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Abstract. Maximum principles play an important role in the theory of elliptic equa-

tions. In the last decades there have been many contributions related to the development

of fully nonlinear equations and viscosity solutions. Here we consider degenerate elliptic

equations, where the main term is a partial trace of the Hessian matrix of the solution.

We establish maximum principles in domains that are unbounded in some directions,

contained in slabs, and extended maximum principles, which lead to removable singu-

larity results.

Sunto. I principi di massimo rivestono un ruolo importante nella teoria delle equazioni

ellittiche. Negli ultimi decenni vi sono stati molti contributi correlati allo sviluppo delle

equazioni completamente non lineari e alle soluzioni di viscosità. In questo lavoro si

considerano equazioni ellittiche degeneri, dove il termine principale è la traccia parziale

della matrice hessiana della soluzione. Si stabiliscono principi di massimo in domini

illimitati in qualche direzione, contenuti in lastre infinite, ed estensioni del principio di

massimo che consentono di ottenere risultati sulle singolarità eliminabili.
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1. Introduction

We consider two classes of elliptic operators, which are in different ways partial traces

of n× n real symmetric matrices X. Namely:

(1) PDσk (X) = Xi1i1 + · · ·+Xikik

and

(2) Pλσk (X) = λi1(X) + · · ·+ λik(X),

where σk = (i1, . . . , ik) is a choice of k positive integers i1 < · · · < ik between 1 and n.

We have denoted by Xij the coefficient in the i-th row and j-th column, and by λi(X)

the i-th largest eigenvalues of X.

If k = n, both the operators coincide with the full trace of X. If k < n, we get therefore

different partial traces, which continue to be degenerate elliptic, but no more uniformly

elliptic, according to the definition of Section 2.

There are other perspectives which link the two kinds of operators, as it will be clear

throughout the paper.

Operators like PDσk arise in directional diffusion problems and have been investigated

in [12, 13, 14] as well operators like Pλσk arise in geometric problems of mean partial

curvature, see [49, 42, 43], or stochastic differential games, see [5, 6], and have been

investigated in [44, 29, 12, 13, 14, 30, 31, 1, 24, 25, 48, 22].

Here, we investigate the validity of the maximum principle (MP) for second-order

differential elliptic operators having as principal part F [u] = F(D2u), where F could be

PDσk or Pλσk , and their generalizations. We denote by D2u the Hessian matrix of u, when

u is C2, as well as D will stand for the gradient of u. For the meaning of (MP) we refer

to the next section.

We will see, generally speaking, that these operators are degenerate, non-uniformly

elliptic, when k < n, and have a different amount of ellipticity: the directional ellipticity

for PDσk ’s and the weaker non-totally degenerate ellipticity for Pλσk ’s, see Section 2.
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Different maximum principles are obtained in the two different cases , if k < n. When

the principal part is PDσk , (MP) holds with bounded first-order coefficients of any mag-

nitude. On the other hand, when Pλσk is the principal part, (MP) holds provide the

coefficients of the gradient term are suitably small, depending on the ellipticity constant

and the diameter of the domain. See Section 2 below.

In particular, for operators of type PDσk , we address the issue of maximum principles

in unbounded domains, where generally a control on the growth of the solution is required

as |x| → ∞ (Phragmén-Lindelöf principles). We refer to [9, 10, 45, 46, 47, 15, 16] for the

uniformly elliptic case.

The first result below is concerned with degenerate elliptic equations in domains which

are bounded in some directions, contained in slabs. We recall that existence, unique-

ness and maximum principles for uniformly elliptic equations in such domains have been

considered since B. Pini [37, 38] and D. Gilbarg [26]. For a general look to maximum

principles for second-order partial differential equations we refer to [28] and [39].

The following theorem generalizes the results of [17, 18] to cases in which ellipticity

constants and the solution are possibly unbounded, up to a subquadratic growth. It is

obtained assuming condition (SC1), which is defined in the next section. Such condition

is based in turn on the standard condition (SC0), which essentially means that F is a

proper, degenerate elliptic operator with Lipschitz-continuous dependence on the gradient;

see (6) , (14), (15) and (16). To obtain (SC1), it is needed in addition: the coercivity

with respect to matrix variations (strict ellipticity) along a bounded direction (11); the

Lipschitz-continuity with respect to matrix variations along the bounded directions (27).

Theorem 1.1. Let Ω be an unbounded domain of Rn = Rh×Rk such that Ω ⊂ Rh×Rk,

where Rh is an open bounded interval in Rh. Let F satisfy (SC1) with strict ellipticity

(11) with respect to a direction ν ∈ Rh × {0}k.

Let u+(x) = o(|x|α) as x → ∞, with α ∈ [0, 2]. Suppose that the following conditions

hold for the coefficients b, λ and Λ, involved in (14), (11) and (27):

(3)
b(x)

λ(x)
= O(1),

Λ(x)

λ(x)
= O(|x|2−α).

Then (MP) holds.
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This results fills a gap between the condition Λ(x) = O(|x|), assumed in [18] for the

validity of (MP), and the condition Λ(x) >> |x|2 of the counterexample to MP of [17,

Example 1.9], as discussed in the sequel, after the proof of Theorem 1.1.

We also remark that, in the case that the ellipticity constants λ(x), Λ(x) and the

first-order coefficients b(x) appearing in condition (SC1) are constant, then a Phragmén-

Lindelöf result holds in slabs, assuming a suitable exponential growth for u. See for

instance [17, 18].

Concerning the partial trace operators (1), the above maximum principle follows from

the uniformly elliptic case, if the partial sum contains λ1(X). We cannot hope instead

to have a weak maximum principle in domains unbounded in some directions for partial

trace operators like (1) when the partial sum does not contain λ1(X). See Section 3.

On the other hand, for operators like Pλσk ’s, we obtain an extended maximum principle

in bounded domains, where the subsolution is given except on a singular set. The result

below generalizes those ones of [1, 25] for isolated singularities. Here we use conditon

(SC2), which will be defined in the next section. It consists of condition (SC0) combined

with the non-totally degenerate ellipticity (10) and the Lipschitz-continuity (28) with

respect to non-negative matrix variations.

