u(z) ≤ u(gz) + λd(x, y) , for all z ∈ ∂D .

Observe that both u(z) and u(gz) + constant are weak solutions of (2.1) on D, and hence

by the comparison principle we get that

u(z) ≤ u(gz) + λd(x, y) , for all z ∈ D .

Similarly, we have

u(gz) ≤ u(z) + λd(x, y) , for all z ∈ D ,

and therefore,

|u(z)− u(gz)| ≤ λd(x, y) , for all z ∈ D .

Since x ∈ D, we can take z = x to get

|u(x)− u(y)| ≤ λd(x, y) .

�

3. Regularity of Weak Solutions in Carnot groups

Consider a Carnot group (G, ·) = (Rn, ·) and a system of left invariant horizontal vector

fields X = {X1
1 , . . . , X

1
m1
}, m1 < n, which generates the Lie algebra g of G. We assume

that g admits a stratification

(3.1) g =
ν⊕
s=1

V s ,

where ν ∈ N, ν ≥ 2 and

(i) {X1
1 , . . . , X

1
m1
} is a basis of V 1,(3.2)

(ii) [V 1, V s] = V s+1 if s ≤ ν − 1,(3.3)
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(iii) [V 1, V ν ] = {0} .(3.4)

Let us denote dimV s = ms for all 1 ≤ s ≤ ν . Our main result is the following.

Theorem 3.1. Let G be a Carnot group of step ν ≥ 2 and of homogeneous dimension Q,

which admits a system of Hilbert-Haar coordinates. For δ > 0 and p in the range

2 ≤ p < min

{
2ν

ν − 1
,

2Q+ 8

Q− 2

}
,

weak solutions to (2.1) are in C∞(Ω).

3.1. Integral estimates for all p > 1. The following Gagliardo-Nirenberg type inequal-

ity depends only on integration by parts and hence is true for any function with the

necessary integrability conditions. The proof is the same as in the Heisenberg group (see

[MZGZ09])

Lemma 3.1. Let u ∈ C∞(Ω), β ≥ 0 and η ∈ C∞0 (Ω). Then there exists a constant c > 0,

depending on β, such that∫
Ω

η2(δ2 + |Xu|2)
p+2
2

+β dx ≤ c

∫
Ω

(δ2η2 + |Xη|2u2) (δ2 + |Xu|2)
p
2

+β dx

+ c

∫
Ω

u2η2

m1∑
k=1

(δ2 + |X1
ku|2)

p−2
2

+β |X1
kX

1
ku|2 dx .

Lemma 3.1 implies the following corollary.

Corollary 3.1. Let u ∈ C∞(Ω), β ≥ 0 and η ∈ C∞0 (Ω). Then there exists a constant

c > 0, depending on β, such that∫
Ω

η2(δ2 + |Xu|2)
p+2
2

+β dx ≤ c

∫
Ω

(δ2η2 + |Xη|2u2) (δ2 + |Xu|2)
p
2

+β dx

+ c

∫
Ω

u2η2 (δ2 + |Xu|2)
p−2
2

+β |XXu|2 dx .

To prove the next lemma we use the test function φ = η2 u (Xs
ku)2β in the weak form

of (2.1). Since we don’t need to interchange derivatives, commutators do not appear, and

the proof is identical to the proof in the Heisenberg group (see [MZGZ09]).
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Lemma 3.2. Let u ∈ C∞(Ω) be a solution of (2.1), β ≥ 1 and η ∈ C∞0 (Ω). Then there

exists a constant c > 0 depending on β and L, such that for all 1 ≤ s ≤ ν and 1 ≤ k ≤ ms

we have∫
Ω

η2(δ2 + |Xu|2)
p
2 |Xs

ku|2β dx ≤ c

∫
Ω

(δ2η2 + |Xη|2u2) (δ2 + |Xu|2)
p−2
2 |Xs

ku|2β dx

+ cβ2

∫
Ω

u2η2 (δ2 + |Xu|2)
p−2
2 |Xs

ku|2β−2 |XXs
ku|2 dx .

Let us introduce the notation for the vertical gradient:

(3.5) Vu = (X2
1u, . . . , X

2
m2
u, . . . , Xν

1u, . . . , X
ν
mνu) .

Lemma 3.2 implies the following corollary.

Corollary 3.2. Let u ∈ C∞(Ω) be a solution of (2.1), β ≥ 1 and η ∈ C∞0 (Ω). Then

there exists a constant c > 0 depending on β and L, such that∫
Ω

η2(δ2 + |Xu|2)
p
2 |Vu|2β dx ≤ c

∫
Ω

(δ2η2 + |Xη|2u2) (δ2 + |Xu|2)
p−2
2 |Vu|2β dx

+ c

∫
Ω

u2η2 (δ2 + |Xu|2)
p−2
2 |Vu|2β−2 |XVu|2 dx .

