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Abstract. We present some long-range interaction models for phase coexistence which

have recently appeared in the literature, recalling also their relation to classical interface

and capillarity problems. In this note, the main focus will be on the Γ-convergence

methods, emphasizing similarities and differences between the classical theory and the

new trends of investigation.

In doing so, we also obtain some new, more precise Γ-convergence results in terms

of “interior” and “exterior” contributions. We also discuss the structural differences

between Γ-limits and “pointwise” limits, especially concerning the “boundary terms”.

Sunto. In questa nota presentiamo alcuni modelli di interazione a lungo raggio che

descrivono problemi di coesistenza di fase e che sono apparsi di recente in letteratura, di-

scutendo anche la loro relazione con questioni classiche riguardanti interfaccia e fenomeni

di capillarità. Ci focalizziamo soprattutto su metodi di Γ-convergenza, sottolineando

somiglianze e differenze tra la teoria classica e quella riguardante gli scenari nonlocali.

Otteniamo anche alcuni risultati nuovi di Γ-convergenza in termini di contributi ener-

getici “interni” ed “esterni”. Discutiamo inoltre le differenze strutturali tra i Γ-limiti e i

limiti “puntuali” dell’energia, in particolare per quanto riguarda i “termini di bordo”.
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1. Introduction

The goal of this note is to present and discuss some recent developments in the math-

ematical analysis of phase separation models, with special attention to some problems
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described in terms of long-range particle interactions, and exploiting methods and tech-

niques related to the classical notion of Γ-convergence.

In 1975 De Giorgi and Franzoni [18, 20] introduced the notion of Γ-convergence as a

new type of convergence for functionals, particularly suitable for the study of variational

problems. This new tool quickly became popular in the calculus of variations, as it allows

one to relate a sequence of minimization problems depending on a parameter (that can

be discrete or continuous) with a limit problem, that can possibly have a different nature

from the original problems, in terms of energy functionals, functional spaces, physical

modelization, etc. In spite of the structural differences between the original functionals

and the limit one, this kind of convergence preserves the notion of minimizers in the limit,

hence suggesting some relations between the limit problem and the sequence of functionals

taken into account.

We now recall one of the possible definitions of Γ-convergence, referring to the mono-

graphs [8, 16] for a complete introduction to the subject of Γ-convergence and for all the

equivalent definitions of this notion.

Given a family of functionals Fj defined on the function spaces Xj, we are interested

in the minimization problems

min {Fj(u) : u ∈ Xj} ,

depending on a parameter j, and we want to relate this sequence with a limit problem,

of the form

min {F (u) : u ∈ X} .

Definition 1.1. We say that Fj converges in the Γ-sense to F if the two following con-

ditions are satisfied:

(i) for every u ∈ X and every sequence uj converging1 to u in X, it holds that

lim inf
j→∞

Fj(uj) > F (u);

1Here and in the following we take X such that Xj ⊆ X for every j and we define Fj ≡ +∞ in X \Xj .



70 SERENA DIPIERRO, PIETRO MIRAGLIO, AND ENRICO VALDINOCI

(ii) for every u ∈ X there exists a sequence uj ∈ X converging to u in X such that

lim sup
j→∞

Fj(uj) 6 F (u).

These two conditions can be understood by analogy with the direct method of the cal-

culus of variations, keeping in mind that here we have a sequence of functionals instead

of a single one. Indeed, on the one hand condition (i) plays the role of the lower semi-

continuity, providing a lower bound for the sequence of minimizers. On the other hand,

condition (ii) is an upper bound that ensures the optimality of the limit functional F

among all the ones satisfying condition (i). Assuming that an equi-coerciveness condition

is satisfied by the sequence of functionals Fj, a minimizing sequence (uj) for the family

Fj converges to a function u ∈ X. Whenever Fj satisfies also (i) and (ii), we then have

that

• there exists a minimizer u of the limit functional F defined on X;

• the sequence of minimizers uj of Fj converges in X to u;

• the sequence of minima Fj(uj) converges to F (u).

These three properties make the Γ-convergence a very useful tool in the study of minimum

problems arising in the calculus of variations.

In particular, given an energy functional depending on a parameter, we can relate it

to a new minimum problem by taking its Γ-limit for the parameter going to infinity.

This limit problem contains somehow the relevant features of the original one, as its

minimizers are the limits of sequences of minimizers of the original variational problem.

In this way, through the study of the minimizers of the limit functional, one can recover

some important information about the original problem.

The rest of this note is organized as follows. In the forthcoming Section 2 we recall one

of the first examples of Γ-convergence, also motivated by the theory of phase coexistence.

Then, in Section 3 we discuss some capillarity problems focused at detecting suitable

boundary effects.

In Section 4 we present some long-range interaction models describing nonlocal phase

separation, nonlocal capillarity and water waves problems. In this section we also provide

some new results about the “interior” and “exterior” Γ-convergence of nonlocal energy
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functionals. Finally, in Section 5 we briefly recall some Γ-convergence results in the

fractional parameter and we compare the notions of Γ-convergence and “pointwise” limits,

stressing important differences with respect to the boundary contributions obtained via

these two alternative approaches.

2. Γ-convergence results for the classical phase coexistence energy

functional

A paradigmatic example of Γ-convergence is provided by some classical results for the

Allen-Cahn, or Cahn-Hilliard, energy functional, which models the separation of the two

phases of a fluid in a container.

