
THE FRACTIONAL MEAN CURVATURE FLOW
IL FLUSSO PER CURVATURA MEDIA FRAZIONARIA

ELEONORA CINTI

Abstract. In this note, we present some recent results in the study of the fractional

mean curvature flow, that is a geometric evolution of the boundary of a set whose speed is

given by the fractional mean curvature. The flow under consideration is of nonlocal type

and presents several interesting difference with respect to the classical mean curvature

flow. We will describe the main contributions in this field, with particular emphasis on

some tipically nonlocal behaviors which are in contrast with the classical local case.

Sunto. In questa nota, presentiamo alcuni risultati recenti riguardanti lo studio del

moto per curvatura media frazionaria, che descrive l’evoluzione del bordo di un insieme

la cui velocita è data dalla curvatura media frazionaria. Tale flusso ha natura nonlocale

e presenta alcune interessanti differenze rispetto al flusso per curvatura media classica.

Descriviamo i principali contributi in questo ambito, con particolare enfasi ai comporta-

mente tipicamente nonlocali che sono in contrasto col caso classico.
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1. Introduction

This contribution concerns the study of the, so called, fractional mean curvature flow

(FMCF, for short), that is a geometric flow driven by the fractional mean curvature. Let

us start by stating our problem.
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Let E0 be a subset of Rn, and let M0 = ∂E0. For a fixed s ∈ (0, 1), we consider the

family of immersions F :M0 × [0, T )→ Rn which satisfies

(1)


∂tF (p, t) = −Hs(p, t) ν(p, t), p ∈M0, t ≥ 0

F (p, 0) = p p ∈M0,

where Hs(p, t) and ν(p, t) denote, respectively, the fractional (or nonlocal) mean curvature

of order s (see formula (3) below) and the outward unit normal to the hypersurface

Mt := F (M0, t) at the point F (p, t).

The notion of fractional mean curvature arises naturally when one computes the first

variation of the fractional perimeter, a nonlocal notion of perimeter which was introduced

by Caffarelli, Roquejoffre and Savin in [12]. Given E a bounded subset of Rn, the fractional

perimeter of E is given by

(2) Pers(E) = cs

∫
E

∫
Rn\E

1

|x− y|n+s
dx dy = cs[χE]W s,1(Rn),

where χE denotes the characteristic function of the set E, [·]W s,1(Rn) denotes the seminorm

in the fractional Sobolev space W s,1Ev, and cs is a constant depending on s which behaves

like (1− s) as s ↑ 1.

One can see the analogy with the notion of classical perimeter in the sense of De Giorgi,

defined as

Per(E) = [χE]BV (Rn),

where [·]BV (Rn) denotes the seminorm in the space BV . In (2) we are considering a

fractional order derivative of the characteristic function of a set and the two notions are

consistent in the sense that Pers → Per as s ↑ 1 (see e.g. [1, 14, 28]).

Roughly speaking, the s-perimeter captures the interactions between a set E and its

complement, these interactions take place in the whole Rn and are weighted by a kernel

with polynomial decay. Due to its nonlocal character the s-perimeter has several ap-

plication, for example in image reconstruction and nonlocal capillarity models, see e.g.

[7, 43].

A set E which is a minimizer for the fractional perimeter is called a fractional (or

nonlocal) minimizing minimal set, and its boundary is referred as a nonlocal minimizing
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minimal surface. In [12] the Euler-Lagrange equation for this functional has been derived:

similarly to the classical case, a nonlocal minimizing minimal set E must have vanishing

fractional mean curvature Hs (in the viscosity sense), where Hs is given by the following

expression

(3) Hs(x) = cs lim
ε→0+

∫
Rn\Bε(x)

χRn\E(y)− χE(y)

|x− y|n+s
dy,

where cs denotes again a constant depending on s which behaves like (1− s) as s ↑ 1. To

use the same terminology as for the classical local case, we call a surface with vanishing

fractional mean curvature a nonlocal minimal surface (even if it is a stationary and not a

minimizing surface).

The study of nonlocal minimizing minimal surfaces, with particular interest to their

regularity properties, has attracted much interest in the last years. They are known

to be C∞ surfaces outside of a singular set of Hausdorff dimension at most n − 3 for

any s ∈ (0, 1) (see [12, 6, 47]). Moreover, when s is sufficiently close to 1 (but not in

a quantifiable way) they are known to recover the same regularity properties of classical

area-minimizing surfaces, that is, their singular set has Hausdorff dimension at most n−8

(see [14]). The biggest open problem in this field, which would give the optimal Hausdorff

dimension for the singular set for any s ∈ (0, 1), is the classification of nonlocal minimal

cones. The only available result which holds for any s ∈ (0, 1) was established in [47],

where flatness of nonlocal minimal cones in R2 has been proven. This two-dimensional

result has then been extended to the more general notion of stable sets and to more general

nonlocal perimeters in [22]. The only other available results in this setting hold only for s

close to 1; more precisely in [14] flatness for nonlocal minimal cones has been proven up to

dimension n = 8, by a compactness argument, which therefore does not give quantitative

value of such s; recently in [8] flatness for nonlocal minimal cones in dimension n = 3 for

s close to 1 has been established, but now in a quantifiable way (this last result holds

actually for the more general class of stable nonlocal minimal cones). Some computations

in [30] suggest that when s is close to 0 there could be singular nonlocal minimal cones in

dimension n = 7, differently from the classical local case. Another interesting difference
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with respect to the local case is related to the fact that fractional minimal surfaces can

stick at the boundary of (even smooth and convex) domains (see [31]).

