
THE NODAL SET OF SOLUTIONS TO ANOMALOUS EQUATIONS
L’INSIEME NODALE DI SOLUZIONI DI EQUAZIONI DEGENERI

GIORGIO TORTONE

Abstract. This note focuses on the geometric-theoretic analysis of the nodal set of

solutions to specific degenerate or singular equations.

As they belong to the Muckenhoupt class A2, these operators appear in the seminal

works of Fabes, Kenig, Jerison and Serapioni [FKS82, FKJ83, FJK82]. In particular,

they have recently attracted a lot of attention in the last decade due to their link to the

local realization of the fractional Laplacian. The goal is to get a glimpse of the complete

theory of the nodal set of solutions of such equations in the spirit of the seminal works

of Hardt, Simon, Han and Lin [HS89, Han94, Lin91].

Sunto. Queste note si concentrano sull’analisi geometrica dell’insieme nodale di soluzioni

di specifiche equazioni degeneri o singolari.

Questa famiglia di operatori appartiene alla classe di Muckenhoupt A2, ampiamente stu-

diata nei lavori pionieristici di Fabes, Kenig, Jerison e Serapioni [FKS82, FKJ83, FJK82].

In particolare, tali operatori hanno ottenuto maggior attenzione negli ultimi decenni data

il loro legame con la localizzazione del Laplaciano frazionario. L’obbiettivo è di rias-

sumere i punti importanti della teoria degli insiemi nodali delle soluzioni di tali equazioni,

nello spirito dei lavori influenti di Hardt, Simon, Han e Lin [HS89, Han94, Lin91].
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1. Introduction

In the last decades the study of the structure of the nodal set of solutions of el-

liptic equations was the center of the attention of the scientific community (see e.g.
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[DF88, Han94, HHL98, Lin91]), with a special focus on the measure theoretical features

of its singular part, also in connection with the validity of a strong unique continuation

principle, in order to ensure the existence of a finite vanishing order, as pointed out in

[GL86, GL87, Lin91]. Recently, major progress has been done on the study of nodal sets

of eigenfunctions (or critical sets of harmonic functions) by Logunov and Malinnikova

[Log18b, Log18a, LM16] in connection with conjectures by Yau and Nadirashvili.

This is a note based on the work [STT18], written in collaboration with Y. Sire and

S. Terracini. The aim is to give a complete overview of the structure of the nodal set in

Rn+1 of solutions of a class of degenerate-singular equations which has recently become

very popular in connection with the study of fractional powers of the Laplacian, and

firstly studied in the pioneering works [FKS82, FKJ83, FJK82]. Given a ∈ (−1, 1) and

X = (x, y) ∈ Rn
x × Ry we consider a class of operators including

La = div(|y|a∇),

and their perturbations (here we denote by div and ∇ respectively the divergence and the

gradient operator in Rn+1). Our main purpose is to fully understand the local behaviour

of La-harmonic functions near their nodal set and to develop a geometric analysis of its

structure and regularity, in order to comprehend how the degenerate or singular character

of the coefficients can affect the local picture of the nodal set itself. Thus, we introduce

the notion of characteristic manifold Σ associated with the operator La, as the set of

points where the coefficient either vanishes or blows up, and we study the properties of

the nodal set Γ(u) of solutions to equation

−Lau = 0 in B1 ⊂ Rn+1.

In particular, since the operator La is locally uniformly elliptic on Rn+1 \ Σ, we re-

strict our attention on the structure of the nodal set neighbouring the characteristic

manifold Σ, trying to understand the structural difference between the whole nodal set

Γ(u) = {x ∈ B1, u(x) = 0} and its restriction on Σ.
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As a further motivation, this analysis will be the starting point of the study of competition-

diffusion systems of populations under an anomalous diffusion. More precisely, we can

imagine that the characteristic manifold Σ is playing a major role in the diffusion phe-

nomenon by penalizing or encouraging the diffusion across Σ, according with the value of

a ∈ (−1, 1). More precisely the diffusion is

a > 0 a < 0

encouraged near Σ penalized near Σ

Our intention is the study of nonlinear competition-diffusion systems of k components

where the rules for the diffusion are influenced by the presence of a characteristic manifold

− |y|−a div(|y|a∇ui) = fi,β(ui)− βui
∑
j 6=i

aiju
2
j , i = 1, · · · , k.