In 1958, Cahn and Hilliard [14] proposed a new model for a two-phase fluid in a con-

tainer, in which the phase transition occurs continuously in a thin layer, instead of dis-

continuously along an interface. The model is closely related to the minimization of the

Helmholtz free energy in a liquid-gas system, as originally proposed by J. D. van der

Waals [36] — see also [5].

In this model, one assumes that the configurations of the fluid in a container Ω ⊂ R3

are described by a mass density u that takes values in [−1, 1], the pure phases being

A := {u = −1} and B := {u = 1}. Then, the energy associated with the configuration of

the fluid is the sum of a potential term, in which a nonnegative double-well2 function W

vanishing at −1 and 1 appears, and a Dirichlet term, that penalizes the transitions from

one phase to the other. That is, the energy associated to a configuration u is

(2.1) F̃ε(u,Ω) := ε2

∫
Ω

|∇u(x)|2 dx+

∫
Ω

W (u(x)) dx,

with the parameter ε being representative of the thickness of the layer where the phase

transition occurs. In particular, since this length is supposed to be much smaller than

the size of the container Ω, it is interesting to study the asymptotic behavior of the

configuration, i.e., its limit as ε→ 0+.

2 We say that a function W : R→ [0,+∞) is a “double-well” with zeros in ±1 if it satisfies

W ∈ C2(R), W (±1) = 0, W > 0 in R \ {±1}, W ′(±1) = 0, W ′′(±1) > 0.
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This type of analysis was initiated in the sense of Γ-convergence by Modica and Mor-

tola [31,33], who considered a suitable rescaling of the energy F̃ε. Namely, they took into

account the functional

Fε(u,Ω) :=
1

ε
F̃ε(u,Ω) = ε

∫
Ω

|∇u(x)|2 dx+
1

ε

∫
Ω

W (u(x)) dx,

and proved that it Γ-converges to

(2.2) F (u,Ω) :=

 c∗ Per(E,Ω) if u|Ω = χE − χCE, for some set E ⊂ Ω,

+∞ otherwise,

where c∗ > 0 is a normalization constant depending only on n and W , and Per(·,Ω)

represents the perimeter functional inside the set Ω.

As a consequence, as ε→ 0+, the minimizers of the functional Fε converge to the mini-

mal surfaces, i.e., the minimizers of the perimeter functional. We refer to the books [25,28]

for a complete introduction to the theory of minimal surfaces and the notion of perimeter.

In particular, the theory of Γ-convergence of phase transitions to minimal surfaces has

a geometric counterpart in the convergence of the level sets of the minimizers of Fε. More

precisely, as established in [12], if u is a minimizer of

F1(u,Ω) :=

∫
Ω

|∇u(x)|2 dx+

∫
Ω

W (u(x)) dx,

and uε(x) := u(x/ε), then, up to a subsequence, for every ϑ ∈ (0, 1), the set {uε ∈ (−ϑ, ϑ)}

converges locally uniformly as ε→ 0+ to ∂E, being E a local minimizer of the perimeter

functional. That is, for any R > 0 and any δ > 0 there exists ε0 ∈ (0, 1), possibly

depending on R and δ, such that, if ε ∈ (0, ε0] then

(2.3) {uε ∈ (−ϑ, ϑ)} ∩BR ⊆
⋃
p∈∂E

Bδ(p).

The proof of (2.3) in [12] relies on suitable energy and density estimates. More specifically,

it is proved in [12] that if u is a minimizer of F1 in BR+1 with R > 1, then

(2.4) F1(u,BR) 6 CRn−1,
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for some constant C > 0. Also, if ϑ1, ϑ2 ∈ (−1, 1) and u is a minimizer of F1 in BR

with u(0) > ϑ1, then there exist Ro(ϑ1, ϑ2) > 1 and co > 0 such that, for all R >

Ro(ϑ1, ϑ2),

(2.5) |{u > ϑ2} ∩BR| > coR
n.

That is, according to (2.4), the energy of the minimizers “mostly arise from a codimension

1 interface”, and, in light of (2.5), unless the solution at a given point (say the origin) is

very close to a pure phase, we have that the two phases in a large ball occupy a measure

which is comparable to the one of the ball itself (i.e., no phase gets lost, at least in a

measure theoretic sense).

A very strong connection between phase transition models and minimal surfaces is

highlighted by a celebrated conjecture of E. De Giorgi [19] about the rigidity properties

of monotone solutions to the Allen-Cahn equation ∆u = W ′(u) in Rn, which can be

formulated as follows:

Conjecture 2.1. Let u ∈ C2(Rn) ∩ L∞(Rn) be a solution of

∆u(x) = W ′(u(x)) for all x ∈ Rn,

and assume also that

∂u

∂xn
(x) > 0 for all x ∈ Rn.

Then, is it true that u depends only on one Euclidean variable (i.e., there exist u0 : R→ R

and ω ∈ Sn−1 such that u(x) = u0(ω · x) for all x ∈ Rn), at least if n 6 8?

Conjecture 2.1 gave rise to several papers about the rigidity of the solutions to the

Allen-Cahn equation. We refer to the survey [24] for an introduction to this line of

research.

3. Boundary effects and capillarity problems

In the two-phase model in (2.1) the boundary contact energy is assumed to be negligible,

since the model mainly focuses on the formation of the phase interfaces inside the domain.
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In order to quantitatively take into account the boundary effects of the domain on the

phase separation, several other models have been designed.