Theorem 1.2. Let Ω be a bounded domain of Rn. Let F satisfy (SC2) with supΩ Λ(x)/λ(x) <

∞. There exists α > 0, only depending on the parameters of condition (SC2), such that,

for all x0 ∈ Ω the following extended (MP) holds.

Suppose that u(x) = o(|x−x0|−α), as x→ x0, is a viscosity subsolution of the equation

F [u] = 0 in Ω\{x0}, and u ≤ 0 on ∂Ω. Then u ≤ 0 in Ω.

This is a basic tool in the study of removable singularities of the equation F [u] =

0, which goes back to [27, 40, 41] and has been diffusely investigated for instance in

[33, 35, 36, 30, 31, 1, 25]. Generally, a control on the growth of the solution near the

singular set is required. For unconditional result, we refer for instance to [8, 7, 34, 48].
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Indeed, a continuation ũ across x0 of a solution u of the equation F [u] = 0 in Ω\{x0}

can be obtained solving the Dirichlet problem

(4)

 F [ũ] = 0 in Ω

ũ = u on ∂Ω ,

when it is possible, so that x0 is a removable singularity.

In the case of the partial trace operators as (2) or the weighted version F [u] =

a1λ1(D2u) + · · · + anλn(D2u), existence results are established in [5, 22]. A proof of

the removability result is contained in [30, 1].

Here we prove a similar result for operators as (1) and more generally for the weighted

version F [u] = a1
∂2u
∂x21

+ · · · + an
∂2u
∂x2n

, when ai ≥ 0 for all i = 1, . . . , n and aj > 0 for some

j ∈ {1, . . . , n}.

This is obtained combining the extended (MP) of Theorem 1.2 for directional elliptic

operators (1) and the existence result for the Dirichlet problem (4) shown in Lemma 5.1.

The following removability result follows.

Theorem 1.3. Let Ω be a bounded domain of Rn, and x0 ∈ Ω. There exists α > 0 such

that the following removable singularity result holds.

Suppose that u(x) is a viscosity solution of the equation

(5) a1
∂2u

∂x2
1

+ · · ·+ an
∂2u

∂x2
n

= f(x) in Ω\{x0}

where the ai’s are non-negative coefficients such that a = maxi ai > 0 and f is continuous

and bounded in Ω.

There exists α > 0 such that, if u(x) = o(|x − x0|−α), then u can be continued to a

viscosity solution ũ of equation (5) in Ω. In particular, we can take α = n/a− 2.

This returns the classical removability result for the Laplace operator in dimension

n ≥ 3. In this case a1 = · · · = an = 1, an harmonic function u in the punctured space

Rn\{0} such that u(x) = o(1/|x|−(n−2)) as x → 0 can be continued to an harmonic

function in the whole space Rn.

The exponent α = n − 2 is therefore optimal, since the fundamental solution u(x) =

1/|x|−(n−2) has a singularity at x = 0 which cannot be removed.
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The paper is organized as follows: in Section 2 we introduce the different notions of

ellipticity and the viscosity solutions as well maximum principles; in Section 3 we prove

the maximum principle in unbounded domains of Theorem 1.1; in Section 4 we show the

extended maximum principle of Theorem 1.2; in Section 5 we prove an existence and

uniqueness result as well as Theorem 1.3 on removable isolated singularities.

2. Notations and preliminary results

We consider a fully nonlinear operator F : Ω × R × Rn × Sn → R of the variables

(x, t, ξ,X) ∈ Ω×R×Rn ×Sn. Here Ω is a domain (open connected set) of Rn and Sn is

the space of n× n real symmetric matrices.

The full nonlinearity consists in a possibly nonlinear dependence with respect to X,

which implies a nonlinear dependence on the higher derivatives of the corresponding

second-order differential operator

F [u] = F(x, u,Du,D2u).

We recall that Du and D2u stand for the gradient and the Hessian matrix of u, when

u ∈ C2(Ω), but partial differential equations F [u] = 0 will have a (weak) sense also for

u ∈ C(Ω), as it will be seen below.

We recall the definitions of degenerate and uniform ellipticity, introducing in Sn the

following partial order relationship: X ≤ Y if and only if Y −X is semidefinite positive.

Degenerate ellipticity. F is degenerate elliptic in Ω if it is non-decreasing in X:

(6) X ≤ Y ⇒ F(x, t, ξ,X) ≤ F(x, t, ξ, Y )

for all (x, t, ξ) ∈ Ω× R× Rn.

Uniform ellipticity. F is uniformly elliptic in Ω if there exist positive constants λ and

Λ ≥ λ (ellipticity constants) such that:

(7) X ≤ Y ⇒ λTr(Y −X) ≤ F(x, t, ξ, Y )−F(x, t, ξ,X) ≤ ΛTr(Y −X)

for all (x, t, ξ) ∈ Ω× R× Rn. We have denoted by Tr(X) the trace of X ∈ Sn.
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It is plain that the uniform ellipticity implies the degenerate ellipticity, but the converse

is not true. For instance, the trace operator Tr(X) is uniform elliptic with ellipticity

constants λ = 1 = Λ, but the partial trace operators PDσk or Pλσk are both non-uniformly

elliptic when σk = (i1, . . . , ik) with k < n.

In fact, let {ei}i=1,...,n the canonical basis of Rn: e1 = (1, . . . , 0),. . . , en = (0, . . . , 1).

For ξ, η ∈ Rn, we denote by ξ ⊗ η the n × n the matrix of entries (ξ ⊗ η)ij = ξiηj. Let

also I be the n× n identity matrix (I)ij = δij, the Kronecker symbol, such that δij = 1

if i = j and δij = 0 if i 6= j.

For n ≥ 2, the operator PD1(X) = X11 is degenerate elliptic, since X ≤ Y implies

X11 ≤ Y11. On the other hand, let X = e1⊗e1 and Y = I. Hence X ≤ Y . Then we have

X11 = 1 = Y11, so that PD1(Y )−PD1(X) = 0 < λ = λTr(Y −X) for all λ > 0. Therefore

PD1 is not uniformly elliptic.