For the following two lemmas we need to use the differentiated forms of (2.1) and track

down the commutators. We start with a vertical Caccioppoli type inequality.

Lemma 3.3. Let p > 1, u ∈ C∞(Ω) be a solution to (2.1), β ≥ 0 and η ∈ C∞0 (Ω). Then

there exists a constant c > 0 depending on L and β, such that∫
Ω

η2(δ2 + |Xu|2)
p−2
2 |Vu|2β |XVu|2dx ≤ c

∫
Ω

(η2 + |Xη|2) (δ2 + |Xu|2)
p−2
2 |Vu|2β+2 dx.

Proof. Consider any non-horizontal vector field Xs
k from (3.5) and differentiate (2.1):∑

i

Xs
kX

1
i ai = 0 .

Switch the order of differentiation and get∑
i

X1
iX

s
kai =

∑
i

Xs+1
[i,k]ai ,
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where we used the notation [X1
i , X

s
k] = Xs+1

[i,k] . Hence, for any φ ∈ C∞0 (Ω) we have∑
i,j

∫
Ω

aij ·Xs
kX

1
j u ·X1

i φ dx = −
∑
i

∫
Ω

Xs+1
[i,k]ai · φ dx ,

where aij = ∂ai
∂ξj

. Another switch in the order of differentiation leads to

∑
i,j

∫
Ω

aij · X1
jX

s
ku · X1

i φ dx = −
∑
i

∫
Ω

Xs+1
[i,k]ai · φ dx +

∑
i,j

∫
Ω

aij · Xs+1
[j,k]u · X

1
i φ dx .

For any η ∈ C∞0 (Ω), η ≥ 0 and β ≥ 0 let us consider

φ = η2 · |Vu|2β ·Xs
ku ,

and obtain ∑
i,j

∫
Ω

aij ·X1
jX

s
ku · η2 · |Vu|2β ·X1

iX
s
ku dx(3.6)

+
∑
i,j

∫
Ω

aij ·X1
jX

s
ku · η2 · β · |Vu|2β−2 ·X1

i

(
|Vu|2

)
·Xs

ku dx(3.7)

= −
∑
i,j

∫
Ω

aij ·X1
jX

s
ku · 2ηX1

i η · |Vu|2β ·Xs
ku dx(3.8)

−
∑
i,j

∫
Ω

aij ·Xs+1
[i,k]X

1
j u · η2 · |Vu|2β ·Xs

ku dx(3.9)

+
∑
i,j

∫
Ω

aij ·Xs+1
[j,k]u · η

2 · |Vu|2β ·X1
iX

s
ku dx(3.10)

+
∑
i,j

∫
Ω

aij ·Xs+1
[j,k]u · η

2 · β · |Vu|2β−2 ·X1
i

(
|Vu|2

)
·Xs

ku dx(3.11)

+
∑
i,j

∫
Ω

aij ·Xs+1
[j,k]u · 2ηX

1
i η · |Vu|2β ·Xs

ku dx .(3.12)

Let us add the equations considered for each non-horizontal vector field Xs
k and start

estimating each term. For simplicity, we use w = δ2 + |Xu|2.

(3.6) ≥ L

∫
Ω

η2 · w
p−2
2 · |Vu|2β · |XVu|2 dx .

(3.7) ≥ βL

2

∫
Ω

η2 · w
p−2
2 · |Vu|2β−2 ·

∣∣X (|Vu|2)∣∣2 dx .
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We continue with the terms on the right side.

(3.8) ≤ c

∫
Ω

η · |Xη| · w
p−2
2 · |Vu|2β+1 · |XVu| dx

≤ L

100

∫
Ω

η2 · w
p−2
2 · |Vu|2β · |XVu|2 dx+ c

∫
Ω

|Xη|2 · w
p−2
2 · |Vu|2β+2 dx .

For (3.9), initially we have to use Xs+1
[i,k]X

1
j u = X1

jX
s+1
[i,k]u − Xs+2

[j,[i,k]]u, but otherwise the

estimates of (3.9) - (3.12) are similar to (3.8), and this finishes the proof. �

The next lemma is a version of the horizontal Caccioppoli inequality.

Lemma 3.4. Let p > 1, u ∈ C∞(Ω) be a solution to (2.1), β ≥ 0 and η ∈ C∞0 (Ω). Then

there exists a constant c > 0 depending on β and L such that∫
Ω

η2(δ2 + |Xu|2)
p−2
2

+β |XXu|2dx ≤ c

∫
Ω

η2 (δ2 + |Xu|2)
p−2
2

+β |Vu|2 dx

+ c

∫
Ω

(η2 + |Xη|2 + η|Vη|) (δ2 + |Xu|2)
p
2

+β dx .