As already mentioned above, a necessary condition for being a nonlocal minimizing

minimal set, consists in having vanishing fractional mean curvature. Some examples of

surfaces with vanishing nonlocal mean curvature (apart from hyperplanes) are helicoids

and a nonlocal version of catenoids, see [21, 30]. Other interesting related results concern

the study of sets with constant nonlocal mean curvature. The first intuitive example of a

surface having constant (positive) nonlocal mean curvature is the sphere. Other examples

are Delaunay-type surfaces, which have been studied in [11, 29, 9, 10]. Moreover a nonlocal

analogue of the Alexandrov Theorem has been established in [11, 25]: in these papers the

authors established that any bounded open set, with sufficiently regular boundary, having

constant fractional mean curvature, is necessarily a sphere. In [25] a quantitative version

of this result was also established. We emphasize an interesting difference with respect to

the local case: here the set is not required to be connected since, basically, the nonlocal

character of the fractional mean curvature excludes by itself the possibility to have several

connected components (the union of disconnected balls does not have constant fractional

mean curvature!). This nonlocal Alexandorv Theorem will be useful in our last Section

4.

Let us now pass to describe some well known results in the study of the classical mean

curvature flow, that is a geometric flow in which the speed is given by the usual mean

curvature H, i.e.

(4)


∂tF (p, t) = −H(p, t) ν(p, t), p ∈M0, t ≥ 0

F (p, 0) = p p ∈M0.

The classical mean curvature flow arises in the description of the evolution of interfaces

in several physical models (see for example [49]), in particular it is a natural evolution

model in problems in which the relevant energy is of interface type. Indeed mean curvature

flow can be seen as the gradient flow of the perimeter functional. On the other hand,

one can show, by a direct computation, that −H(p, t) ν(p, t) = ∆g(t)F (p, t), where ∆g(t)

denotes the Laplace-Beltrami operator on the surface M associated to the metric g(t),
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induced by the immersion F (t). Hence this flow can be interpreted also as a sort of heat

flow, but differently from the heat equation, it is nonlinear since the Laplace-Beltrami

operator changes with the evolving surface. Nevertheless, the flow share some ”good”

properties with the classical heat equation: it is of parabolic type, it has a unique solution

for small time, it satisfies a comparison principle and has a smoothing effect. An important

feature of this flow is that, even if smooth solutions exists for small time, they can become

singular in finite time (when the curvature blows-up). For this reason, different notions

of weak solutions have been introduced, allowing to continue the evolution after the

formation of singularities, see e.g. [20, 34].

There is a huge literature on the mean curvature flow. In the next sections we will recall

some of the main well known results and will focuse on the analogy or differences with

respect to the nonlocal case. For the moment, let us just mention a celebrated convergence

result due to Huisken [39], which is a crucial ingredient in the analysis of singularities.

In [39], Huisken proved that convex hypersurfaces remain smooth up to a finite maximal

time at which they shrink to a point, and they converge to a round sphere after rescaling.

An analogous result (convergence to a sphere) was proven to hold also in the volume

preserving case again by Huisken in [40]. Other interesting feature of this flow have been

studied, such as fattening phenomena, examples of self-shrinkers, evolution of graphs,

discrete approximation for the flow, classification of singularities. We will mention some

of them, later on in this note. Let us finally recall that variants of the mean curvature

flow have been also used to give different proofs of some gemetric inequalities, such has

the isoperimetric or Minkowski inequalities.

On the other hand the study of nonlocal mean curvature flows has been started only

in the last years and very few results are known. Concerning existence of solutions, the

existence and uniqueness of viscosity solutions, together with some basic properties, such

has the validity of comparison principles, have been established in [41, 13, 16]. More

precisely, in [13] Caffarelli and Souganidis proved a discrete approximation result, which

is the fractional analogue of the so called MBO approximation (see Section 2 for details).

This type of discrete approximation has been generalized to the case of an anisotropic

version of the fractional mean curvature flow and to the precence of an external force,
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by Chambolle, Novaga and Ruffini in [17]. In the same work [17], they also proved that

these more general flows preserves convexity, a property which will be useful later on in

Section 4. Some geometric properties of smooth solutions and the evolution equations

of geometric quantities in the smooth setting, have been studied by Saez and Valdinoci

in [46], the formation of fattening phenomena have been addressed in [26] by Cesaroni,

Dipierro, Novaga and Valdinoci, examples of self-shrinkers were considered in [27] by

Cesaroni and Novaga, while examples of surfaces which develope neckpinch singularities

have been provided in [23]. Regarding the study of regularity of solutions, we mention the

two following very recent contributions: in [42], Julin and La Manna established the short-

time existence of a unique classical solution starting from a C1,1 initial datum; in [15],

Cameron proved a quite interesting regularizing effect of the fractional mean curvature

flow, which is false for the classical flow: any set that is at finite distance away from a

Lipschitz subgraph will become a Lipschitz subgraph in finite time. Finally, concerning

asymptotic convergence result á la Huisken, in [24], convergence to a sphere for the volume

preserving fractional mean curvature flow has been established.