Inspired by [TVZ16, TVZ14, CL08, CTV05, NTTV10], in the case of strong competition,

the limiting segregated configurations will satisfy a refection law which represents the only

interaction between the different densities through the common free boundary. Thanks

to this reflection property, the free boundary will be locally described as the nodal set of

La-harmonic function.

As already mentioned, our operators belong to the class introduced in the 80’s by Fabes,

Jerison, Kenig and Serapioni in [FKS82, FKJ83, FJK82], where they established Hölder

continuity of solutions within a general class of degenerate-singular elliptic operators L =

div(A(X)∇·) whose coefficient A(X) = (aij(X)) are defined starting from a symmetric

matrix valued function such that

λω(X) |ξ|2 ≤ (A(X)ξ, ξ) ≤ Λω(X) |ξ|2 , for some λ,Λ > 0,

where the weight ω may either vanish, or be infinite, or both. In particular, the prototypes

of weights considered in their analysis belong to the Muckenhoupt A2-class, i.e. weights

such that

sup
B⊂Rn+1

(
1

|B|

∫
B

ω(X)dX

)(
1

|B|

∫
B

ω−1(X)dX

)
<∞.

Our case corresponds to the choice ω(X) = |y|a, which is Muckenhoupt whenever

a ∈ (−1, 1). Note however that this class of A2−weights is not the optimal one to have



THE NODAL SET OF SOLUTIONS TO DEGENERATE EQUATIONS 101

Hölder regularity as noticed in [FKS82]. However, for our purposes it provides a good

model for applications.

Our approach is based upon the validity of Almgren and Weiss type monotonicity

formulæ, the existence and uniqueness of non trivial tangent maps at every point of

the nodal set, and on a complete classification of all possible homogenous configurations

appearing in the blow-up limit. Nevertheless, the starting point of our analysis relies

on the decomposition of La-harmonic functions with respect to the orthogonal direction

to the characteristic manifold Σ. Indeed, denoting by H1,β(B1) the Sobolev space with

respect to the measure |y|β dy dx, we have (see also [GZ03, CG11])

Proposition 1.1. Given a ∈ (−1, 1) and u an La-harmonic function in B1, there exist a

unique couple of functions uae ∈ H1,a(B1), u2−a
e ∈ H1,2−a(B1) symmetric with respect to Σ

respectively La and L2−a harmonic in B1 and locally smooth, such that

u(X) = uae(X) + u2−a
e (X)y |y|−a in B1.

The previous proposition is deeply base on the results in [STV19], where the authors

studied the regularity of solutions to degenerate or singular problem by introducing a

method based upon blow-up and appropriate Liouville type theorems.

With this decomposition in mind, we can reduce the classification of the possible blow-

up limits to the symmetric ones and eventually recover all the possible cases.

When one deal with the analysis of nodal sets of solutions of PDEs or free boundary

problems, a key point is the possibility of performing blow-up analysis, which allow to

better understand local behaviour of solutions near the geometric boundary. Indeed,

this possibility is given by the validity of some monotonicity formulae, main tool of our

analysis. More precisely, fixed X0 ∈ Γ(u)∩Σ and r ∈ (0, R), where R > 0 will be defined

later, consider

E(X0, u, r) =
1

rn+a−1

∫
Br(X0)

|y|a |∇u|2 dX, H(X0, u, r) =
1

rn+a

∫
∂Br(X0)

|y|a u2dσ
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and the Almgren quotient

(1) N(X0, u, r) =
E(X0, u, r)

H(X0, u, r)
=

r

∫
Br(X0)

|y|a |∇u|2 dX∫
∂Br(X0)

|y|a u2dσ
.