Proof. Consider any horizontal vector field X1
k and differentiate (2.1):∑

i

X1
kX

1
i ai = 0 .

Switch the order of differentiation and get∑
i

X1
iX

1
kai =

∑
i

X2
[i,k]ai .

Hence, for any φ ∈ C∞0 (Ω) we have∑
i,j

∫
Ω

aij ·X1
kX

1
j u ·X1

i φ dx =
∑
i

∫
Ω

ai ·X2
[i,k]φ dx .

Another switch in the order of differentiation leads to

∑
i,j

∫
Ω

aij · X1
jX

1
ku · X1

i φ dx =
∑
i

∫
Ω

ai · X2
[i,k]φ dx +

∑
i,j

∫
Ω

aij · X2
[j,k]u · X1

i φ dx .

For any η ∈ C∞0 (Ω), η ≥ 0 and β ≥ 0 let us consider

φ = η2 ·
(
δ2 + |Xu|2

)β ·X1
ku ,
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and use again w = δ2 + |Xu|2. Therefore, we obtain the following equation.∑
i,j

∫
Ω

aij ·X1
jX

1
ku · η2 · wβ ·X1

iX
1
ku dx(3.13)

+
∑
i,j

∫
Ω

aij ·X1
jX

1
ku · η2 · β · wβ−1 ·X1

i

(
|Xu|2

)
·X1

ku dx(3.14)

= −
∑
i,j

∫
Ω

aij ·X1
jX

1
ku · 2ηX1

i η · wβ ·X1
ku dx(3.15)

+
∑
i

∫
Ω

ai ·X2
[i,k]

(
η2 · wβ ·X1

ku
)
dx(3.16)

+
∑
i,j

∫
Ω

aij ·X2
[j,k]u · η2 · wβ ·X1

iX
1
ku dx(3.17)

+
∑
i,j

∫
Ω

aij ·X2
[j,k]u · η2 · β · wβ−1 ·X1

i

(
|Xu|2

)
·X1

ku dx(3.18)

+
∑
i,j

∫
Ω

aij ·X2
[j,k]u · 2ηX1

i η · wβ ·X1
ku dx .(3.19)

After summing over k, we get the following estimates for the left hand side.

(3.13) ≥ L

∫
Ω

η2 · w
p−2
2

+β · |XXu|2 dx .

(3.14) ≥ βL

2

∫
Ω

η2 · w
p−4
2

+β ·
∣∣X (|Xu|2)∣∣2 dx .

We continue by estimating the right hand side:

(3.15) ≤ c

∫
Ω

η · |Xη| · w
p−1
2

+β · |XXu| dx

≤ L

100

∫
Ω

η2 · w
p−2
2

+β · |XXu|2 dx+ c

∫
Ω

|Xη|2 · w
p
2

+β dx .

For (3.16), we first write:

(3.16) =
∑
i,k

∫
Ω

ai ·X2
[i,k]

(
η2 · wβ ·X1

ku
)
dx

=
∑
i,k

∫
Ω

ai · 2ηX2
[i,k]η · wβ ·X1

ku dx(3.20)

+
∑
i,k

∫
Ω

ai · η2 · βwβ−1X2
[i,k](|Xu|2) ·X1

ku dx(3.21)
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+
∑
i,k

∫
Ω

ai · η2 · wβ ·X2
[i,k]X

1
ku dx .(3.22)

The first term is easy to estimate:

(3.20) ≤ c

∫
Ω

η|Vη| · w
p
2

+β dx .

The term (3.21) is similar to (3.22), only the latter has fewer terms. We will show the

estimate of (3.22).

(3.22) =
∑
i,k

∫
Ω

ai · η2 · wβ ·X1
kX

2
[i,k]u dx+

∑
i,k

∫
Ω

ai · η2 · wβ ·X3
[k,[i,k]]u dx

= −
∑
i,k

∫
Ω

X1
k

(
ai · η2 · wβ

)
·X2

[i,k]u dx+
∑
i,k

∫
Ω

ai · η2 · wβ ·X3
[k,[i,k]]u dx

≤ c

∫
Ω

η2 · w
p−2
2

+β · |XXu| · |Vu| dx+ c

∫
Ω

η|Xη| · w
p−1
2

+β · |Vu| dx

+ c

∫
Ω

η2 · w
p−1
2

+β · |Vu| dx

≤ L

100

∫
Ω

η2 · w
p−2
2

+β · |XXu|2 dx+ c

∫
Ω

η2 · w
p−2
2

+β · |Vu|2 dx

+ c

∫
Ω

(
η2 + |Xη|2

)
· w

p
2

+β dx .