We also recall the two Pucci extremal operators, for given ellipticity constants λ and

Λ, namely:

M+
λ,Λ(X) = Λ

n∑
i=1

λ+
i (X)− λ

n∑
i=1

λ−i (X)

and

M−
λ,Λ(X) = λ

n∑
i=1

λ+
i (X)− Λ

n∑
i=1

λ−i (X),

where λ+ = max(λ, 0) and λ− = −min(λ, 0). The maximality ofM+
λ,Λ and the minimality

of M−
λ,Λ derive from the following inequalities:

(8) M−
λ,Λ(Y −X) ≤ F(x, t, ξ, Y )−F(x, t, ξ,X) ≤M+

λ,Λ(Y −X).

This is equivalent to the uniform ellipticity of F . If in addition F(x, t, ξ, O) = 0, then

(8) implies

M−
λ,Λ(X) ≤ F(x, t, ξ,X) ≤M+

λ,Λ(X).

Note that M−
1,1(D2u) = ∆u = M+

1,1(D2u). We also list some useful properties of the

Pucci extremal operators:

M+
λ,λ(−X) = −M−

λ,λ(X);

M+
λ,λ(X + Y ) ≤M+

λ,λ(X) +M+
λ,λ(Y ).

(9)
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Here we will consider two notions of ellipticity which, even combined with (6), are both

weaker than the uniform ellipticity: the non-totally degenerate ellipticity, see [4], and the

directional ellipticity, see [17, 18]. In all cases, the operator F : Ω × R × Rn × Sn → R

will be assumed continuous throughout this paper.

Non-totally degenerate ellipticity. F is non-totally degenerate elliptic in Ω if and only

if F is degenerate elliptic and

(10) F(x, t, ξ,X + τI)−F(x, t, ξ,X) ≥ λ(x)τ, τ > 0,

for all (x, t, ξ,X) ∈ Ω×R+×Rn×Sn, where λ is a continuous function such that λ(x) > 0

in Ω.

Directional ellipticity. F is strictly elliptic in Ω with respect to the direction ν ∈ Sn−1 ≡

{ξ ∈ Rn : |ξ| = 1} if and only if F is degenerate elliptic and

(11) F(x, t, ξ,X + τ ν ⊗ ν)−F(x, t, ξ,X) ≥ λ(x)τ, τ > 0,

for all (x, t, ξ,X) ∈ Ω×R+×Rn×Sn, where λ is a continuous function such that λ(x) > 0

in Ω.

It is immediate to see that the uniform ellipticity implies the directional ellipticity. We

also remark that the directional ellipticity implies the non-totally degenerate ellipticity.

In fact, assuming (11) and observing that I = ν ⊗ ν + (I − ν ⊗ ν), we have:

F(x, t, ξ,X + τI)−F(x, t, ξ,X)

≥F(x, t, ξ,X + τ ν ⊗ ν)−F(x, t, ξ,X) ≥ λ(x)τ, τ > 0,

where in the first inequality we have used the degenerate ellipticity (6) and the positive

definiteness of the matrix (I − ν ⊗ ν).

As we will see in the sequel, the partial trace operators PDσk (X) = Xi1i1 + · · ·+Xikik ,

introduced at the beginning (1), correspond to the differential operators

(12) PDσk [u] =
∂2u

∂x2
i1

+ · · ·+ ∂2u

∂x2
ik

,

which are strictly elliptic with respect to the directions ei1 , . . . , eik , non-uniformly elliptic

if k < n directional ellipticity.
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On the other hand, the partial trace operators Pλσk (X) = λi1(X)+· · ·+λik(X), defined

in (2), correspond to the differential operators

(13) Pλσk [u] = λi1(D
2u) + · · ·+ λik(D

2u)

which are non-totally degenerate elliptic operators, less than directional elliptic if k < n.

In fact, for all ν ∈ Sn−1, with n ≥ 2, there exists a matrix X such that λn(X+ν⊗ν) =

1 = λn(X), so that λn cannot be strictly elliptic with respect to any direction: it is

sufficient to take X = µ⊗ µ, where µ ∈ Sn−1 is orthogonal to ν.

Concerning the first order terms, we will assume that F is Lipschitz continuous with

respect to ξ, precisely

(14) |F(x, t, η,X)−F(x, t, ξ,X)| ≤ b(x)|η − ξ|, ξ, η ∈ Rn,

for all (x, t,X) ∈ Ω × R × Sn, where b is a continuous function, bounded on bounded

domains, such that b(x) ≥ 0 in Ω.

With respect to zero-order terms, we will consider the monotonicity assumption

(15) F(x, s, ξ,X) ≤ F(x, t, ξ,X), s < t,

for all (x, ξ,X) ∈ Ω× Rn × Sn.

We are concerned with solutions u of the equation

F [u] ≡ F(x, u,Du,D2u) = f(x),

and f(x) will be assumed continuous in Ω, assuming that

(16) F(x, 0, 0, O) = 0.

There is no loss of generality assuming (16). In fact, condition (16) is in general satisfied

with the operator G(x, t, ξ,X) = F(x, t, ξ,X) − F(x, 0, 0, O) instead of F(x, t, ξ,X). So

we can apply the results based on (16) to the equation G[u] = g(x), where g(x) =

f(x)−F(x, 0, 0, O).

(SC0) We say that F satisfies the structural condition (SC0) if (6), (14), (15) and (16)

hold.
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If u ∈ C2(Ω), the equation for F [u] = f is intended in the classical sense:

F(x, u(x), Du(x), D2u(x)) = f(x) for all x ∈ Ω.

However, we can consider solutions which are only continuous, in the viscosity sense

defined here below.

Let u be an upper (resp. lower) semicontinuous function in Ω, for short u ∈ usc(Ω)

(resp. u ∈ lsc(Ω)) . We say that u is a viscosity subsolution (resp. supersolution) of

the equation F [u] = f(x) in Ω, or also a viscosity solution of the differential inequality

F [u] ≥ f(x) (resp. F [u] ≤ f(x)), if and only if:

for all x0 ∈ Ω and all C2 (test) functions ϕ(x) touching u from above at x0, namely

ϕ(x0) = u(x0) and ϕ(x) ≥ u(x) in a neighbourhood of x0, we have

(17) F (x0, ϕ(x0), Dϕ(x0), D2ϕ(x0)) ≥ f(x0) ,

resp. for all x0 ∈ Ω and all C2 (test) functions ϕ(x) touching u from below at x0, namely

ϕ(x0) = u(x0) and ϕ(x) ≤ u(x) in a neighbourhood of x0, we have

(18) F (x0, ϕ(x0), Dϕ(x0), D2ϕ(x0)) ≤ f(x0) .