The following is the monotonicity result related to the Almgren quotient, which allows to

define the vanishing order of a solution as the limit N(X0, u, 0
+) = limr→0+ N(X0, u, r).

Proposition 1.2 ([CS07]). Let a ∈ (−1, 1) and u be a La-harmonic function on B1. Then,

for every X0 ∈ B1∩Σ we have that the map r 7→ N(X0, u, r) is absolutely continuous and

monotone nondecreasing on (0, 1− |X0|).

Hence, there always exists finite the limit

N(X0, u, 0
+) = lim

r→0+
N(X0, u, r) = inf

r>0
N(X0, u, r).

to which we will refer as the Almgren frequency.

Motivated by Proposition 1.1, we classify the possible vanishing order of the solutions

paying attention to the different behaviour of the solution across the characteristic man-

ifold.

Corollary 1.1. Let u be La-harmonic on B1, then for every X0 ∈ Γ(u) ∩ Σ we have

(2) N(X0, u, 0
+) ≥ min{1, 1− a}.

More precisely

• if u is symmetric with respect to Σ, we have N(X0, u, 0
+) ∈ 1 + N,

• if u is antisymmetric with respect to Σ we have N(X0, u, 0
+) ∈ 1− a+ N.

Thus, for k ≥ min{1, 1− a} we define

Γk(u) = {X0 ∈ Γ(u) : N(X0, u, 0
+) = k}.

and we prove the validity of the following local expansion near the nodal set.
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Theorem 1.1. For every X0 ∈ Γk(u) ∩ Σ there exists a unique tangent map ϕX0 such

that

(3) u(x, y) = ϕX0(x− x0, y) + o(|(x− x0, y)|)k.

Thus, the map X0 7→ ϕX0 is continuous.

The proof follows a standard approach, indeed we proved compactness of the blow-up

sequence and uniqueness and non-degeneracy of the blow-up limit by using the following

monotonicity type formulas:

• k-Weiss type monotonicity formula (see [STT18, Proposition 5.2.] for the proof of

the monotonicity result)

r 7→ Wk(X0, u, r) =
H(X0, u, r)

r2k
(N(X0, u, r)− k) ;

• Monneau type monotonicity formula (see [STT18, Proposition 5.3.] for the proof

of the monotonicity)

r 7→ H(X0, u− ϕX0 , r)

r2k
=

1

rn+a+2k

∫
∂Br(X0)

|y|a
(
u− ϕX0

)2
dσ,

with ϕX0 ∈ H
1,a
loc (Rn+1) a k-homogeneous La-harmonic polynomial.

Equivalently, we can define as tangent map the unique nonzero homogeneous map ϕX0 ∈

H1,a
loc (Rn+1) such that

uX0,r(X) =
u(X0 + rX)

rk
−→ ϕX0(X),

with k the vanishing order of u at X0. It is straightforward to notice that the main

weakness of the concept of tangent map, in this setting, is that it takes care either of the

symmetric part of u or of the even one since they do not share the same optimal regularity

and the same possible vanishing orders. More precisely, for every X0 ∈ Γk(u)

uX0,r(X) =
ue(X0 + rX)

rk
+
uo(X0 + rX)

rk

=
uae(X0 + rX)

rk
+
u2−a
e (X0 + rX)

rk−1+a
y |y|−a ,

where both uae and u2−a
e are symmetric with respect to Σ. Then, by the classification of

the vanishing orders we deduce that fixed k > 0, just one of the two terms in the previous
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equality survives as r → 0+.

It is worthwhile introducing a new notion of tangent field ΦX0 of u at a nodal point, which

takes care of the different behaviour of both the symmetric and antisymmetric part of an

La-harmonic function, which will be of crucial use in our results.