As a matter of fact, to understand the influence of boundary effects, a classical model

is the one describing “capillarity” phenomena in a water-drop problem, in which the

boundary contact energy between the fluid and the wall becomes nonnegligible. In this

case, the model considers a liquid droplet of constrained mass occupying a small region E

in a container Ω, and the energy functional associated to E is of the form

(3.1) G(E) := Per(E,Ω) + σ Per(E, ∂Ω),

where σ ∈ [−1, 1] is the “relative adhesion coefficient”, that measures the liquid-wall

tension with respect to the liquid-air tension. See Chapter 19 in [28] and the references

therein for a thorough presentation of classical droplet and capillarity problems.

The functional G in (3.1) shares some obvious similarities with the functional F in (2.2),

and therefore, in light of the discussion in Section 2, it is natural to ask whether G can be

seen as the Γ-limit of some modification of the phase interface energy functional in (2.1).

In [32], Modica established the Γ-convergence of the energy

(3.2) Gε(u,Ω) := ε

∫
Ω

|∇u(x)|2 dx+
1

ε

∫
Ω

W (u(x)) dx+

∫
∂Ω

V (u(x)) dH n−1(x),

where V is a nonnegative continuous function, not necessarily of double-well type, and H n−1

denotes the (n− 1)-dimensional Hausdorff measure. Specifically, in [32] it is proved that,

for problems with prescribed mass, Gε converges in the Γ-sense to the capillarity energy

functional G in (3.1). The relative adhesion coefficient σ appearing in the Γ-limit (3.1)

depends only on W and V , and is explicitly computed in [32, Theorem 2.1].

A modification of the energy Gε defined in (3.2) was considered in [3, 4] by Alberti,

Bouchitté, and Seppecher, consisting of the energy functional

(3.3) Gε(u,Ω) := ε

∫
Ω

|∇u(x)|2 dx+
1

ε

∫
Ω

W (u(x)) dx+ λε

∫
∂Ω

V (u(x)) dH n−1.

Here, W is still a double-well potential vanishing in ±1, while V — contrary to (3.2) — is

a double-well potential vanishing in α and β, and λε is a parameter that goes to infinity
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when ε→ 0+, satisfying

(3.4) lim
ε→0+

ε log λε = k with k ∈ (0,+∞).

Under these assumptions — which are different in the energy boundary term with respect

to [32] — it is established in [4] that the energy functional Gε Γ-converges to the limit

energy

G (u) :=

 inf {φ(u, v) : v ∈ BV (∂Ω, {α; β})} if u ∈ BV (Ω, {−1; 1}),

+∞ otherwise,

where for every u ∈ BV (Ω, {−1; 1}) and v ∈ BV (∂Ω, {α; β}) the function φ(u, v) is

defined as

(3.5) φ(u, v) := H n−1(Su) + σ

∫
∂Ω

|H(Tu)−H(v)| dH n−1 + cH n−2(Sv).

Here, Tu denotes the trace of u on the boundary of Ω, H is the primitive function of 2
√
W ,

while the parameters σ and c depend only on W , V , and k, and are explicitly defined

in [4].

Also, in (3.5), with Su we denote the set of the points in which u is essentially3 dis-

continuous. In this setting, if u ∈ BV (Ω, {−1; 1}), then H n−1(Su) is the measure of

the interface between the pure phases {u = 1} and {u = −1}. It is well-known that a

function u that belongs to {−1; 1} almost everywhere has bounded variation if and only

if the measure of the jump-set Su is finite.

Similarly, if v ∈ BV (∂Ω, {α; β}), then H n−2(Sv) denotes the (n − 2)-dimensional

measure of the interface between the boundary phases {v = α} and {v = β}. Finally,

the second term in the definition (3.5) evaluates the energy of the transition from Tu to

v that occurs on the boundary.

The energy functional G is introduced in [4] as a relaxation4 of a capillarity functional

with line tension energy, which can be seen as a modification of the functional G defined

3One says that u is essentially continuous at a point x if for every ε > 0 there exists δ > 0 such that

for almost all y, z ∈ Bδ(x) one has that |f(y)− f(z)| < ε.
4The relaxation procedure outlined in [4] is necessary as the capillarity functional G] in (3.6) is not

semi-continuous, and this leads to minimum problems which are not well-posed.
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in (3.1). If we take α = −1 and β = 1, then the capillarity functional with line tension is

(3.6) G](E) := H n−1(Ω ∩ ∂E) + σH n−1(∂Ω ∩ ∂E) + cH n−2
(
(∂E ∩ Ω) ∩ ∂Ω

)
,

where E := {u(x) = 1}. In the three-dimensional case, the so-called “line tension energy”,

which is the last term in (3.6), models an energy concentrated along the line (∂E ∩ Ω)∩∂Ω

where the interface liquid-air ∂E ∩ Ω meets the boundary ∂Ω of the container.

The results in [4] have later been extended in [26] to the functional

G a
ε (u,Ω) := ε1−a

∫
Ω

|∇u(x)|2 ha(x) dx+
1

ε1−a

∫
Ω

W (u(x))h−a(x) dx

+ λε

∫
∂Ω

V (u(x)) dH n−1(x),

(3.7)

where a ∈ (−1, 0), h : Ω→ R is the distance function to the boundary of Ω, and λε → +∞

as ε → 0+ with some specific behavior, different from the one in (3.4). More precisely,

in [26] it is proved that the energy functional G a
ε achieves the same Γ-limit for every

a ∈ (−1, 0) as the one attained by Gε defined in (3.3).