A viscosity solution of the equation F [u] = f(x) is a function u ∈ C(Ω) which is a

viscosity subsolution and supersolution of the given equation.

We will use in the sequel the following property of viscosity solutions with respect to

the pointwise sup and inf operations. Let {uj} be a finite family of viscosity subsolutions

(resp. supersolutions) of the equation F [u] = f(x). Then v = supj uj (resp. infj uj) is

in turn a viscosity subsolution of the equation F [v] = −f− (resp. a supersolution of the

equation F [v] = f+). See [11].

For more properties of viscosity solutions we refer to [20], [11], [19], [32].

Suppose that F satisfies condition (SC0) in a bounded domain Ω. Assuming that F

uniformly elliptic, we have for u ∈usc(Ω) the following maximum principle:

(MP) F [u] ≥ 0 in Ω, u ≤ 0 on ∂Ω ⇒ u ≤ 0 on Ω.
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See for instance [9, 10, 45, 46], which have been established for more general domains,

satisfying the measure-geometric property introduced by Cabré [9], and are based on the

weak Harnack inequality, which is not available for directional elliptic operators as (1).

However, the full uniform ellipticity is not necessary: (MP) continues to hold if F is

strictly elliptic in at least a direction or F is non-totally degenerate elliptic and (14) holds

with sufficiently small first-order coefficient b(x), as it is shown by the result below. For

other conditions on the first-order term see [2, 23].

Theorem 2.1. Let Ω be a bounded domain of Rn, and F satisfy condition (SC0). Then

(MP) holds if in addition:

(i) F is strictly elliptic as in (11), with respect to some direction ν ∈ Sn−1, and

(19) inf
Ω
λ(x) > 0

or

(ii) F is non-totally degenerate elliptic as in (10) with

(20) inf
Ω

(λ(x)− b(x)|x− x0|) > 0

for some x0 ∈ Rn.

Proof. Suppose u ∈usc(Ω), F [u] ≥ 0 in Ω and u ≤ 0 on ∂Ω. To prove (MP) we have to

show that u ≤ 0 in Ω.

Strict subsolutions

Suppose in addition F [u] > 0 in Ω. Arguing by contradiction, suppose there exists a

positive maximum of u in Ω, say u = M > 0. Then the function ϕ ≡ M touches from

above the subsolution u, and therefore F(x, 0, 0, O) ≥ F(x,M, 0, O) > 0, contradicting

(16). Then u ≤ 0 in Ω, as we needed to prove.

All subsolutions

Next, we only assume the non-strict differential inequality F [u] ≥ 0 in Ω, so that

F [u+] ≥ 0 in Ω in the viscosity sense, since u+(x) = sup(u(x), 0) and F [0] = 0.
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Case (i)

We may assume that the direction ν in (11) is e1 = (1, 0, . . . , 0), and 0 ≤ x1 ≤ d. For

ε > 0 we consider the function v(x) := u+(x) − ε(eβd − eβx1), with β > 0 to be suitably

chosen.

Then v ≤ u+ in Ω, and by (15), (11), (14):

F [v] ≥ F(x, u+, Du+ + εβeβx1 , D2u+ + εβ2eβx1e1 ⊗ e1)

≥ εβ (βλ(x)− b(x)) eβx1
(21)

in the viscosity sense. Therefore, choosing β large enough, we get F [v] > 0 in Ω.

Moreover, since v(x) ≤ u+(x) = 0 on ∂Ω, the case of strict subsolutions implies that

v ≤ 0 in Ω, namely:

u+(x) ≤ v(x) + εeβd ≤ εeβd,

from which, letting ε→ 0+, we get u+ = 0, as we wanted to prove.

Case (ii)

In this case, let R > 0 be the radius of a ball BR(x0) centered at x0 such that Ω ⊂

BR(x0). For ε > 0 we define the function v(x) := u+(x)− 1
2
ε (R2 − |x− x0|2). As before

v ≤ u+, and by (15), (11), (14):

F [v] ≥ F(x, u+, Du+ + εC|x− x0|, D2u+ + εC I)

≥ εC (λ(x)− b(x)|x− x0|)
(22)

in the viscosity sense. Therefore, assuming (20), we get F [v] > 0 in Ω. Since v ≤ u+ ≤ 0

on ∂Ω, by the case of strict subsolutions, we deduce as in (i) that v ≤ 0 in Ω, namely

u+(x) ≤ v(x) +
1

2
εR2 ≤ 1

2
εR.

Also in this case, letting ε→ 0+ yields u+ = 0. This concludes the proof. �

Remark 2.1. Setting

(23) b = sup
x∈Ω

b(x), λ = inf
x∈Ω

λ(x),

condition (20) is satisfied assuming

(24) b d < λ.
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To see this, it is sufficient to take any x0 ∈ Ω in (20).

In [25] the authors showed the optimality of this condition, giving a counterexample

when Ω is a ball: if bd > λ, there exists a continuous viscosity subsolution u of the

equation λn(D2u) = 0 such that u = 0 on ∂Ω, but u has positive values somewhere in

Ω. �

The maximum principles of Theorem 2.1 can be generalized to obtain the following

above estimates.

Corollary 2.1. Let Ω be a bounded domain of Rn, and F satisfy condition (SC0). Sup-

pose that u ∈ usc(Ω) is a subsolution of the equation F [u] = f(x).

(i) If F is strictly elliptic (11), with respect to a direction ν ∈ Sn−1, and satisfies (19),

let

sup
x∈Ω

b(x)

λ(x)
< B <∞, sup

x∈Ω

f−(x)

λ(x)
= K <∞.

We have

(25) sup
Ω
u ≤ sup

∂Ω
u+ + CK,

where C is a positive constant depending on Bd and d > 0 is the thickness of any slab

Sh,k,ν = {x ∈ Rn : h ≤ 〈x, ν〉 ≤ k} ⊃ Ω.