Definition 1.1. Let a ∈ (−1, 1), u be an La-harmonic function in B1 and X0 ∈ Γk(u)∩Σ,

for some k ≥ min{1, 1− a}. We define as tangent field of u at X0 the unique nontrivial

vector field ΦX0 ∈ (H1,a
loc (Rn+1))2 such that

ΦX0 = (ϕX0
e , ϕX0

o ),

where ϕX0
e and ϕX0

o are respectively the tangent map of the symmetric part ue of u and of

the antisymmetric one uo.

First, the notion of the tangent field allows us to describe the topology of the nodal

set by proving a vectorial counterpart of the classic result of upper semi-continuity of the

vanishing order. In order to define properly the relevant subsets, we define

∂ayu =

|y|
a ∂yu if X 6∈ Σ

limy→0 |y|a ∂yu(x, y) if X ∈ Σ
.

This quantity, as observed already in previous works, is the nontrivial one to be considered

as far as the derivative in y is concerned.

In the light of this observation, it is natural to define the regular part R(u) and the

singular part S(u) of the nodal set as follows:

R(u) =

X ∈ Γ(u)

∣∣∣∣∣∣ N(X0, u, 0
+) = 1 if X0 6∈ Σ

N(X0, ue, 0
+) = 1 or N(X0, u0, 0

+) = 1− a if X0 ∈ Σ


=
{
X ∈ Γ(u)

∣∣∣|∇xu(X)|2 +
∣∣∂ayu(X)

∣∣2 6= 0
}

S(u) =

X ∈ Γ(u)

∣∣∣∣∣∣ N(X0, u, 0
+) ≥ 2 if X0 6∈ Σ

N(X0, ue, 0
+) ≥ 2 and N(X0, u0, 0

+) ≥ 2− a if X0 ∈ Σ

 ,

=
{
X ∈ Γ(u)

∣∣∣|∇xu(X)|2 +
∣∣∂ayu(X)

∣∣2 = 0
}
.
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The previous sets are natural generalisation of their counterpart for the case of uniformly

elliptic operator. The main difficulty in the degenerate case is to understand how the

vanishing order and the generalised gradient |∇xu(X)|2 +
∣∣∂ayu(X)

∣∣2 change across the

characteristic manifold. This feature is fundamental in order to draw a complete picture

of the topology of the nodal set in the whole Rn+1.

Indeed, we prove a quasi upper semi-continuity of the Almgren frequency formula: given

(Xi)i ∈ Γk(u) \ Σ with k ∈ 1 + N such that Xi → X0 ∈ Γ(u) ∩ Σ, then

N(Xi, u, 0
+) ≤

N(X0, ue, 0
+),

N(X0, uo, 0
+) + a.

This result deeply used the existence and uniqueness of the blow-up limit in Rn+1 \Σ and

Σ and the smoothness of symmetric La-harmonic function.

The next step is to develop a blow-up analysis in order to fully understand the structure

of Γ(u) in Rn+1 and its restriction on Σ. The following is a summary of our main result

describing the stratified structure of both the regular and singular parts of the nodal set.

Theorem 1.2. Let a ∈ (−1, 1), a 6= 0 and u be an La-harmonic function in B1. Then the

regular set R(u) is locally a Ck,r hypersurface on Rn+1 in the variable (x, y |y|−a) with

k =

⌊
2

1− a

⌋
and r =

2

1− a
−
⌊

2

1− a

⌋
.

On the other hand, there holds

S(u) ∩ Σ = S∗(u) ∪ Sa(u)

where S∗(u) is contained in a countable union of (n − 2)-dimensional C1 manifolds and

Sa(u) is contained in a countable union of (n− 1)-dimensional C1 manifolds. Moreover

S∗(u) =
n−2⋃
j=0

S∗j (u) and Sa(u) =
n−1⋃
j=0

Saj (u),

where both S∗j (u) and Saj (u) are contained in a countable union of j-dimensional C1

manifolds.
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Σ

x+ y |y|−a

a > 0

Σ

x+ y |y|−a

a < 0

Σ

x+ z

Figure 1. The change of variable allows to regularize the problem in the

y-direction and it emphasizes the role of the vectorial tangent map.