We can finish now the proof by combining the estimates (3.13)-(3.22). �

3.2. C∞-interior regularity for the non-degenerate case. Initially, the following

theorem was used in [Dom08, DM09] to provide the differentiability of the weak solutions

in the directions of the non-horizontal vector fields. In this section we will apply it to

the smooth approximating solutions un, in order to find energy and second derivative

integrability bounds that are independent of n.

Theorem 3.2. [Dom08, DM09] Let 2 ≤ p < 2ν
ν−1

and r > 0 such that B3r ⊂ Ω. If

u ∈ X1,p
X,loc(Ω) is a weak solution of (2.1), then there exists c > 0 depending on p, L and

r such that for all 1 ≤ s ≤ ν and 1 ≤ k ≤ ms we have

(3.23)

∫
Br

|Xs
ku|p dx ≤ c

∫
B2r

(δ2 + |Xu|2)
p
2 dx ,
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and

(3.24)

∫
Br

(δ2 + |Xu|2)
p−2
2 (|XXs

ku|2 + |Xs
kXu|2) dx ≤ c

∫
B2r

(δ2 + |Xu|2)
p
2 dx .

If we use Theorem 3.2 and Corollary 3.1 with β = 0, followed by Corollary 3.2 with

β = 1, Lemma 3.4 with β = 1 and again Corollary 3.1 with β = 1, we get the following

result.

Lemma 3.5. Let 2 ≤ p < 2ν
ν−1

and r > 0 such that B3r ⊂ Ω. If u ∈ C∞(Ω) is a solution

of (2.1), then there exists c > 0 depending on p, L and r such that

(3.25)

∫
Br

(δ2 + |Xu|2)
p+4
2 dx ≤ c

(
1 + ||u||4L∞(B2r)

) ∫
B2r

(δ2 + |Xu|2)
p
2 dx ,

The next lemma gives the upper bound for the derivatives in the non-horizontal di-

rections. Notice the loss of homogeneity in (3.26), due to the fact that we will use the

inequality δ2 ≤ δ2 + |Xu|2.

Lemma 3.6. Let us assume that 2 ≤ p < min{ 2ν
ν−1

, 2Q+8
Q−2
}, δ > 0 and u ∈ C∞(Ω) is a

solution of (2.1). Then there exist a constant c depending on p, Q, L, r, ||u||L∞(B2r) and

δ such that

(3.26) ||Vu||L∞(Br) ≤ c

(∫
B2r

(δ2 + |Xu|2)
p
2 dx

) 1
p

+
(p−2)Q

p(2Q+8−p(Q−2))

.

Proof. Lemma 3.3 implies the following inequality.

∫
Ω

η2|Vu|2β |XVu|2dx ≤ c

δp−2

(
1 + ||Xη||2L∞(supp η)

) (∫
supp η

(δ2 + |Xu|2)
p+4
2 dx

) p−2
p+4

·
(∫

supp η

|Vu|(2β+2) p+4
6 dx

) 6
p+4

.

By Lemma 3.5 and the Poincaré inequality we obtain

(∫
Ω

(
η|Vu|β+1

) 2Q
Q−2 dx

)Q−2
2Q

≤ c
(
1 + ||Xη||L∞(supp η)

) (∫
B2r

(δ2 + |Xu|2)
p
2 dx

) p−2
2(p+4)

·
(∫

supp η

|Vu|(β+1) p+4
3 dx

) 3
p+4

.
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By defining a = 2Q
Q−2

, b = p+4
3

, χ = a
b
, β0 = 3p

p+4
, βk + 1 = (β0 + 1)χk and αk = (βk + 1)b,

we obtain

(∫
Ω

ηa|Vu|αk+1 dx

) 1
αk+1

≤ c
(
1 + ||Xη||L∞(supp η)

) b
αk

(∫
B2r

(δ2 + |Xu|2)
p
2 dx

) p−2
6αk

·
(∫

supp η

|Vu|αk dx
) 1

αk

.

Noticing that χ > 1 if p < 2Q+8
Q−2

, estimate (3.26) follows from the standard Moser iteration.

�

Theorem 3.3. Let us assume that 2 ≤ p < min{ 2ν
ν−1

, 2Q+8
Q−2
}, δ > 0 and u ∈ W 1,p

X (Ω) is

a weak solution to the horizontal quasilinear equation (2.1). Then we have Xu ∈ L∞loc(Ω).

Proof. Let B2r ⊂ Ω. Let {φn} be a sequence of functions in C∞0 (Ω) converging to u in

W 1,p
X (Br). For each n ∈ N, let un ∈ W 1,p

X (Br) be the unique weak solution of the Dirichlet

problem

(3.27)


∑m1

i=1X
1
i (ai(Xu)) = 0 , in Br

u− φn ∈ W 1,p
X,0(Br) .