(ii) If F is non-totally degenerate elliptic (10) and satisfies (20), let

sup
x∈Ω

f−(x)

λ(x)− b(x)|x− x0|
= Kb <∞.

We have

(26) sup
Ω
u ≤ sup

∂Ω
u+ +

1

2
KbR

2,

where R is the radius of any ball BR(x0) ⊃ Ω.

Proof. Recall that F [u] ≥ f(x) implies F [u+] ≥ −f−(x), and let K = supΩ f
−.

Case (i)

We suppose ν = e1 and Ω ⊂ S0,d,e1 . Let us consider the function v(x) = u+(x) −

sup∂Ω u
+ − CK

(
eβd − eβx1

)
.



MAXIMUM PRINCIPLES FOR VISCOSITY SOLUTIONS OF WEAKLY ELLIPTIC EQUATIONSPRINCIPI DI MASSIMO PER SOLUZIONI DI VISCOSITÀ DI EQUAZIONI DEBOLMENTE ELLITTICHE123

Choosing β = 2B and C ≥ 1/2B2, by direct computation we have:

F [v] ≥ F(x, u+, Du+ + CKβ eβx1 , D2u+ + Cβ2eβx1 I)

≥ F(x, u+, Du+, D2u+) + CKβ(−b(x) + β λ(x))

≥ −f−(x) + CKλ(x)β(−B + β)

≥ −f−(x) + 2B2Cf−(x) ≥ 0.

Since v(x) ≤ u+(x)−sup∂Ω u
+ = 0 on ∂Ω, Theorem 2.1 yields v ≤ 0 in Ω, and therefore

u+(x) ≤ sup
∂Ω

u+ + CK(e2Bd − 1),

from which (25).

Case (ii)

We consider the function v(x) = u+(x)− sup∂Ω u
+ − 1

2
Kb (R2 − |x− x0|2). Then

F [v] ≥ F(x, u+, Du+ +Kb|x− x0|, D2u+ +Kb I)

≥ F(x, u+, Du+, D2u+) +Kb (−b(x)|x− x0|+ λ(x))

≥ −f−(x) + f−(x) = 0.

Since v(x) ≤ u+(x)−sup∂Ω u
+ = 0 on ∂Ω, Theorem 2.1 yields v ≤ 0 in Ω, and therefore

u+(x) ≤ sup
∂Ω

u+ + 1
2
KbR

2,

from which (26). �

Note that no assumption has been made to control the variation of F appearing in (10)

or (11) from above, up to now.

In the case that Ω is unbounded in some direction, we need instead such a control with

respect to the unbounded directions.

To avoid inessential complications, suppose that Ω ⊂ Rk × Rk, where Rh is an open

bounded interval of Rh and h + k = n. In the case of directional elliptic operators with

respect to some direction ν ∈ Rh × {0}k, we will assume the following condition:

F (x, t, ξ,X +Q)− F (x, t, ξ,X) ≤Λ(x)λn(Q)

for all Q ≥ O s.t. 〈Qν, ν〉 = 0,
(27)
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for some positive continuous function Λ(x).

In order to deal with (MP) in unbounded domains, we need to strengthen condition

(SC0).

(SC1) We say that F satisfies the structural condition (SC1) if (11) and (27) hold, in

addition to (SC0).

Similar conditions can be used for the issue of removable singularities, which we con-

sider here in the case of non-totally degenerate elliptic operators. To this end we need to

assume the above condition on the variation of F for all possible non-negative increments

on X ∈ Sn, namely:

(28) F (x, t, ξ,X +Q)− F (x, t, ξ,X) ≤ Λ(x) Tr(Q) for all Q ≥ O.

In this case, we need a different condition strengthening (SC0).

(SC2) We say that F satisfies the structural condition (SC2) if (10), (20) and (28) hold,

in addition to (SC0).

3. Maximum principles in unbounded domains

When dealing with unbounded domains, we need in general assume an a-priori control

on the growth of the subsolutions at infinity, even in the uniformly elliptic case. Recall

for instance that the function u(x) = ex2 sinx1 is a smooth harmonic function in the

plane. Nevertheless, u is positive in the strip S0 = {0 < x1 < π}, even though u = 0 on

∂S = {x1 = 0} ∪ {x1 = π}.

A typical assumption is that u is bounded above, see [9], [10], [45], [15], [17], [18].

Considering Ω ⊂ Rh×Rk, where Rh is an open bounded interval in Rh, the coordinates

of a point of Ω will be splitted as x = (y, z) with y = (y1, . . . , yh) and z = (z1, . . . , zk).

We will assume that u+(x) = o(ψ(x)) in Ω as |x| → ∞ in a weak sense, namely

lim inf
|x|→∞
x∈Ω

u+(x)

ψ(x)
= 0,

where ψ is a smooth function in Ω, continuous up to the boundary, such that ψ(x) > 0

in Ω.
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According to the directional ellipticity (i) of Theorem 2.1, we can consider ψ(x) =

ψ(y, z) = ϕ(z) = φ(|z|), which depends only on z = (z1, . . . , zk) ∈ Rk.

Lemma 3.1. Let Ω be an unbounded domain of Rn such that Ω ⊂ Rh × Rk, where Rh

is an open bounded interval in Rh. Let F satisfy condition (SC1) with direction of strict

ellipticity ν ∈ Rh × {0}k, see (11).

Let φ : R+ → R be a positive C2 function such that

(29) φ′(t) ≥ 0, φ′′(t) ≤ ϕ′(t)

t
, .

(30) sup
x∈Ω

b(x)

λ(x)
<∞, sup

x∈Ω

(
b(x)

λ(x)
φ′(|z|) +

Λ(x)

λ(x)

φ′(|z|)
|z|

)
<∞,

where x = (y, z) = (y1, . . . , yh, z1, . . . , zk).

Then (MP) holds in Ω for subsolutions of the equation F [u] = 0 such that u+(x) =

o(φ(|z|)) as |z| → ∞ in the following weak sense:

(31) lim inf
|z|→∞
x∈Ω

sup
y∈Rh

u+(y, z)

φ(|z|)
= 0.