This is, to our knowledge, a complete list of references on the fractional mean curvature

flow. We will describe some of these results in the next Sections. More precisely:

• In Section 2, we recall the classical MBO approximation scheme for the mean

curvature flow and describe its analogue in the nonlocal setting considered in [13];

• In Section 3, we describe and give an idea of the proof of the formation of neckpinch

singularities established in [23], focusing on the difference with respect to the

classical setting;

• Finally, in Section 4, we describe the convergence to a sphere in the volume pre-

serving case, proven in [24].

2. Discrete approximation results

An important question from the point of view of applications is to find efficient com-

putational schemes for mean curvature (or more general geometric) flows. The first con-

tribution in this direction, for what regards the classical mean curvature flow, is due to

Merriman, Bence and Osher, who introduced a time-discretization, nowadays called the
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MBO scheme, to generate motion by mean curvature [45]. The idea, that we make pre-

cise later in this Section, is to start with a bounded and open set E0 in Rn (the initial

datum), consider the function χE0 − χ(E0)c (which takes value 1 in E0 and −1 in Ec
0) and

make it evolve by the heat equation for a short time h > 0. Heat equation produces a

smooth solution w (which therefore takes continuous values and not just −1, 1). One then

define a new initial datum E1 to be the super-level set of w {w > 0} , and repeat the

procedure. In this way, the scheme produces a discrete sequences of surfaces Mh
nh which

are the boundaries of the sets En. Few years later that this scheme was proposed, Evans

[33] and, independently, Barles and Georgelin [5], gave rigourous proofs of the conver-

gence of the MBO approximation to mean curvature flow. Their proofs is based on the,

so-called, level-set approach for the motion by mean curvature, which allows to introduce

a notion of viscosity solutions, for which a comparison principle holds. The analogue, in

the nonlocal setting, of this type of discrete approximation, was established by Caffarelli

and Souganidis in [13]: the main idea relies in following the MBO scheme, but where the

heat equation is replaced by the fractional heat equation. This was the actual motivation

for the definition of the fractional mean curvature.

2.1. The classical setting. To better understand these results, let us start by consider-

ing the classical setting and introducing the notion of viscosity solution for the classical

mean curvature flow (4). As already mentioned above, this is done by using the level-set

approach. The idea is the following: given an initial surface M0 = ∂E0, we choose any

continuous function u0 : Rn → R such that

(5) E0 = {x ∈ Rn : u0 > 0} and M0 = {x ∈ Rn : u0(x) = 0}.

The geometric equation satisfied by the evolution Mt of M0 can then be translated into

an equation satisfied by a function u(x, t), where u(x, 0) = u0(x) and at each time

(6) Et = {x ∈ Rn : u(·, t) > 0} and Mt = {x ∈ Rn : u(·, t) = 0}.

If Mt evolves by mean curvature flow, then one can see that the equation satisfied by u

is

(7) ∂tu+H[x, u(·, t)]|Du(x, t)| = 0 in Rn × (0,+∞),
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where u satisfies the initial condition

u(x, t) = u0(x) in Rn.

Since ∇u/|∇u| is a unit normal to a level set of u (here ∇u denotes the spatial gradient

of u), and hence div(∇u/|∇u|) represents its mean curvature (unless |∇u| = 0), we can

write the above equation as

(8) ∂tu = |∇u|div

(
∇u
|∇u|

)
.

The fact that this definition of Mt is well posed, that is that equation (7) has a

unique solution and definition (5) does not depend on the choice of the function u0, was

established in [20, 34].

We can now give the notion of viscosity solution considered in [34, 20].

Definition 2.1. i) An upper semicontinuous function u : [0, T ] × Rn is a viscosity

subsolution of (8) if, for every smooth test function φ such that u − φ admits a

global maximum at (t, x), we have

(9) ∂tφ ≤ |∇φ|div

(
∇φ
|∇φ|

)
if Dφ(x, t) 6= 0, and ∂tφ(x, t) ≤ 0 if not.

ii) A lower semicontinuous function u : [0, T ]×Rn is a viscosity supersolution of (8)

if for every smooth test function φ such that u − φ admits a global minimum at

(t, x), we have

(10) ∂tφ ≥ |∇φ|div

(
∇φ
|∇φ|

)
if Dφ(x, t) 6= 0, and ∂tφ(x, t) ≥ 0 if not.

iii) A locally bounded function u is a viscosity solution of (8) if its upper semicontin-

uous envelope is a subsolution and its lower semicontinuous envelope is a super-

solution of (8).

As established in [20, 34], a comparison principle holds for viscosity solutions, meaning

that of u and v are, respectively, a subsolution and a supersolution of (8) starting from

initial data u0 and v0 satisfying u0 ≤ v0, then for all later times it holds u ≤ v.
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Let us describe now more in detail the MBO scheme, in order to give a rigorous state-

ment of the convergence result.

Let E0 be an open and bounded set in Rn and let χE0 denote its characteristic function.

We start by considering the heat flow with initail datum χE0 − χEc0 :

(11)

∂tw = ∆w in Rn × (0,+∞)

w(·, 0) = χE0 − χEc0 on Rn.

The (unique bounded) solution w at time h > 0 is given by convolution with the heat

kernel:

w(x, h) =
1

(4πh)n/2

∫
E0

e−
|x−y|2

4h dy.

After this first time-step h we stop the flow, and we define a new set Eh
1 in the following

way:

Eh
1 := {w(·, h) > 0}.