By Lemma 2.2 and [Cap99, DM09], we know that un ∈ C∞(Br). Then we use φ = un−φn
in (2.5), and find that the sequence {un} is bounded in W 1,p

X (Br) and hence ||un||L∞(Br/2)

is also bounded. Moreover, there is a subsequence, denoted also by {un}, which converges

weakly to ū ∈ W 1,p
X (Br). Then ū is a weak solution of (2.1) and since ū− u ∈ W 1,p

X,0(Br),

by the uniqueness of solutions to the Dirichlet problem we conclude that ū = u on Br.

Lemmas 3.4 and 3.6 imply that for a test function η, with support included in Br/4, there

exists a constant c depending on δ, p, L, ||u||W 1,p
X (Br)

, but independent of n, such that∫
η2
(
δ2 + |Xun|2

) p−2
2

+β |XXun|2 ≤ c

∫
supp η

(
δ2 + |Xun|2

) p
2

+β
.

By the Moser iteration we obtain that

||Xun||L∞(Br/16) ≤ c

∫
Br

(
δ2 + |Xun|2

) p
2 .
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Finally, letting n→∞ we get

||Xu||L∞(Br/16) ≤ c

∫
Br

(
δ2 + |Xu|2

) p
2 .

�

Proof of Theorem 3.1: Once Theorem 3.3 gives the local boundedness of the hori-

zontal gradient of the weak solution u ∈ W 1,p
X (Ω), Theorem 3.1 follows from the results

obtained in [Cap99, DM09].

4. Hilbert-Haar coordinates in Carnot groups

We can identify any left-invariant vector field X ∈ g by its value at the identity element

x = 0. For anyX ∈ g there exists a unique differentiable homomorphism ϕX : R→ G such

that ϕ′X(0) = X. The group exponential exp : g→ G is defined by exp(X) = ϕX(1). We

also use the notation ϕX(t) = exp(tX). The exponential map is a global diffeomorphism

in Carnot groups. Hence, we can introduce the exponential coordinates of first kind, by

identifying x with X when x = exp(X). To show how these coordinates are adapted to

the stratification of the Lie algebra (3.1), let us use the notation

x = (x1, ..., xν) ,

where

(4.1) x1 =
(
x1

1, ..., x
1
m1

)
, ... , xν =

(
xν1, ..., x

ν
mν

)
.

For all 1 ≤ s ≤ ν we define degree(xsi ) = s, and the degree of a monomial is

degree
((
xs1i1
)p1 ...(xsjij )pj) = s1p1 + ...+ sjpj .

We say that a polynomial is of homogeneous degree d if each of its monomial terms has

degree d.

We list the horizontal vector fields and some of their non-zero commutators as

(4.2) X1
1 , ..., X

1
m1
, ... , Xν

1 , ..., X
ν
mν ,
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such that {Xs
1 , ..., X

s
ms} forms a basis for V s for each 1 ≤ s ≤ ν. By the Baker-Campbell-

Hausdorff formula these vector fields can be expressed in terms of exponential coordinates

as follows:

X1
k =

∂

∂x1
k

+
ν∑
s=2

ms∑
i=1

P 1,s
k,i (x1, ..., xs−1)

∂

∂xsi
, 1 ≤ k ≤ m1 ,

X2
k =

∂

∂x2
k

+
ν∑
s=3

ms∑
i=1

P 2,s
k,i (x1, ..., xs−2)

∂

∂xsi
, 1 ≤ k ≤ m2 ,

...

Xν−1
k =

∂

∂xν−1
k

+
mν∑
i=1

P ν−1,ν
k,i (x1)

∂

∂xνi
, 1 ≤ k ≤ mν−1 ,

Xν
k =

∂

∂xνk
, 1 ≤ k ≤ mν ,

(4.3)

where P j,s
k,i are homogeneous polynomials which, if non-zero, have their degree of homo-

geneity equal to s− j.

Definition 4.1. Given a system of vector fields X = {X1
1 , ..., X

1
m1
}, we say that some

coordinates in the form of (4.1) are privileged, if (4.3) holds for some homogeneous poly-

nomials P j,s
k,i .

The exponential coordinates of first kind are one example of privileged coordinates.

Similar privileged coordinates were studied in [Bel96], in order to obtain explicit distance

estimates for the sub-Riemannian structure. However, our privileged coordinates serve

only the purpose of starting the process leading to Hilbert-Haar coordinates.