4. Local and nonlocal contributions in the Γ-limit

In this section, we describe some phase separation models in which the interaction

energy is of nonlocal type. For this, we start by presenting the results in [3], focusing

on the dimension n = 1. In [3], the authors consider an interval I ⊂ R and the energy

functional

(4.1) G 1
ε (v) := ε

∫∫
I×I

|v(x)− v(y)|2

|x− y|2
dx dy + λε

∫
I

W (v(x)) dx,

where W is a double-well potential with zeros in −1 and 1, and λε is a positive parameter

depending on ε and satisfying (3.4).

Then, the main result in [3] establishes that the energy functional defined in (4.1)

Γ-converges in the L1-topology to

(4.2) G 1(v) :=

 8kH 0(Sv) if v ∈ BV (I, {−1; 1}),

+∞ otherwise,
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where k is the one in (3.4) and Sv is the set of the points in which v is essentially

discontinuous. Since we are assuming n = 1, this simply means that at those points

the function is discontinuous with the left-hand limit being different from the right-hand

limit.

As customary, H 0 denotes the 0-dimensional Hausdorff measure, corresponding to

the “counting measure” (hence, H 0(Sv) is simply the “number of jumps” of the step

function v), and BV (I, {−1; 1}) the space of the functions with bounded variation which

are defined on I ⊂ R with values in {−1; 1} almost everywhere.

In the context of the Γ-convergence of the functional G a
ε defined in (3.7), the study

of the Γ-limit of an interaction energy in dimension n = 1 was addressed in [26] for

a ∈ (−1, 0), corresponding to the fractional parameter s ∈ (1/2, 1). Specifically, for an

interval I ⊂ R, in [26] the author considers the energy

(4.3) G 1,a
ε (v) := ε1−a

∫∫
I×I

|v(x)− v(y)|2

|x− y|1+2s dx dy + λε

∫
I

V (v(x)) dx,

where 1− a = 2s, proving that it Γ-converges to G 1(v) defined in (4.2).

It is interesting to remark that the models presented in (4.1) and (4.3), though of

nonlocal nature, converge to a Γ-limit, namely the one in (4.2), which is local and classical.

In the following pages, we present other long-range interaction models for phase tran-

sitions and discuss their Γ-limits. Interestingly, the Γ-limits of the following functionals

reduce to local limit problems for suitable ranges of a fractional parameter (correspond-

ing to “weakly nonlocal” interactions), but conserves the nonlocal feature of the original

problem for other ranges of this parameter (corresponding to “strongly nonlocal” inter-

actions). Observe that the behavior in the strongly nonlocal regime represents a novelty

with respect to the previous works [3, 26], in which this range of parameters was not

considered.

More precisely, in [37–39] Savin and the third author study the Γ-convergence, as well

as the geometric convergence of level sets of the minimizers, for ε → 0+ of a proper
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rescaling of the interaction energy

Jε(u,Ω) := ε2s

∫∫
Ω×Ω

|u(x)− u(y)|2

|x− y|1+2s dx dy

+ 2ε2s

∫
Ω×C Ω

|u(x)− u(y)|2

|x− y|1+2s dx dy +

∫
Ω

W (u(x)) dx,

(4.4)

where s is a parameter in (0, 1), W a double-well potential, and Ω ⊂ Rn a bounded

domain whose complement is C Ω := Rn \ Ω.

In order to describe the result in detail, we introduce the setting in [38]. We let X :=

{u ∈ L∞(Rn) : ‖u‖L∞(Rn) 6 1} and we say that a sequence uj ∈ X converges to u in X if

uj converges to u in L1
loc(Rn).

The energy considered in [38] can be seen as a suitable nonlocal analogue of the classical

model in (2.1). Indeed, in (4.4) the classical Dirichlet-type energy is replaced by a long-

range interaction energy consisting of the Ω-contribution in the Hs-seminorm of u. In the

classical case, only local interactions count in the Dirichlet energy, and the state of the

fluid outside the container is not taken into account. In this new long-range setting, it

is assumed that every particle interacts with all the other ones, inside and outside of the

container, carrying a smaller contribution as the distance between the particle increases

(and the energy functional in (4.4) takes into account all the particle interactions in which

at least one of the particles lies in the container).

In particular, we define the “interior contribution” as

K int(u,Ω) :=

∫∫
Ω×Ω

|u(x)− u(y)|2

|x− y|n+2s dx dy,

and the “exterior contribution” as

K ext(u,Ω) := 2

∫∫
Ω×C Ω

|u(x)− u(y)|2

|x− y|n+2s dx dy.

Then, we set

K (u,Ω) := K int(u,Ω) + K ext(u,Ω).

We observe that in this type of energy functionals we omit the contributions for (x, y) ∈

C Ω × C Ω, since we are interested in variational problems in which all the admissible

competitors are fixed outside of Ω.
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Then, the energy in (4.4) can be written as

Jε(u,Ω) = ε2sK (u,Ω) +

∫
Ω

W (u(x)) dx.

In order to obtain a relevant Γ-limit, in [38] a proper rescaling of the energy Jε is taken into

account. In the present work, we make this rescaling more explicit, by also highlighting

the different contributions coming from the interior and the exterior parts of the energy.