We then repeat the procedure, solving the heat equation in a time interval again of

step h and with initial datum wh(x, 0) = χEh1 − χ(Eh1 )
c . Proceeding in this way, we define

a sequence of sets Eh
nh, of surfaces Mh

nh = ∂Eh
nh, and of functions wh(·, nh), where

Eh
nh = {x ∈ Rn : Gh ∗ w(·, (n− 1)h)(x) > 0},

being Gh the heat kernel at time h:

Gh =
1

(4πh)n/2
e−
|z|2
4h .

We can now state the convergence result proven in [5, 33].

Theorem 2.1 (Theorem 1.2 in [5]). Let Et and Mt be defined as in (6), that is Et =

{u > 0} and Mt = {u = 0}, where u is the viscosity solution of (7).

Then, for all t ≥ 0

lim inf
y→x nh→t

wh(y, nh) = 1 in Et,

lim sup
y→x nh→t

wh(y, nh) = −1 in (Et ∪Mt)
c.
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The above theorem tells us that the MBO scheme is an approximation for mean curva-

ture flow if we put 1 in the region inside the front {u > 0} and −1 in the region outside

the front {u < 0}. However, whether the regions where wh converges to −1 and 1 are

exactly the region inside and outside the front, depends on the fact thatMt could become

”fat”, that is it could develop an interior. Adding an additional condition which excludes

this possibility, we have the following more precise result:

Theorem 2.2 (Corollary 1.3 in [5]). Let F :=
⋃
t>0Mt×{t} and Fh :=

⋃
nMh

nh×{nh}.

If F = ∂{(x, t) : u(x, t) > 0} = ∂{(x, t) : u(x, t) < 0}, then Fh converges to F in the

sense of the Hausdorff distance.

The condition in the above theorem basically says that Mt does not become fat.

Let us now pass to describe the analogue of the MBO approximation scheme in the

fractional setting.

2.2. The nonlocal setting. As already mentioned in the Introduction, the MBO approx-

imation for the fractional mean curvature flow was proved by Caffarelli and Souganidis

in [13].

We start by recalling the definition of viscosity solution, which was already introduced

in [41] for the FMCF, using again the level set approach. In this situation, equation (7)

is replaced by

(12) ∂tu+ CsH
s[x, u(·, t)]|Du(x, t)| = 0 in Rn × (0,+∞),

where Cs is a constant, whose precise value can be found in [13], and Hs[x, u(·, t)]

denotes the fractional mean curvature of the superlevel set of u(·, t) at the point x, i.e.

Hs[x, u(·, t)] = Hs
{y∈Rn :u(y,t)>u(x,t)}(x).

We recall now the notion of viscosity solution from [41].
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Let M = {x ∈ Rn : u(x) = 0} = ∂{x ∈ Rn : u(x) > 0}. If u ∈ C1,1 and Du 6= 0, we

can define the following quantities

k∗[x,M] = k∗[x, u] =

∫
Rn

χ{u(x+z)≥u(x)}(z)− χ{u(x+z)<u(x)}(z)

|z|n+s
dz,

k∗[x,M] = k∗[x, u] =

∫
Rn

χ{u(x+z)>u(x)}(z)− χ{u(x+z)≤u(x)}(z)

|z|n+s
dz.

(13)

It is easy to see that if u ∈ C1,1 and its gradient Du does not vanish on {z ∈ Rn : u(z) =

u(x)}, then k∗ are finite and

k∗[x, u] = k∗[x, u] = −Hs[x, u].

We can now give the definition of viscosity solution for (12) (see [41], Sec. 3).

Definition 2.2. i) An upper semicontinuous function u : [0, T ] × Rn is a viscosity

subsolution of (12) if for every smooth test function φ such that u − φ admits a

global maximum at (t, x), we have

(14) ∂tφ ≤ Csk
∗[x, φ(·, t)]|Dφ|(x, t)

if Dφ(x, t) 6= 0, and ∂tφ(x, t) ≤ 0 if not.

ii) A lower semicontinuous function u : [0, T ]×Rn is a viscosity supersolution of (12)

if for every smooth test function φ such that u − φ admits a global minimum at

(t, x), we have

(15) ∂tφ ≥ Csk∗[x, φ(·, t)]|Dφ|(x, t)

if Dφ(x, t) 6= 0, and ∂tφ(x, t) ≥ 0 if not.

iii) A locally bounded function u is a viscosity solution of (12) if its upper semi-

continuous envelope is a subsolution and its lower semicontinuous envelope is a

supersolution of (12).

It is easy to verify that any classical subsolution (respectively supersolution) is in partic-

ular a viscosity subsolution (respectively supersolution). The fact thatMt is well defined

(that is (12) has a unique solution), and that the definition (5) does not depend on the

initial choice of the function u0, was proven by Imbert in [41], together with the following

comparison principle, which will be useful for the result we will present in Section 3.



THE FRACTIONAL MEAN CURVATURE FLOW 29

Proposition 2.1 (Theorem 2 in [41]). Suppose that the initial datum u0 is a bounded and

Lipschitz continuous function. Let u (respectively v) be a bounded viscosity subsolution

(respectively supersolution) of (12).

If u(x, 0) ≤ u0(x) ≤ v(x, 0), then u ≤ v on Rn × (0,+∞).