Proof. By assumption, easily passing to u+ = max(u, 0) in the viscosity setting, from

condition (16) we have F(x, u+, Du+, D2u+) ≥ 0 in Ω ⊂ Rh × Rk.

Let ψ(x) = ψ(y, z) = ϕ(z) = φ(|z|). By condition (31), we can take sequences of

numbers ε > 0 and Rε > 0 such that Rε → ∞ as ε → 0+ and u+(x) − εψ(x) ≤ 0 as

|z| ≥ Rε.

Correspondingly, we define the function vε(x) = u+(x)− εψ(x), noting that vε ≤ 0 for

|y| ≥ Rε. Then Sε = {x ∈ Ω : |y| < Rε} is an open bounded set such that

(32) vε ≤ 0 on ∂Sε.

On the other hand, by (15):

(33) F [vε] ≥ F (x, u+, Du+ − εDψ,D2u+ − εD2ψ).
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Next, we compute Dψ and D2ψ (for z 6= 0):

Dψ(x) =φ′(|z|) z

|z|

D2ψ(x) =

(
φ′′(|z|)− φ′(|z|)

|z|

)
z

|z|
⊗ z

|z|
+
φ′(|z|)
|z|

Iz ,

(34)

where

Iz =

 0 0

0 Ik


and Ik is the k × k identity matrix.

By assumption (29), we have D2ψ(x) ≤ φ′(|z|)
|z| Iz. Then, inserting in (33) and using (6),

(14), (27), we get in Sε:

F [vε] ≥F (x, u+, Du+ − εφ′(|z|) z
|z| , D

2u+ − εφ
′(|z|)
|z| Iz)

≥F (x, u+, Du+, D2u+)− ε
(
b(x)φ′(|z|) + kΛ(x) φ′(|z|)

|z|

)
≥ − ε

(
b(x)φ′(|z|) + kΛ(x) φ′(|z|)

|z|

)
.

(35)

From Corollary 2.1 we deduce:

vε(x) ≤ εC sup
x∈Ω

(
1 +

b(x)

λ(x)
φ′(|z|) +

Λ(x)

λ(x)
φ′(|z|)
|z|

)
.

It follows, for x ∈ Ω such that |y| < Rε:

(36) u+(x) ≤ εφ(x) + εC sup
x∈Ω

(
1 +

b(x)

λ(x)
φ′(|z|) +

Λ(x)

λ(x)
φ′(|z|)
|z|

)
.

Let us fix x = (y1, . . . , yh, z1, . . . , zk) ∈ Ω. Then |z| < Rε for sufficiently small ε > 0.

So, letting ε→ 0+ in (36), we get u+(x) = 0, as we needed to prove. �

Theorem 1.1 follows from this lemma by a suitable choice of the function φ.

Proof of Theorem 1.1. Let α ∈ [0, 2]. We choose a function φ : (0,∞) → R+ such

that, in addition to (29) satisfies, for some K ∈ R+:

(37) φ′(t) ≤ K(1 + t)α−1, t ≥ 0,

For instance, in the case α = 1, we can choose

(38) φ(t) =

 1− e−t2 if 0 ≤ t ≤ 1/
√

2
√

2 e−1/2t+ 1− 2e−1/2 if t > 1/
√

2 .
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Then, by the assumptions on b(x) and Λ(x), Lemma 3.1 yields the result. �

Consider for instance a viscosity subsolution u, in the strip Ω = (−1, 1) × R, of the

following fully nonlinear equation of Bellman type:

(39) sup
0≤t≤1

{
∂2u

∂x2
1

+ t|x|2−α∂
2u

∂x2
2

+ (1− t)
(
∂u

∂x1

+
∂u

∂x2

)}
= 0.

By (3) of Theorem 1.1, if u+(x) = o(|x|α) as |x| → ∞|, with 0 ≤ α ≤ 2, then u ≤ 0

on ∂Ω implies u ≤ 0 in Ω. In particular, if u is bounded above, then (MP) holds with

Λ(x) = O(|x|2−α) for arbitrarily small α > 0.

For the partial trace operators (1) we have different results. If the partial sum contains

λ1(X), a maximum principle in domains which are bounded in some direction follows

from the uniformly elliptic case, since

λi1(X) + · · ·+ λik(X) ≤ 1

n− 1

n−1∑
i=1

λi(X) + (k − 1)λn(X),

which is a uniformly elliptic operator with ellipticity constants λ = 1
n−1

and Λ = k − 1,

see [22]. Therefore λi1(D
2u) + · · ·+ λik(D

2u) ≥ 0 implies M+
λ,Λ(D2u) ≥ 0.

If instead the partial sum does not contain λ1(X), we cannot hope to have a similar

maximum principle, as the following counterexample shows. Let u(x) = sinx1 in Rn, then

u(x) is a subsolution, bounded above, of the equation

P+
k (D2u) := λn−k+1(D2u) + · · ·+ λn(D2u) = 0

in Ω = (0, π)×Rn−1, if k ≤ n− 1. Note also that u(x) = 0 on ∂Ω. However, u(x) > 0 in

Ω and the maximum principle fails to hold.

4. Extended maximum principles

Let Ω be an bounded open set, and x0 be a point of Ω. Suppose to have the subsolution

u ∈usc(Ω\{x0}) of an elliptic equation F [u] = 0 in Ω̇ := Ω\{x0}.

We call x0 a singular point or isolated singularity. We ask for conditions in order that

the solution u can be continued to a subsolution ũ in all Ω. In affirmative case, we call

x0 a removable singularity.
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In this case, the maximum principle would imply ũ(x) ≤ sup∂Ω ũ
+ = sup∂Ω u

+, and

therefore, since ũ(x) = u(x) for x 6= x0:

(40) u(x) ≤ sup
∂Ω

u+ for all x ∈ Ω̇

whereas instead ∂Ω̇ = ∂Ω ∪ {x0}.

We will refer to inequalities like (40) as to an extended maximum principle.

The above discussion shows that inequality (40), namely the extended (MP), is a

necessary condition for removable isolated singularities. A stronger extended (MP) holds

when inequality (40) is satisfied with a subset S ⊂ Ω instead of {x0}. It is a necessary

condition for non-isolated removable singularities.