For this, we define

(4.5)

F int
ε (u,Ω) :=



K int(u,Ω) +
ε−2s

2

∫
Ω

W (u(x)) dx if s ∈
(

0,
1

2

)
,

|log ε|−1 K int(u,Ω) +
|ε log ε|−1

2

∫
Ω

W (u(x)) dx if s =
1

2
,

ε2s−1K int(u,Ω) +
ε−1

2

∫
Ω

W (u(x)) dx if s ∈
(

1

2
, 1

)
;

and

(4.6)

F ext
ε (u,Ω) :=



K ext(u,Ω) +
ε−2s

2

∫
Ω

W (u(x)) dx if s ∈
(

0,
1

2

)
,

|log ε|−1 K ext(u,Ω) +
|ε log ε|−1

2

∫
Ω

W (u(x)) dx if s =
1

2
,

ε2s−1K ext(u,Ω) +
ε−1

2

∫
Ω

W (u(x)) dx if s ∈
(

1

2
, 1

)
.

The sum of F int
ε and F ext

ε is the object of the Γ-convergence result in [38], i.e., one defines

Fε(u,Ω) := F int
ε (u,Ω) + F ext

ε (u,Ω).

The ε-rescaling in the definitions of F int
ε and F ext

ε can be seen as a convenient one

in order to obtain a significant Γ-limit. It is worth observing that for the case s = 1/2

the ε-weights in the definitions of F int
ε and F ext

ε satisfy5 the limit assumption (3.4) with

k = 1 that is taken in [3].

5 This follows from the fact that

lim
ε→0+

|log ε|−1 log
(
ε−1 |log ε|−1

)
= 1.
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In order to define the Γ-limit of the energy functionals studied in [38], we recall the

notion of fractional perimeter, as introduced in [13]. Given two measurable and disjoint

sets E,F ⊂ Rn, one defines

Is(E,F ) :=

∫∫
E×F

dx dy

|x− y|n+2s ,

where s ∈ (0, 1/2). Then, we define the “interior contribution” of the fractional perimeter

as

(4.7) Perints (E,Ω) := Is(E ∩ Ω,Ω \ E)

and the “exterior contribution” as

(4.8) Perexts (E,Ω) := Is(E ∩ C Ω,Ω \ E) + Is(E ∩ Ω,C Ω ∩ CE).

Finally, the full fractional perimeter of a set E in Ω is defined as

Pers(E,Ω) := Perints (E,Ω) + Perexts (E,Ω).

In this setting, the Γ-limit functional F in [38] is as follows:

(4.9) F (u,Ω) :=


Pers(E,Ω) if s ∈ (0, 1/2) and u|Ω = χE − χCE,

c∗ Per(E,Ω) if s ∈ [1/2, 1) and u|Ω = χE − χCE,

+∞ otherwise,

where c∗ is a constant depending only on n, s, and W , which is explicitly determined

in [38].

For further reference, it is also convenient, in the case s ∈ (0, 1/2), to reformulate

and extend the Γ-convergence result in [38] in terms of “interior” and “exterior” limit

functionals:

Theorem 4.1. Let s ∈ (0, 1/2) and Ω ⊂ Rn be a bounded domain. Then,

(a) F int
ε Γ-converges to the interior contribution in the fractional perimeter, i.e.,

F int(u,Ω) :=

Perints (E,Ω) if u|Ω = χE − χCE,

+∞ otherwise.
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(b) F ext
ε Γ-converges to the exterior contribution in the fractional perimeter, i.e.,

F ext(u,Ω) :=

Perexts (E,Ω) if u|Ω = χE − χCE,

+∞ otherwise.

(c) Fε Γ-converges to the functional F defined in (4.9).

Sketch of the proof. Since the same strategy works for all three cases, let us deal with

point (a). One observes that

(4.10) F int
ε (u,Ω) = K int(u,Ω) = F int(u,Ω) if u|Ω = χE − χCE.

First, we want to prove point (i) in Definition 1.1. For every sequence uε converging to u

in X, we can assume that

lim inf
ε→0+

F int
ε (uε,Ω) = l < +∞,

otherwise the claim is trivial. Taking a subsequence uεk attaining the above limit and

a further subsequence (that we still name uεk) converging almost everywhere to u, we

deduce that

l = lim
k→∞

F int
εk

(uεk ,Ω) > lim
k→∞

1

2ε2s
k

∫
Ω

W (uεk(x)) dx.

Therefore, the integral of W (u) over Ω is zero at the limit and we deduce that u(x) ∈

{−1; 1} for almost every x ∈ Ω, that is u|Ω = χE − χCE for some set E ⊂ Rn. Now, by

Fatou’s lemma and (4.10) we have

lim inf
ε→0+

F int
ε (uε,Ω) > F int(u,Ω),

which is the desired inequality.

Then, to prove point (ii) in Definition 1.1, we assume that u|Ω = χE − χCE for some

set E ⊂ Rn, otherwise the claim is trivial. Then, by taking a constant sequence uε := u

and using (4.10), it follows that

lim sup
ε→0+

F int
ε (uε,Ω) 6 F int(u,Ω),

concluding the proof of point (a). �
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As a consequence of Theorem 4.1, we can obtain a new result about the Γ-convergence to

a nonlocal capillarity functional. Indeed, a fractional analogue of the capillarity functional

G defined in (3.1) is studied in [21, 29]. For a bounded container Ω ⊂ Rn and for every

set E ⊂ Ω, one takes into account the energy functional

Es(E,Ω) := Is(E,Ω \ E) + σIs(E,C Ω),

where σ is the relative adhesion coefficient that we introduced for the classical capillarity

energy — see (3.1). For every s ∈ (0, 1/2) we define the energy

Jε,s(u,Ω) := K int(u,Ω) + σK ext(u,Ω) + ε−2s

∫
Ω

W (u(x)) dx.

Then, we have the following result for the Γ-convergence of the energy Jε,s.