Let us now describe the MBO approximation in the fractional setting. The idea is to

follow the argument described in the previous subsection and replace the heat equation

with the fractional heat equation:

∂tw = −(−∆)s/2w,

where (−∆)s/2 denotes the fractional Laplacian, defined as

(−∆)s/2w(x) := cn,sP.V.

∫
Rn

w(x)− w(y)

|x− y|n+s
dy, for s ∈ (0, 2),

where cn,s is a constant that depends on s and n and which behaves like (1− s) as s ↑ 1,

and the integral has to be taken in the principal value sense.

Using the same notation as above, we can define a sequence of sets Eh
nh, of surfaces

Mh
nh = ∂Eh

nh, and of functions wh(·, nh), where now

Eh
nh = {x ∈ Rn : Jh ∗ w(·, (n− 1)h)(x) > 0},

being Jh the fractional heat kernel. More precisely

Jh(x) = ps(x, σs(h)),

where ps denotes the fundamental solution of the fractional heat equation, and σs denotes

the following time-scale

σs(h) = h
s

1+s if s ∈ (0, 1),

h = σ1(h)| ln(σ1(h))| if s = 1,

σs(h) = h
s
2 if s ∈ (1, 2).

We recall that the kernel Jh, differently from the classical case, has polynomial (and

not exponential) decay.

With this definition at hand, we can now state the convergence result by Caffarelli and

Souganidis.
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Theorem 2.3 (Theorem 1 in [13]). Let (wh(·, nh))n∈N be the family of functions defined

above.

Let u be the viscosity solution of

• the fractional level set equation (12) if s ∈ (0, 1);

• the classical level set equation (7) if s ∈ [1, 2).

Let Et = {x ∈ Rn : u(x, t) > 0} and Mt = {x ∈ Rn : u(x, t) = 0}.

Then,

lim inf
y→x nh→t

wh(y, nh) = 1 in Et,

lim sup
y→x nh→t

wh(y, nh) = −1 in (Et ∪Mt)
c.

Again, if we exclude thatMt develops an interior, we have convergence in the Hausdorff

sense:

Theorem 2.4 (Corollary 1 in [13]). Let F :=
⋃
t>0Mt×{t} and Fh :=

⋃
nMh

nh×{nh}.

If F = ∂{(x, t) : u(x, t) > 0} = ∂{(x, t) : u(x, t) < 0}, then Fh converges to F in the

sense of the Hausdorff distance.

The above results, interestingly, show that the power s/2 = 1/2 in the approximation

by the fractional heat equation is somehow critical and differentiates between a local

and a nonlocal behavior: when s ∈ (0, 1) the discrete approximation leads to motion

by fractional mean curvature while when s ∈ [1, 2) it leads to classical mean curvature

motion.

3. Neckpinch singularities

In this Section, we describe the result obtained in [23] concerning the formation of

neckpinch-type singularities in the fractional mean curvature flow.

We start by recalling some well known facts in the classical setting, for which the

formation of singularities has been widely studied in the last decades. One of the most

important result in this context, that we already mentioned in the Introduction, was

proved by Huisken and concerns the evolution of convex surfaces:
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Theorem 3.1 (Theorem 1.1 in [39]). Let n ≥ 3 and assume thatM0 is uniformly convex,

i.e., the eigenvalues of its second fundamental form are strictly positive everywhere. Then

the evolution equation (4) has a smooth solution on a finite time interval 0 ≤ t < T , and

we have that Mt converge to a single point as t→ T .

To be more precise, Huisken proved that Mt converge to a round point, i.e. that after

a suitable rescaling, they converge to a sphere. This result extends to every dimension a

result by Gage and Hamilton for n = 2 [36].

A natural question is then, what happens if the convexity assumption is removed? In

general, other types of singularities may occur, a classical example being the, so-called,

neckpinch singularities. The first examples of surfaces developing this type of singularities

were provided by Greyson in [37], and later considered also by Angenent and Ecker [4, 32].

Theorem 3.2 (Theorem 2.1 in [37]). There exists an embedded hupersurface M0 in Rn,

n ≥ 3, which developes a singularity under the mean curvature flow, before it shrinks to

a point.

The idea is to consider a set which is made by two large balls connected by a very thin

neck, so that, in dimension n > 2, the mean curvature in the neck is much larger than the

one in the balls, hence the radius of the neck goes to zero faster than the radius of the

balls. Intuitively, here the fact of being in dimension strictly larger than 2 plays a crucial

role, indeed if we image the same kind of set in the plane, it is no longer true that the

mean curvature (there is just one curvature now!) in the neck is much larger than the one

of the balls. Hence, another natural question is whether Huisken’s result still holds in the

plane removing the convexity assumption. The surprising answer was given by Greyson:

Theorem 3.3 (The Main Theorem in [38]). Any smooth closed embedded curve in the

plane shrinks smoothly to a point.

We would like to understand now what we can say about the existence of surfaces

developing neckpinch-type singularities in the nonlocal setting and ask ourselves whether

the anoulogue of Greyson’s results hold for the fractional mean curvature flow. This is
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the content of the contribution [23] and, as we are going to show, a different behavior is

observed when passing from local to nonlocal evolutions.

The main result in [23] is the following

Theorem 3.4 (Theorem 1 in [23]). Let n ≥ 2. There exists an embedded hypersurfaceM0

in Rn such that the viscosity solution of the fractional mean curvature flow (1) starting

from M0 does not shrink to a point.