For uniformly elliptic operators, singular sets with a suitable vanishing Riesz or loga-

rithmic capacity are removable as well as for the upper partial trace operators P+
k [u] :=

λn−k+1(D2u)+ · · ·+λn(D2u) singular sets with Riesz or logarithmic capacity Ck−2(S) = 0

are removable. See for instance [30, 1]. In the case of the Laplace operator (k = n) con-

dition Cn−2(S) = 0 completely characterizes removable singularities.

In this Section we see how the structure condition (SC2), including lower order terms,

leads to the extended (MP) of Theorem 1.2 for isolated singularities.

To do this we introduce the fundamental supersolutions ψ(x) = |x− x0|−α with α > 0,

in analogy with the fundamental solutions of the Laplace operator, which are smooth in

Rn\{x0} and tend to infinity as x → x0. See for instance [21, 3]. Let φ(t) = t−α with

α > 0, then ψ(x) = φ(|x− x0|).

Reasoning as for (34) we have

Dψ(x) =− α|x− x0|−α−1 x−x0
|x−x0|

D2ψ(x) =α(α + 2) |x− x0|−α−2 x− x0

|x− x0|
⊗ x− x0

|x− x0|
− α|x− x0|−α−2 I

(41)

Proof of Theorem 1.2. Let u ∈ usc(Ω\{x0}) be a viscosity subsolution of the equation

F [u] = 0 in Ω\{x0}, such that u ≤ 0 on ∂Ω, for a non-totally degenerate elliptic operator

satisfying condition (SC2).
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For ε > 0 we define the function uε(x) = u+(x)−εψ(x). Then, using (41) and condition

(SC2), and recalling that u+ is in turn a subsolution, we get:

F(x, uε, Duε, D
2uε) ≥ F(x, u+, Du+ − εDψ,D2u+ − εD2ψ)

≥ F(x, u+, Du+, D2u+)

+ εα (λ(x)− αΛ(x)− b(x)|x− x0|) |x− x0|−α−2

≥ εα (λ(x)− αΛ(x)− b(x)|x− x0|) |x− x0|−α−2

(42)

Since supΩ
Λ(x)
λ(x)

<∞, by condition (20) we can find α > 0 such that

(43) F(x, uε, Duε, D
2uε) ≥ 0.

Moreover, supposing u+(x) = o(|x − x0|−α) as x → x0, then uε(x) → −∞ as x → x0.

From (MP) it follows that uε(x) ≤ sup∂Ω u
+
ε . From this:

(44) u+(x) = uε(x) + ε|x− x0|−α ≤ sup
∂Ω

u+(x) + εd−α0 = εd−α0 ,

where d0 = dist(x0, ∂Ω).

Letting ε→ 0+, we get therefore u+ = 0, as we wanted to prove. �

We observe that Theorem 1.2 holds for directional elliptic operators (1).

5. Removable singularities for directional elliptic operators

The extended (MP) stated in the previous section can be used to get at once a

removable singularity result, at least in the case of smooth solutions, for operators (1)

and more generally for the operators

(45) F [u] = a1
∂2u

∂x2
1

+ · · ·+ an
∂2u

∂x2
n

,

with non-negative coefficients ai such that a = maxi ai > 0.

For the general case of viscosity solutions, we will establish below an extended compar-

ison principle. See the proof of Theorem 1.3.

A complimentary tool is the following lemma, which yields an existence and uniqueness

result for the Dirichlet problem.
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We pick from [5] the following geometric property for the bounded domain Ω: for every

r > 0 there exists δ > 0 such that, for every x ∈ Bδ(y) and direction v ∈ Rn,

(x+ R v) ∩Br(y) ∩ ∂Ω 6= ∅. (G1)

Lemma 5.1. Suppose ai ≥ 0, and there exists at least one j ∈ {1, . . . , n} such that

aj > 0. Let Ω be a bounded domain, endowed with the geometric condition (G1), where f

is continuous and bounded. Let also g be a continuous function on ∂Ω. Then the Dirichlet

problem

(46)

 a1
∂2ũ
∂x21

+ · · ·+ an
∂2ũ
∂x2n

= f(x) in Ω

ũ = g on ∂Ω

has a unique solution.

Proof. We use the Perron method. Therefore existence and uniqueness are proved once we

have proved the comparison principle and the existence of subsolutions and supersolutions

in Ω, which are equal to g on ∂Ω.

Comparison principle

Let F as in (45). Suppose F [u] ≥ f(x) and F [v] ≤ f(x) in Ω such that u ≤ v on ∂Ω.

We claim that u ≤ v in Ω.

(i) Strict subsolutions. As for (MP), we firstly make the stronger assumption F [u] ≥

f(x) + ε ≥ F [v] + ε in Ω.

By contradiction, suppose that u−v has a positive maximum in Ω. Following the proof

of [20, Theorem 3.3], we find two sequences of points xk, yk ∈ Ω and matrices Xk, Yk ∈ Sn

such that:

(47) F(Xk) ≥ f(xk) + ε, F(Yk) ≤ f(yk),

and

(48) lim
k→∞

k|xk − yk|2 = 0, Xk ≤ Yk.
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Then, using the degenerate ellipticity (6), we get

F(Xk) ≥ f(xk) + ε ≥ f(yk) + f(xk)− f(yk) + ε

≥F(Yk) + f(xk)− f(yk) + ε

≥F (Xk) + f(xk)− f(yk) + ε.

Letting k →∞, by the continuity of f this would yield the contradiction ε < 0.

(ii) General case. Given a subsolution u, namely F [u] ≥ f(x), we construct, for ε > 0,

the strict subsolution uε = u+ ε
2|a| |x− x0|2, where x0 ∈ Ω and |a| = a1 + · · ·+ an > 0: in

fact

F [uε] = a1
∂2uε
∂x2

1

+ · · ·+ an
∂2uε
∂x2

n

≥ F [u] + ε ≥ f(x) + ε.

By (i), uε(x)− v(x) ≤ sup∂Ω(uε − v) in Ω, and therefore

u(x)− v(x) ≤ uε(x)− v(x) ≤ sup
∂Ω

(
u(x) +

ε

2|a|
|x− x0|2 − v(x)

)
≤ ε

2|a|
d2.