Example 4.1. The Lie algebra of the first Heisenberg group is defined by the only non-zero

commutator [X1, X2] = X3. The horizontal vector fields

X1 =
∂

∂x1

, X2 =
∂

∂x2

+ x1
∂

∂x3

don’t satisfy (2.6), but after a change of variables

(4.4) (y1, y2, y3) =

(
x1, x2, x3 −

1

2
x1x2

)
,
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we find that the vector fields

Y1 =
∂

∂y1

− y2

2

∂

∂y3

, Y2 =
∂

∂y2

+
y1

2

∂

∂y3

,

do satisfy (2.6) and hence {y1, y2, y3} are Hilbert-Haar coordinates.

Example 4.2. The Lie algebra of the Engel group is defined by the only non-zero com-

mutators [X1
1 , X

1
2 ] = X2

1 and [X1
1 , X

2
1 ] = X3

1 . One possible way of expressing these vector

fields is

(4.5)

X1
1 = ∂

∂x11
,

X1
2 = ∂

∂x12
+x1

1
∂
∂x21

+1
2
(x1

1)2 ∂
∂x31
,

X2
1 = ∂

∂x21
+ x1

1
∂
∂x31
,

X3
1 = ∂

∂x31
.

The horizontal vector fields X1
1 and X1

2 don’t satisfy (2.6). First we change the variables

adapted to the strata one and two:

(y1
1, y

1
2, y

2
1, y

3
1) =

(
x1

1, x
1
2, x

2
1 −

1

2
x1

1x
1
2, x

3
1

)
.

By this we obtain the vector fields

(4.6)

Y 1
1 = ∂

∂y11
−y12

2
∂
∂y21
,

Y 1
2 = ∂

∂y12
+
y11
2

∂
∂y21

+1
2
(y1

1)2 ∂
∂y31

,

Y 2
1 = ∂

∂y21
+ y1

1
∂
∂y31
,

Y 3
1 = ∂

∂y31
.

The horizontal vector fields Y 1
1 and Y 1

2 satisfy (2.6) in the variables y1
1, y

1
2, y

2
1. Another

change of variables

(z1
1 , z

1
2 , z

2
1 , z

3
1) =

(
y1

1, y
1
2, y

2
1, y

3
1 −

1

6
(y1

1)2y1
2 −

1

3
y1

1y
2
1

)
,

leads to the vector fields

(4.7)

Z1
1 = ∂

∂z11
− z12

2
∂
∂z21

−
(
z11z

1
2

6
+

z21
3

)
∂
∂z31
,

Z1
2 = ∂

∂z12
+
z11
2

∂
∂z21

+
(z11)2

6
∂
∂z31

,

Z2
1 = ∂

∂z21
+

2z11
3

∂
∂z31
,

Z3
1 = ∂

∂z31
.
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The horizontal vector fields Z1
1 and Z1

2 satisfy the original commutation relations, but also

(2.6), and hence {z1
1 , z

1
2 , z

2
1 , z

3
1} are Hilbert-Haar coordinates.

Notice that the Jacobian of each change of variables equals 1.

Theorem 4.1. Let G be a Carnot group of step two and X = {X1
1 , ..., X

1
m1
} be a system of

horizontal vector fields generating the Lie algebra. Then there exists a system of Hilbert-

Haar coordinates.

Proof. Let us assume that g = V 1
⊕

V 2, the vector fields X2
1 , ..., X

2
m2

form a basis of V 2

and we have a set of fixed coefficients {bij,k} such that:

(4.8) [X1
j , X

1
k ] =

m2∑
i=1

bij,kX
2
i , 1 ≤ j < k ≤ m1 .

As the exponential coordinates are one possible option, without loss of generality, we can

consider that we have a system of privileged coordinates such that these vector fields and

their commutators have the following form.

(4.9)
X1
k = ∂

∂x1k
+
∑m2

i=1

(∑m1

l=1 c
i
k,l x

1
l

)
∂
∂x2i

, 1 ≤ k ≤ m1 ,

X2
k = ∂

∂x2k
, 1 ≤ k ≤ m2 .

We will show that the coefficients cij,k can be redefined in such a way that {X1
1 , ..., X

1
m}

satisfy (2.6) and (4.8). By (4.9) we get that for 1 ≤ j < k ≤ m we have

(4.10) [X1
j , X

1
k ] =

m2∑
i=1

(
cik,j − cij,k

) ∂

∂x2
i

,

and for any linear function L(x) =
∑m1

k=1 a
1
kx

1
k +

∑m2

i=1 a
2
ix

2
i we have

X1
kL(x) = a1

k +

m2∑
i=1

(
m1∑
l=1

cik,l x
1
l

)
a2
i ,

X1
kX

1
kL(x) =

m2∑
i=1

cik,k a
2
i ,

X1
jX

1
kL(x) +X1

kX
1
jL(x) =

m2∑
i=1

(
cik,j + cij,k

)
a2
i .