The important difference with respect to the classical setting is that, here, the construc-

tion can be made also in dimension n = 2, showing that Greyson’s theorem (Theorem 3.3

above) does not hold anymore in the nonlocal case.

In [23], a crucial ingredient in the proof of Theorem 3.4 relies on the following fact:

if a set E is contained in a strip and its boundary ∂E has sufficiently small classical

curvatures, then the fractional mean curvature of E is positive everywhere. The precise

statement is the following:

Proposition 3.1 (Proposition 5 in [23]). Let κ > 0. Let E−, E+ ⊂ Rn be connected sets.

Assume that E+ ∩ E− = ∅ and that

E− ⊇ {xn ≤ −1} and E+ ⊇ {xn ≥ 1}.

Suppose also that the boundaries of E− and E+ are of class C2, with classical directional

curvatures bounded in absolute value by κ.

Let E := Rn \ (E− ∪ E+). Then, there exist c0 and κ0 > 0, depending on n, s and the

C2 bounds on ∂E− and ∂E+, such that for any x ∈ ∂E

Hs
E(x) ≥ c0,

provided that κ ∈ [0, κ0].

For the details of the proof, we refer to [23]. We emphasize here that the the underlying

idea relies crucially on the nonlocal character of the fractional mean curvature: if we sit

at a point on the boundary of a thin neck, we see much more complement of E than E

itself, and hence, recalling Definition (3), we expect that the fractional mean curvature

can be made strictly positive, no matter what the dimension is.
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A related easy observation, which can be seen directly again from Definition (3), is

that, differently from the local case, a strip has always strictly positive fractional mean

curvature.

As a corollary of the previous Proposition, we deduce that the set

(16) Eε :=

{
x = (x′, xn) ∈ Rn s.t. |xn| < ε+

1

π
arctan

(
δ |x′|2

)}
,

has strictly positive fractional mean curvature (uniformly bounded away from zero), if ε

and δ are sufficiently small.

We can now give a

Sketch of the proof of Theorem 3.4

We start by recalling the evolution, under fractional mean curvature flow, of a sphere,

which can be explicitly computed (see Lemma 2 and Corollary 3 in [46]). Indeed, it can

be easily seen that the fractional mean curvature of a ball of radius R is constantly equal

to Hs
BR

(x) = ω̄R−s, where ω̄ is a positive constant depending on s and n. Moreover, if

we set R(t) := (Rs+1
0 − (ω̄(1 + s))t)

1
s+1 , then BR(t) is a solution to the fractional mean

curvature flow starting from BR0 and it collapses to a point in the finite time

(17) TBR0
=

Rs+1
0

ω̄(s+ 1)
.

Observe that, while for the classical mean curvature flow, the extinction time of a sphere

of radius R0 is proportional to R2
0, in the fractional case it is proportional to Rs+1

0 .

We consider now the set Eε defined in (16); we know that there exists ε and δ positive

such that, for any 0 < ε ≤ ε and 0 < δ ≤ δ

(18) inf
x∈∂Eε

Hs
Eε(x) ≥ c0 > 0,

for some c0 depending only on n and s.

Let now κ and ε0 be two positive parameters such that

(19) κ < c0 and ε0 < min

{
ε̄,

1

4
κTB1

}
,
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where TB1 is the extinction time of the ball of radius 1 given in (17).

The idea is to consider the set Eε0 and to let it evolve with constant velocity κ in the

inner vertical direction. We set

ε(t) := ε0 − κ t,

and, for any t, we consider the set

(20) Eε(t) :=

{
x = (x′, xn) ∈ Rn s.t. |xn| < ε(t) +

2

π
arctan

(
δ |x′|2

)}
.

With this choice, we have that any point x ∈ ∂Eε(t) satisfies

∂tx · ν = V · ν,

where

V =

−κen if xn > 0

κen if xn < 0.

From the crucial lower bound (18) and using that Eε(t) ⊂ Eε0 for any t > 0, we deduce

that

∂tx · ν ≥ −κ > −c0 ≥ −Hs
Eε(t)

.

Hence, the set Eε(t) is a smooth supersolution (hence also a viscosity supersolution) to

the FMCF (1).

By the definition of the set Eε0 we see that the minimum distance between the two

disconnected components of its boundary is attained at the points (0, . . . , 0, ε0) and

(0, . . . , 0,−ε0). Since Eε(t) evolves with constant velocity κ along the inner vertical direc-

tion, we deduce that the singular time for Eε(t) is given by

(21) TEε(t) =
2ε0
κ
.

To construct a surfaces which developes a neckpinch-type singularity, it is now enough

to consider any closed set A0 with the following properties:

a) A0 is rotationally symmetric around the x1 axis;

b) A0 is symmetric with respect to the x1 = 0 hyperplane;

c) A0 is contained in Eε0 ;
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d) A0 contains two balls B−1 and B+
1 of radius 1 centered at (−L, 0, . . . , 0) and

(L, 0, . . . , 0) respectively, where L is chosen large enough so that a) and b) are

both satisfied.

Let At be the evolution under fractional mean curvature flow starting from A0. By

uniqueness, At has the symmetries of A0. Moreover, using the comparison principle of

Proposition 2.1, At must be contained in Eε(t) and it must contain the evolutions B−1,t and

B+
1,t of the two balls B−1 and B+

1 .

Using now the choice of ε0 (19), we deduce that at any time t > TA, where TA = 2ε0
κ
≤

1
2
TB1 the x1 = 0 cross section of At is empty.