Corollary 4.2. Let s ∈ (0, 1/2) and Ω be a bounded domain. Then, Jε,s converges in

the Γ-sense to the fractional capillarity energy defined as

Js(E,Ω) :=

Es(E,Ω) if u|Ω = χE − χCE,

+∞ otherwise.

Proof. The result follows from Theorem 4.1, the subadditivity of the lim sup, and the

superadditivity of the lim inf. �

Now we focus instead on the case s ∈ [1/2, 1). In this setting, and using the tools

in [38], we can prove a Γ-convergence result for the functionals F int
ε and Fε which is

similar to, but slightly stronger than, the claim in [38, Theorem 1.4]. We state it in

the following theorem and we then sketch its proof, which is obtained by adapting the

arguments in [38].

Theorem 4.3. Let s ∈ [1/2, 1) and Ω ⊂ Rn be a bounded domain with Lipschitz boundary.

Then, for any u ∈ X,

(i) for every uε that converges to u in X,

lim inf
ε→0+

F int
ε (uε,Ω) > F (u,Ω);
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(ii) there exists uε that converges to u in X and such that

lim sup
ε→0+

Fε(uε,Ω) 6 F (u,Ω).

Sketch of the proof. We start with the proof of point (i). We recall that in [38] it is proved

that, for every uε converging to u in X,

(4.11) lim inf
ε→0+

Fε(uε,Ω) > F (u,Ω).

Actually, the proof in [38] can be adapted to show point (i) in Theorem 4.3, which is

slightly stronger than (4.11), as Fε(uε,Ω) > F int
ε (uε,Ω).

To prove point (i), we can assume that

(4.12) lim inf
ε→0+

F int
ε (uε,Ω) = l < +∞,

otherwise the claim in (i) is trivial. From (4.12), it follows the existence of a subsequence of

uε, that we still name uε, such that uε converges to χE−χCE in L1(Ω) for some set E ⊂ Rn

with finite perimeter in Ω. This is proved in [38, Proposition 3.3], under the hypothesis

that the lim inf of Fε(uε,Ω) is finite. However, one can weaken this hypothesis and

assume (4.12) instead, from which one can deduce that F int
ε (uε,Ω) is uniformly bounded,

by eventually passing to a subsequence, and carry out the whole proof.

Since E has finite perimeter in Ω, by classical results in Geometric Measure Theory —

see [25, Theorem 4.4] — we have

Per(E,Ω) = H n−1 (∂∗E ∩ Ω) ,

where ∂∗E is the “reduced boundary” of the set E. We refer again to [25, 28] for the

theory of sets with finite perimeter and in particular for the definition of the reduced

boundary. Then, by the rectifiability of the reduced boundary, for every α > 0 we can

find a collection of balls Bj with radii ρj > 0, whose smallness depends from α, such that

Per(E,Ω) 6 α + ωn−1

+∞∑
j=0

ρn−1
j ,
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where ωn−1 is the measure of the (n − 1)-dimensional unit ball. By Vitali’s covering

theorem we can assume that these balls are disjoint, hence

F int
ε (uε,Ω) >

+∞∑
j=0

F int
ε (uε, Bj).

Now, the lim inf of the functional F int
ε can be explicitly estimated in case the domain is

a ball. Indeed, we can use Proposition 4.3 in [38] that states6 that

(4.13) lim inf
ε→0+

F int
ε (uε, Bρ) > ωn−1ρ

n−1 (c∗ − η(α)) ,

with η(α) → 0+ as α → 0+ and c∗ being the constant appearing in the definition of F .

Combining the above results we deduce that

lim inf
ε→0+

F int
ε (uε,Ω) > ωn−1 (c∗ − η(α))

+∞∑
j=0

ρn−1
j > (c∗ − η(α)) (Per(E,Ω)− α) ,

and letting α→ 0+ we prove point (i).

The proof of point (ii) relies on the recovery sequence constructed in Proposition 4.6

of [38]. �

From Theorem 4.3 we easily observe that the two functionals F int
ε and Fε attain the

same Γ-limit when s ∈ [1/2, 1). Indeed, since F int
ε (u,Ω) 6 Fε(u,Ω) for every function u

and domain Ω, from Theorem 4.3 we deduce that for any u ∈ X

(iii) for every uε that converges to u in X,

lim inf
ε→0+

Fε(uε,Ω) > F (u,Ω);

(iv) there exists uε that converges to u in X and such that

lim sup
ε→0+

F int
ε (uε,Ω) 6 F (u,Ω).

That is, combining (i), (ii), (iii), and (iv), both F int
ε and Fε converge to the Γ-limit F ,

that for s ∈ [1/2, 1) is defined as

F (u,Ω) :=

 c∗ Per(E,Ω) if u|Ω = χE − χCE,

+∞ otherwise.

6Observe that Proposition 4.3 in [38] is stated for F int
ε as in (4.13), not for Fε.
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Remark 4.4. The phenomena highlighted in [38] emphasizes a structural difference be-

tween the strongly nonlocal regime, i.e., when s ∈ (0, 1/2), and the weakly nonlocal one

in which s ∈ [1/2, 1).

This difference also affects the different behavior of the interior and exterior contribu-

tions of the energy functional in the Γ-limit. Indeed, in the case s ∈ (0, 1/2) Theorem 4.1

shows that both the interior and the exterior components of the fractional phase coexis-

tence functional Fε converge to two different and nontrivial Γ-limits, whose sum is the

full fractional perimeter of a set E in a domain Ω.