(4.11)
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By (4.8), (4.10) and (4.11) we get that

cik,k = 0 , 1 ≤ i ≤ m2, 1 ≤ k ≤ m1 cik,j − cij,k = bij,k

cik,j + cij,k = 0
, 1 ≤ j < k ≤ m1 .

(4.12)

For each set of indices, the system (4.12) has a unique solution, and this proves the

lemma. �

Definition 4.2. We say that a Carnot group of step ν defined on Rν+1 is a Goursat

group if admits a system of horizontal vector fields X = {X1
1 , X

1
2} and the only non-zero

commutators are

(4.13) [X1
1 , X

1
2 ] = X2

1 , [X1
1 , X

s
1 ] = Xs+1

1 , 2 ≤ s ≤ ν − 1 .

See Chapter 6 in [Mon02] for more information about Goursat groups.

Theorem 4.2. Every Goursat group admits a system of Hilbert-Haar coordinates, in

which the vector fields have the following expressions:

X1
1 =

∂

∂x1
1

− 1

2
x1

2

∂

∂x2
1

−
ν∑
s=3

(
1

s!
(x1

1)s−2 x1
2 +

2!

s!
(x1

1)s−3 x2
1 + · · ·+ (s− 1)!

s!
xs−1

1

)
∂

∂xs1
,

X1
2 =

∂

∂x1
2

+
1

2
x1

1

∂

∂x2
1

+
ν∑
s=3

1

s!
(x1

1)s−1 ∂

∂xs1
,

X l
1 =

∂

∂xl1
+

ν∑
s=l+1

l · (s− 1) · (s− 2) · · · (s− l + 1)

s!
(x1

1)s−l
∂

∂xs1
, 2 ≤ l ≤ ν − 1 ,

Xν
1 =

∂

∂xν1
.

(4.14)

Proof. The proof can be done by straightforward calculations, checking that the relations

from (4.13) and (2.6) hold. The key for the proof is the following combinatorial identity:

(4.15)

(
k

k

)
+

(
k + 1

k

)
+ · · ·+

(
k + n

k

)
=

(
k + n+ 1

k + 1

)
, k, n ∈ N.

�
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We used constructive arguments to find the formulas (4.14). We proceeded by induction

on s, assuming that the vector fields X1
1 , X

1
2 , X

2
1 , · · · , Xν

1 have some expressions as in (4.3).

When we consider s = 2, we look only at the vector fields X1
1 , X

1
2 , X

2
1 and only at the

variables x1
1, x

1
2, x

2
1. As in Example 4.1, we can find a polynomial change of variables such

that in the new variables, denoted again by x1
1, x

1
2, x

2
1, we keep the commutator relation

[X1
1 , X

1
2 ] = X2

1 , but also (2.6) is satisfied for linear functions in x1
1, x

1
2, x

2
1. Then, as in

Example 4.2, we advance layer by layer, making sure that the formulas (4.13) and (2.6)

hold at every step.

Notice that the homogeneous dimension of a Goursat group of step ν is

Q =
ν2 + ν + 2

2
.

Let us define

P (ν) = min

{
2ν

ν − 1
,

2Q+ 8

Q− 2

}
=

 2ν
ν−1

if 3 ≤ ν < 10

2ν2+2ν+20
ν2+ν−2

if ν ≥ 10 .

In a Goursat group, Theorem 3.1 implies the following result.

Corollary 4.1. In a Goursat group of step ν, if 2 ≤ p < P (ν),

δ > 0 and u ∈ W 1,p
X (Ω) is a weak solution to (2.1), then u ∈ C∞(Ω).

We finish with an example of a Carnot group of step 3 admitting Hilbert-Haar coordi-

nates.

Theorem 4.3. Let G be a Carnot group of step 3 and X = {X1
1 , ..., X

1
m1
} be a system of

horizontal vector fields generating the Lie algebra. If the non-zero commutators

[X1
i , [X

1
j , X

1
k ]], 1 ≤ i, j, k ≤ m1

are linearly independent, then there exists a system of Hilbert-Haar coordinates associated

to X.

Proof. We list the the horizontal vector fields and their non-zero commutators as

(4.16) X1
1 , ..., X

1
m1
, X2

1 , ..., X
2
m2
, X3

1 , ..., X
3
m3
.
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We can assume that, with respect to some privileged coordinates, formula (4.3) holds. By

Theorem 4.1, Hilbert-Haar coordinates exist for any Carnot groups of step 2, so we can

change coordinates x1
1, ..., x

1
m1
, x2

1, ...x
2
m2

into Hilbert-Haar coordinates.