But at the same time, At contains two balls with positive radius in the x1 > 0 and

x1 < 0 half-spaces respectively. This shows that, at some time smaller than TA, the set

At splits into two symmetric disconnected components, hence it cannot shrink to a point.

4. The volume preserving case: convergence to a sphere

As mentioned in the previous Section, one of the most well known result on asymptotic

convergence in the classical mean curvature flow is Theorem 3.1, due to Huisken, which

asserts that convex hypersurfaces remain smooth up to a finite maximal time at which

they shrink to a point, and that they converge to a round sphere after rescaling.

We have seen that, in the fractional setting, if we do not assume convexity of the ini-

tial datum, the analogue of Huisken result cannot be true in any dimension, due to the

existence of surfaces which develope neckpinch-type singularities. Of course, a natural

question is whether Huisken’s result is still true in the nonlocal setting for convex ini-

tial conditions. This problem is still open and no results are available concerning the

asymptotic behaviour of surfaces evolving by FMCF.

On the other hand, one could try to investigate convergence results for other particular

types of nonlocal geometric evolution, such as, for example, the volume preserving version

of the fractional mean curvature flow.

The classical volume preserving mean curvature flow has also been well studied: in

[40], Huisken obtained again a convergence result, which sates that the solution exists

for all times and converges to a sphere as t → +∞. In later years, many researchers
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have studied the convergence to a sphere for other kinds of geometric flows, with a speed

driven by more general functions of the (classical) principal curvatures. These convergence

results are interesting also in relation to possible applications to obtain generalizations or

alternative proofs of classical geometric inequalities.

In this Section, we describe the results contained in [24], which investigate the analogue,

in the nonlocal setting, of Huisken result concerning convergence to a sphere for the

volume preserving flow, under some suitable assumption. They represent a first attempt

to establish the asymptotic behavior of surfaces evolving by nonlocal geometric flows.

Let us start by describing the problem. Let E0 ⊂ Rn be a smooth compact convex set,

and let M0 = ∂E0. We consider now the family of immersions F : M0 × [0, T ) → Rn

which satisfies

(22)


∂tF (p, t) = [−Hs(p, t) + h(t)] ν(p, t), p ∈M0, t ≥ 0

F (p, 0) = p p ∈M0,

where h(t) is given by

(23) h(t) =
1

|Mt|

∫
Mt

Hs(x)dµ,

and dµ denotes the (n − 1)-dimensional Hausdorff measure. With respect to the FMCF

considered up to know, we are just adding a term in the expression of the velocity, which

ensure that the volume is preserved. Indeed, an easy computation shows that

d

dt
|Et| =

∫
Mt

(−Hs(p, t) + h(t))dµ = 0.

Another important feature of this flow is that it decreases the s-perimeter, indeed (see

e.g. [24, 47]) the variation of the s-perimeter is given by

d

dt
Pers(Et) =

∫
Mt

[−Hs(x) + h(t)]Hs(x)dµ

= −
∫
Mt

[Hs(x)− h(t)]2dµ ≤ 0.

As a consequence of the two previous properties, we deduce that the fractional isoperi-

metric quotient is monotone decreasing along the volume preserving FMCF. The mono-

tonicity property of the (classical) isoperimetric ratio for the mean curvature flow, was
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exploited in [3, 48] to give an alternative proof of the convergence result by Huisken. Since

this monotonocity is a peculiar and structural property of the volume preserving case, in

[24] the authors applied this approach in the fractional setting.

Let us describe, more in details, the results contained in [24]. The main results are some

apriori estimates on smooth solutions, which give a uniform control on the geometry of the

evolving surfaces, and establish that the fractional curvature remains uniformly bounded

along the flow. As a consequence, one can show that any smooth solution, satisfying

suitable regularity assumptions, exists for all times and converges to a sphere.

In the following ρE and ρE denote, respectively, the inner radius and the outer radius

of a set E ⊂ Rn:

(24)

ρE := sup{r > 0 : ∃xo ∈ Rn, Br(xo) ⊂ E}, ρE := inf{r > 0 : ∃xo ∈ Rn, Br(xo) ⊃ E}.

These are the crucial apriori estimates established in [24].

Theorem 4.1 (Theorem 1.1 in [24]). Let E0 be a smooth compact convex set of Rn and let

M0 = ∂E0. Let F :M0 × [0, T )→ Rn, with 0 < T ≤ +∞, be a solution of (22) of class

C2,β for some β > s. Then there exist positive constants 0 < R1 ≤ R2, 0 < K1 ≤ K2,

only depending on E0, such that

R1 ≤ ρEt ≤ ρEt ≤ R2

K1 ≤ Hs(p, t) ≤ K2 p ∈M0,

for all t ∈ [0, T ).

We give here an idea of the proof of the previous Theorem, the details can be found in

[24].

Idea of the Proof. The proof can be divided in three main steps.

STEP 1. For any bounded convex set E, one can show that the following geometric

estimate holds true:
ρE
ρE

≤ C

(
(Pers(E))n

|E|n−s

) 1
s

,

where the quantity on the right-hand side is the fractional isoperimetric ratio for the set

E. The proof of this inequality, which can be found in [24, Proposition 3.1], uses the
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fractional isoperimetric inequality and some careful integral estimates.