On the other hand, when s ∈ [1/2, 1), the nonlocal interactions on Ω × C Ω in the

functional Fε disappear in the Γ-limit. As a matter of fact, since

0 6 F ext
ε (uε,Ω) = Fε(uε,Ω)−F int

ε (uε,Ω),

we have that

0 6 lim sup
ε→0+

F ext
ε (uε,Ω) = lim sup

ε→0+

(
Fε(uε,Ω)−F int

ε (uε,Ω)
)

6 lim sup
ε→0+

Fε(uε,Ω)− lim inf
ε→0+

F int
ε (uε,Ω).

Thus, by Theorem 4.3 and assuming s ∈ [1/2, 1), we have that for every u ∈ X there

exists a sequence uε converging to u in L1
loc(Rn) such that

lim sup
ε→0+

F ext
ε (uε,Ω) = 0.

We recall that the convergence of the level sets of the minimizers described in (2.3)

possesses a natural nonlocal counterpart, as established in [37, 39]. More precisely, the

statement in (2.3) holds true for the rescaled minimizers of F1 , defined as

F1(u,Ω) := K (u,Ω) +

∫
Ω

W (u(x)) dx.

The only difference with the setting in (2.3) is that the limit set E is now a local minimizer

for the classical perimeter when s ∈ [1/2, 1), and a local minimizer for the nonlocal

perimeter when s ∈ (0, 1/2).

The geometric convergence proofs in [37, 39] also rely on energy and density estimates

which can be seen as a nonlocal counterpart of the classical ones in (2.4) and (2.5). More
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precisely, while (2.5) holds the same in the nonlocal case (i.e., phases do not get lost in the

measure theoretic sense), the nonlocal counterpart of (2.4) takes into account different

scaling properties depending on the nonlocal exponent. Namely, if u is a minimizer of F1

in BR+1 with R > 2, then

(4.14) F1(u,BR) 6


CRn−2s if s ∈ (0, 1/2),

CRn−1 logR if s = 1/2,

CRn−1 if s ∈ [1/2, 1),

for some C > 0 depending on n, s, and W .

That is, comparing (2.4) and (4.14), the energy of the nonlocal minimizers still behaves

as if the interfaces were flat, but in this case the energy contribution in a large ball has a

“faster” growth due to the strongly long-range interaction arising when s ∈ (0, 1/2]. For

further details on the one-dimensional case, see also [34].

We also mention that the results and the techniques in [38] have been used by the

second and the third author in [30] to study the Γ-convergence of a nonlocal functional

arising in a model for water waves (see also [22] for a detailed presentation of the physical

models). The energy functional related to this problem depends on a parameter s ∈ (0, 1)

and can be described as follows. One defines

Ss(ξ) =
J1−s(−i|ξ|)
Js−1(−i|ξ|)

|ξ|2s,

where Jk is the Bessel function of the first kind of order k. In this setting, Ss plays the

role of a “Fourier multiplier”, and it has an interesting algebraic property of interpolating

between the Fourier symbol of −∆ for small frequencies and that of (−∆)s for high

frequencies — see [30, Theorem 1.1] for details. Then, the energy functional considered

in [30] on a compactly supported function u with values in [0, 1] takes the form

(4.15) Pε(u) := ε2s

∫
Rn

Ss(ξ) |û(ξ)|2 dξ +

∫
Rn

W (u(x)) dx,

where û is the Fourier transform of u, and W is a nonnegative double-well function

vanishing at 0 and 1. We observe that the scaling in (4.15) is reminiscent of the one
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in (4.4). Then, recalling the scaling factors in (4.5) and (4.6), one defines

Qε(u) :=


ε−2s Pε(u) if s ∈ (0, 1/2),

|ε log ε|−1 Pε(u) if s = 1/2,

ε−1 Pε(u) if s ∈ (1/2, 1).

As proved in [30], when s ∈ [1/2, 1), the Γ-limit of the functional Qε turns out to be

the classical perimeter (up to normalizing constants), in analogy with [38]. On the other

hand, when s ∈ (0, 1/2), the Γ-limit of Qε is a new nonlocal energy functional, structurally

different from the fractional Laplacian and from the ones that have been investigated in

the literature, given by

Q(u) :=


∫
Rn

Ss(ξ) |û(ξ)|2 dξ if u = χE, for some E ⊂ Rn,

0 otherwise.

We refer to [30, Theorem 1.3] for a precise statement about the Γ-convergence of Qε.

In the context of nonlocal models for the phase separations of a fluid in a container,

we also mention the articles [1, 2], in which the authors study the Γ-convergence of an

interaction energy with a summable kernel. In this case, the functional has a singularity

which is weaker than the one in [38], and other techniques, different from the ones in [38],

are used.

We also mention that an analogue of Conjecture 2.1 for the fractional Allen-Cahn

equation (−∆)su(x) = W ′(u(x)) opens an interesting line of research. For this, we refer

to the recent surveys [15,22,23].

5. Limits in the fractional parameter s

Till now, our main focus in this note was on the limit behavior of phase transition

energy functionals for the rescaling parameter ε going to zero and for a fixed nonlocal

exponent s. However, it is also possible to consider limits in the fractional parameter s.

The first result that we present in this setting is a “pointwise” limit, for s → (1/2)−, of

the interior and the exterior contributions in the fractional perimeter of a set E inside

the container Ω, that converge, respectively, to the perimeter of E inside Ω, and to the
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perimeter of E on the boundary of Ω. Recalling the notation in (4.7) and (4.8), we state

it in the following theorem.