We will add to the list of Hilbert-Haar coordinates one of x3
i at a time, in such a way

to preserve the commutator relations. We can assume for now that

X1
k = Y 1

k +
(
P 1
k,1(x1) + P 1

k,2(x2)
) ∂

∂x3
1

, 1 ≤ k ≤ m1,

X2
l = Y 2

l + P 2
l,1(x1)

∂

∂x3
1

, 1 ≤ l ≤ m2,

X3
1 =

∂

∂x3
1

,

(4.17)

where the homogeneous polynomials P s
k,j are of order 3−s and the vector fields Y 1

1 , ..., Y
2
m2

depend only on the Hilbert-Haar coordinates x1
1, ..., x

2
m2

and span a Lie algebra of step 2.

We will use the notation

(4.18)
[
X1
k , X

1
j

]
= X2

[k,j] ,

with the note that X2
[k,l] is a member of (4.16) or 0. Also, by the linear independence of

the commutators of order 3 and the Jacobi identity, we can assume that [X1
1 , X

1
2 ] = X2

1 ,

[X1
1 , X

2
1 ] = X3

1 and for all other cases [X1
k , X

2
l ] = 0.

For 1 ≤ k ≤ m1 and 1 ≤ l ≤ m2 we have:[
X1
k , X

2
l

]
=

[
Y 1
k +

(
P 1
k,1 + P 1

k,2

) ∂

∂x3
1

, Y 2
l + P 2

l,1

∂

∂x3
1

]
=
(
Y 1
k P

2
l,1 − Y 2

l P
1
k,2

) ∂

∂x3
1

=

(
∂

∂x1
k

P 2
l,1 −

∂

∂x2
l

P 1
k,2

)
∂

∂x3
1

.

Hence, we can define P 2
1,1(x1) = b1x

1
1, P 1

1,2(x2) = (b1 − 1)x2
1 and P 1

k,2 = 0 if k > 1.

Next, we continue with the commutators of order 2.[
X1
k , X

1
l

]
=

[
Y 1
k +

(
P 1
k,1 + P 1

k,2

) ∂

∂x3
1

, Y 1
l +

(
P 1
l,1 + P 1

l,2

) ∂

∂x3
1

]
=
[
Y 1
k , Y

1
l

]
+
(
Y 1
k

(
P 1
l,1 + P 1

l,2

)
− Y 1

l

(
P 1
k,1 + P 1

k,2

)) ∂

∂x3
1

.

Therefore,

(4.19) Y 1
k (P 1

l,1 + P 1
l,2)− Y 1

l (P 1
k,1 + P 1

k,2) = P 2
[k,l],1 .
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Let us consider a linear function

L
(
x1

1, ..., x
2
m2
, x3

1

)
=

2∑
j=1

mj∑
i=1

aji x
j
i + a3

1 x
3
1

= LY (x1
1, ..., x

2
m2

) + a3
1 x

3
1 .

Therefore, we have

X1
kL = Y 1

k LY + (P 1
k,1 + P 1

k,2)a3
1 ,

and

X1
l X

1
kL = Y 1

l Y
1
k LY + Y 1

l (P 1
k,1 + P 1

k,2)a3
1.

By the fact that Y 1
k Y

1
l LY + Y 1

l Y
1
k LY = 0, we get that

(4.20) Y 1
k (P 1

l,1 + P 1
l,2) + Y 1

l (P 1
k,1 + P 1

k,2) = 0 .

By equations (4.19) and (4.20), for each fixed 1 ≤ l ≤ m1, we have

Y 1
k (P 1

l,1 + P 1
l,2) =

1

2
P 2

[k,l],1 , for all 1 ≤ k ≤ m1.

Therefore,

(4.21) Y 1
k P

1
l,1 = −Y 1

k P
1
l,2 +

1

2
P 2

[k,l],1 , for all 1 ≤ k ≤ m1.

Noticing that the polynomials P 1
l,2 and P 2

j,1 are already determined in terms of b1, equation

(4.21) will determine the polynomials P 1
l,1, once the consistency with the commutators is

checked.

By equation (4.21), for j < k we have that

(4.22) Y 2
[j,k]P

l
1,1 = −Y 2

[j,k]P
1
l,2 +

1

2
(Y 1

j P
2
[k,l],1 − Y 1

k P
2
[j,l],1) .

Consider first the case of l = 1.

If j = 1 and k = 2, then we get

Y 2
1 P

1
1,1 = −Y 2

1 ((b1 − 1)x2
1) +

1

2
(Y 1

1 (−b1x
1
1) .

This leads to

0 = −(b1 − 1)− 1

2
b1 ,

and therefore b1 = 2
3
. For all other (j, k) 6= (1, 2), equation (4.21) leads to 0 = 0. Also,

we get 0 = 0 for all cases if l > 1. Once, the consistency is checked, by equation (4.21)
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and [BLU07, Theorem 20.2.1], all polynomials P 1
l,1 are uniquely defined and this finishes

the proof. �
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