STEP 2. Step 1 implies that

(25) R1 ≤ ρEt ≤ ρEt ≤ R2,

for some R1 and R2 depending only on the initial datum E0. Since the proof of this

step is based on an easy geometric reasoning and uses crucially the monotonocity of the

isoperimetric ratio, we give here the details.

As already mentioned in the Introduction, from [17] we know that the evolution given

by (22) preserves convexity, hence we have that Et is convex for all 0 < t < T .

By definition of inner and outer radius, we have that

ωnρEt
n ≤ |Et| ≤ ωnρEt

n,

where ωn denotes the volume of the unit ball in Rn. Since the volume of Et is preserved,

we have automatically an upper bound on ρEt and a lower bound on ρEt in terms of |E0|.

On the other hand, using that the fractional isoperimetric ratio (Pers(Et))
n/|Et|n−s is

decreasing in time, the inequality in Step 1 gives a uniform bound on the ratio ρEt/ρEt in

terms of |E0|. Combining these bounds together, we obtain (25).

STEP 3. Some integral estimates and the upper bound on ρEt from Step 2 gives the

lower bound Hs(p, t) ≥ K1 (see [24, Corollary 3.2]).

STEP 4. In this last Step, one shows the uniform upper bound for Hs:

Hs(p, t) ≤ K2.

The proof is more involved and uses crucially the evolution equation satisfied by Hs

together with some integral estimates that relates the fractional analogue of the squared

second fundamental form and H2
s . Since it could be of independent interest, we spend

a couple of words on this last estimate. In the nonlocal setting, the following integral

quantity can be seen as a natural analogue of the squared norm of the second fundamental

form:

cs

∫
M

1− ν(y) · ν(x)

|y − x|n+s
dµ(y) = cs

∫
M

|ν(x)− ν(y)|2

|y − x|n+s
dµ(y)

It is an analogue of the squared second fundamental form (that we denote by |A|2)

for several reasons: it comes out naturally when performing the second variation of the
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fractional perimeter; it replaces |A|2 in the evolution equations satisfied by geometric

quantities, such has the fractional mean curvature; finally it converges to |A|2 as s ↑ 1

(this convergence was established in [30]).

In the classical setting, an easy and very useful estimate which relates H and |A|2 is

the following

|A|2 ≥ 1

n
H2.

A natural question is then, whether some kind of inequality of this type holds also in the

fractional setting. In this situation, of course, such kind of extension is no obvious due to

the integral definition of our geometric quantities. Nevertheless, one can prove that, at

least for convex sets, the following holds true (see Proposition 4.2 in [24]):

Hs(x) ≤ C
(
diam (E)

) 1−s
2

(
(1− s)

∫
∂E

1− ν(y) · ν(x)

|x− y|n+s
dµ(y)

) 1
2

.

As mentioned above, this integral estimate is crucial in the proof of the upper bound

on Hs.

For the remaining details of this last Step 4, we refer to [24, Section 5].

Ones one has the geometric bounds of Theorem 4.1, one can deduce that a solution of

(22) exists for all times and converges to a sphere as t→ +∞, provided it satisfies suitable

regularity properties. Basically, we need to assume that the solution remains smooth and

does not develop singularities as long as the fractional mean curvature remains bounded.

More precisely, we assume that there exists a smooth solution of (22) satisfying the

following property for some β > s:

(HP) If Hs is bounded on Mt for all t ∈ [0, T0) for some T0 ≤ T , where T is the

maximal time of existence, then the C2,β-norm ofMt, up to translations, is also bounded

for t ∈ [0, T ) by a constant only depending on the supremum of Hs. In addition, either

T0 = T = +∞, or T0 < T .

This assumption is a natural analogue of some properties which hold true in the classical

case (see [39]), and follow by the standard parabolic theory. In the fractional setting, it is

still an open problem whether (HP) holds true. The only available result in this direction

has been established very recently by Julin and La Manna in [42]. They prove that if the



40 ELEONORA CINTI

C1,β-norm of the solution remains bounded, for some β > s, then the smooth solution

exists for all times. On the other hand, the boundedness of the fractional curvature

gives directly C1,β bounds only for β < s. Nevertheless, we can expect that solutions

enjoy further regularity properties, as some recent regularity results in nonlocal problems

suggest, see e.g. [6, 18, 19, 31].

We can now state the convergence result established in [24]:

Theorem 4.2 (Theorem 1.2 in [24]). Let E0 be a smooth compact convex set of Rn and

let M0 = ∂E0. Let F : M0 × [0, T ) → Rn, with 0 < T ≤ +∞, be a solution of (22)

of class C2,β for some β > s which satisfies property (HP). Then T = +∞, and Mt

converges to a round sphere as t→ +∞ in C2,β norm, possibly up to translations.

Sketch of the proof.

We report here an idea of the proof, whose details can be found in [24]. As one can see,

we will exploit the Alexandrov-type result for the classification of surfaces with constant

fractional mean curvature, already mentioned in the Introduction. These are the main

Steps:

• We first prove that

lim
t→∞

max
Mt

|Hs(p, t)− h(t)| = 0.

This follows by our regularity assumption (HP), the uniform bounds on Hs and

the fact that

d

dt
Pers(Et) = −

∫
Mt

|Hs − h|2.

• Using again our regularity assumptions, we have that Et converge to a set with

constant fractional mean curvature;

• By the Alexandrov-type result in [11, 25], we conclude that the limit set must be

a sphere.
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