Letting ε→ 0+, we obtain u ≤ v in Ω, as claimed.

Subsolutions and supersolutions

From [5], see also [22], in a domain Ω satisfying condition (G1), we can solve the

Dirichlet problem

(49)

 λj(D
2uj) = f(x) in Ω

uj = |a|g on ∂Ω

for each j = 1, . . . , n. Therefore, since

λ1(D2uj) ≤
∂2uj
∂x2

i

≤ λn(D2uj)

for all i, j = 1, . . . , n, it turns out that

a1

|a|
∂2u1

∂x2
1

+ · · ·+ an
|a|

∂2u1

∂x2
n

≥ λ1(D2u1) = f(x)

and
a1

|a|
∂2un
∂x2

1

+ · · ·+ an
|a|

∂2un
∂x2

n

≤ λn(D2un) = f(x).

Then u = u1/|a| and u = un/|a| are respectively a subsolution and a supersolution of

the equation considered in (46) satisfying the boundary condition u = g = u.
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By [20, Theorem 4.1], this concludes the proof. �

As discussed in the Introduction, the extended (MP) and the existence result lead to

the removability result.

Proof of Theorem 1.3. Let u be a continuous viscosity solution of the equation

(50) a1
∂2u

∂x2
1

+ · · ·+ an
∂2u

∂x2
n

= f(x) in Ω\{x0}.

Let B be a ball centered at x0 such that B ⊂ Ω. Using Lemma 5.1, we find a unique

viscosity solution U of the Dirichlet problem

(51)

 a1
∂2U
∂x21

+ · · ·+ an
∂2U
∂x2n

= f(x) in B

U = u on ∂B

(i) Case of smooth functions

If U or u are C2 functions, we proceed observing that by linearity the function v = U−u

is a viscosity solution of the following Dirichlet problem:

(52)

 a1
∂2v
∂x21

+ · · ·+ an
∂2v
∂x2n

= 0 in B\{x0}

v = 0 on ∂B.

Since the operator F(X) = a1X11 + · · ·+ anXnn satisfies in particular condition (SC2),

then the extended (MP) of Theorem 1.2 holds, for a suitable α > 0, yields U = u in

B\{x0}.

This is enough: the function U(x), defined in Ω by

(53) ũ(x) =

 u(x) if x 6= x0

U(x0) if x = x0

is a continuation of the solution u across x0 in Ω.

(ii) General case

Suppose now that U and u are continuous functions, respectively in B and B\{x0}.

Supposing x0 = 0, as we may, we proceed as in the proof of Lemma 5.1 (Comparison

principle), comparing in B\{0} the functions U(x) and

uε(x) = u(x)− εψ(x),

where ψ(x) = φ(|x|) and φ(t) = t−α, as in the proof of Theorem 1.2.
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Taking α > 0 eventually smaller, in order that α ≤ n/a− 2, , where a = maxi ai, from

(41) we get

a1
∂2ψ

∂x2
1

+ · · ·+ an
∂2ψ

∂x2
n

=
(
α(α + 2)

(
a1

x21
|x|2 + · · ·+ a1

x21
|x|2

)
− αn

)
|x|−α−2

≤α ((α + 2) a− n) |x|−α−2 ≤ 0.

(54)

Therefore

a1
∂2uε
∂x2

1

+ · · ·+ an
∂2uε
∂x2

n

= a1
∂2u

∂x2
1

+ · · ·+ an
∂2u

∂x2
n

− ε
(
a1
∂2ψ

∂x2
1

+ · · ·+ an
∂2ψ

∂x2
n

)
≥ 0,

so that uε is a viscosity subsolution of equation (50) in B\{0}.

Since u(x) = o(|x|−α) as x→ 0, then uε(x)→ −∞ as x→ 0.

Hence, considering that U is a supersolution and applying the comparison principle as

in the proof of Lemma 5.1, we obtain in B\{0}:

u(x) =uε(x) + εψ(x) ≤ U(x) + sup
∂B

(u(x)− εψ(x)− U(x)) + εψ(x)

≤U(x) + εψ(x)

Letting ε→ 0+, we get u(x) ≤ U(x) in B\{0}.

Using alternatively U(x) as a subsolution and uε(x) = u(x) + ε|x|α as a supersolution,

we also get the reverse inequality U(x) ≤ u(x) in B\{0}. So we have u(x) = ũ(x) in

B\{0}. Then U is the continuous extension of u across x = 0, and we conclude as in Case

(i). �
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1287, Kyoto University, Kyoto (2002).

[36] Y. Y. Li. Conformally invariant fully nonlinear elliptic equations and isolated singularities. J. Funct.

Anal. 233 (2006) 380-425.

[37] B. Pini. Sul problema di Dirichlet per le equazioni a derivate parziali del secondo ordine di tipo

ellittico. Rend. Acc. Lincei 11 (1951) 325-333.



136 ANTONIO VITOLO

[38] B. Pini. Sul problema di Dirichlet per le equazioni lineari del secondo ordine di tipo ellittico nei

domini non limitati. Rend. Acc. Sc. Fis. Mat. Napoli 19 (1952) 157-170.

[39] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-

Verlag, New York (1984).

[40] J. Serrin. Removable singularities of solutions of elliptic equations. Arch. Rational Mech. Anal. 17

(1964) 67-78.

[41] J. Serrin. Removable singularities of solutions of elliptic equations. II. Arch. Rational Mech. Anal.

20 (1965) 163-169.

[42] J.-P. Sha. p-convex riemannian manifolds. Invent. Math. 83 (1986) 437-447.

[43] J.-P. Sha. Handlebodies and p-convexity. J. Diff. Geom. 25 (1987) 353-361.

[44] K. Takimoto. Isolated singularities for some types of curvature equations. J. Differ. Equations 197

(2004) 275-292.

[45] A. Vitolo. On the maximum principle for complete second-order elliptic operators in general do-

mains. J. Differential Equations 194 (2003) 166-184.
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- 84084 Fisciano (SA), Italy,, and, Istituto Nazionale di Alta Matematica, INDAM -

GNAMPA, Italy.

E-mail address: vitolo@unisa.it