Theorem 5.1 (Lombardini [27], Maggi and Valdinoci [29]). Let s ∈ (0, 1/2), Ω′ ⊂ Rn be

an open set, and E ⊂ Rn with locally finite perimeter in Ω′.

Then, for every open set Ω compactly contained in Ω′ and with Lipschitz boundary, it

holds that

lim
s→(1/2)−

(
1

2
− s
)

Perints (E,Ω) = ωn−1Per(E,Ω),

lim
s→(1/2)−

(
1

2
− s
)

Perexts (E,Ω) = ωn−1H
n−1 (∂∗E ∩ ∂Ω) ,

where ωn−1 is the measure of the (n − 1)-dimensional unit ball and ∂∗E is the reduced

boundary of E.

The study of the pointwise limit of the s-perimeter addressed in Theorem 5.1 has its

foundations in the results about the limit as s → (1/2)− of the W 2s,1-seminorm of a

function. This study was initiated by Bourgain, Brezis, and Mironescu [7] (see also [17]

for optimal assumptions), establishing that the W 2s,1-seminorm

|u|W 2s,1(Ω) :=

∫∫
Ω×Ω

|u(x)− u(y)|
|x− y|n+2s dx dy

rescaled by (1/2 − s) converges as s → (1/2)− to the L1-norm of ∇u. Some further

results in this direction are obtained in [35], also establishing the Γ-convergence of the

W 2s,1-seminorm to its pointwise limit. We point out that in [7,17,35] the authors consider

exponents 1 6 p < +∞ and more general kernels than |x− y|−n−2s, studying integrals of

the type ∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|p
ρi(x− y) dx dy,

where ρi is a sequence of radial mollifiers and the limit is taken for i→∞.

We also mention the recent contributions [9–11] carrying out the study of both pointwise

and Γ-limits as δ → 0 of a family of nonlocal and nonconvex functionals of the type

δp
∫∫

Ω×Ω

ϕ (|u(x)− u(y)| /δ)
|x− y|n+p dx dy,
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where ϕ is a non-decreasing function satisfying some boundedness and growth assumption.

A Γ-convergence counterpart of Theorem 5.1 is provided by a result in [6], which es-

tablishes the Γ-convergence of the fractional perimeter to the classical perimeter, as the

fractional parameter s converges to 1/2:

Theorem 5.2 (Ambrosio, De Philippis, and Martinazzi [6]). Let E ⊂ Rn be a measurable

set, and Ω compactly contained in Rn with Lipschitz boundary. Then,

(i) for every sequences si → (1/2)− and Ei of measurable sets with χEi
→ χE

in L1
loc(Rn), we have

lim inf
i→∞

(
1

2
− si

)
Perintsi (Ei,Ω) > ωn−1Per(E,Ω);

(ii) for every sequence si → (1/2)− there exists a sequence Ei with χEi
→ χE in L1

loc(Rn),

such that

lim sup
i→∞

(
1

2
− si

)
Persi(Ei,Ω) 6 ωn−1Per(E,Ω).

We observe that the role played by interior and exterior contributions in Theorem 5.2 is

similar in some aspects to the one in Theorem 4.3. Indeed, from Theorem 5.2 and the fact

that Pers(E,Ω) > Perints (E,Ω), we immediately deduce that the interior contributions in

the fractional perimeter Perints and the full s-perimeter Pers attain the same Γ-limit as

s converges to 1/2. In this sense, the exterior contributions in the fractional perimeter,

which are given by the term Perexts , do not contribute7 to the Γ-limit.

We also stress that the boundary contributions in the limit present significant differ-

ences when the Γ-limit is replaced by the pointwise one, as a close comparison between

Theorems 5.1 and 5.2 clearly shows. Indeed, if one considers the pointwise convergence

for s→ (1/2)−, as done in Theorem 5.1, then the interior and the exterior contributions of

the fractional perimeter converge, respectively, to the classical perimeter of the set inside

the container and to the measure of the part of the boundary of the set E that coincides

with the boundary of the container Ω.

7 The counterpart of this fact for long-range phase transition models was discussed in Remark 4.4.
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More specifically, from Theorem 5.2 it follows that, in the sense of Definition 1.1,

(5.1) Γ− lim
s→(1/2)−

(
1

2
− s
)

Perexts (E,Ω) = 0,

but from Theorem 5.1 it holds that, for a given set E with Lipschitz boundary,

(5.2) lim
s→(1/2)−

(
1

2
− s
)

Perexts (E,Ω) = ωn−1 Per(E, ∂Ω).

Even if at a first glance the “mismatch” between (5.1) and (5.2) can be surprising,

or a bit disturbing, several arguments suggest important differences between the Γ-limit

in (5.1) and the “pointwise” limit in (5.2). First of all, the Γ-convergence dealt with in

our setting relies on the L1-topology, which is “weak” enough to allow the approximation

of every set E with a sequence of sets Ek such that (∂Ek)∩ (∂Ω) = ∅. This fact makes it

possible to “optimize” the recovery sequence in the lim sup inequality of the Γ-convergence

setting (recall in particular point (ii) in Definition 1.1) in such a way to “avoid additional

boundary contributions”.

Another reason for the discrepancy between the limits in (5.1) and (5.2) lies in the

“variational nature” of Γ-convergence with a fixed boundary datum. For this, the allowed

variations for the related minimization problem are taken with compact support inside

the domain Ω. In this sense, the Γ-limit is typically not naturally endowed with addi-

tional boundary contributions, which would be not compatible with the notion of local

minimizers of the limit problem.
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