The proof is deeply based on a suitable change of variable Φ: Rn+1 → Rn+1 such that

Φ: (x, z) 7→
(
x, (1− a)z |z|

a
1−a

)
,

Φ−1 : (x, y) 7→
(
x,

y |y|−a

(1− a)1−a

)
,

with Jacobian |JΦ−1(x, y)| = (1 − a)a |y|−a and Φ(X0) = X0, for every X0 ∈ Σ. Given

ũ = u · Φ, we get

|∇xu(X0)|2 +
∣∣∂ayu(X0)

∣∣2 6= 0←→ |∇xũ(X0)|2 + |∂zũ(X0)|2 6= 0,

which allows to translate in our setting the classic Implicit function theorem.

Finally, we can provide applications of our results in the context of nonlocal elliptic

equations by using the local realisation of fractional operator. Inspired by [CS07], we

exploit the local realisation of the fractional Laplacian, defined by

(−∆)su(x) = C(n, s) P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s dy ,

for s ∈ (0, 1) and

C(n, s) =
22ssΓ(n

2
+ s)

πn/2Γ(1− s)
∈
(

0, 4Γ
(n

2
+ 1
)]

,

as the Dirichlet-to-Neumann map for a variable v depending on one more space dimension.

More precisely, the extended solution v is defined asdiv(ya∇v) = 0 in Rn+1
+ ,

v(x, 0) = u(x) in Σ ,
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with a = 1− 2s ∈ (−1, 1). Such an extension exists unique and is given by the formula

v(x, y) = γ(n, s)

∫
Rn

y2su(x)

(|x− η|2 + y2)n/2+s
dη where γ(n, s)−1 =:

∫
Rn

1

(|η|2 + 1)n/2+s
dη ,

where the nonlocal operator (−∆)s translates into the Dirichlet-to-Neumann opeartor

type

(−∆)s : Hs(Rn)→ H−s(Rn), u 7−→ −C(n, s)

γ(n, s)
lim
y→0+

y1−2s∂yv(x, y).

More generally, thanks to the generalisation in [CG11, ST10], we can consider the case of

fractional powers of divergence form operators L with Lipschitz leading coefficient, in order

to study the structure and the regularity of the nodal set of (−L)s-harmonic functions, for

s ∈ (0, 1). More precisely, we combine the extension technique with a geometric reduction

introduced in [AKS62] and exploited in the seminal papers [GL86, GL87]. This will allow

us to extend our analysis to:

1. fractional powers (−L)s of divergence form operators with Lipschitz leading coef-

ficients, i.e.

Lu = div (A(x)∇u) =
∂

∂xi

(
aij(x)

∂

∂xj
u

)
;

2. fractional powers (−∆M)s of the Laplace-Beltrami operator on a Riemannian man-

ifold M with Lipschitz metric;

3. given V ∈ W 1,q(B1), for some q ≥ n/2s, our analysis holds true for nontrivial

solutions of the equation

(−∆)su = V (x)u in B1.

Our techniques are quite robust and, we believe, can apply to a wider class of operators

on manifolds like the conformally covariant ones of fractional order formulated on con-

formally compact Einstein manifolds and asymptotically hyperbolic manifold (see [CG11]

for more details in this direction).

Our results show some genuinely nonlocal features in the Taylor expansion of (−L)s-

harmonic functions near their zero set and their deep impact on the structure of the nodal

set itself. We prove that the first term of the Taylor expansion of an (−L)s-harmonic
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function is either an homogeneous harmonic polynomial or any possible homogeneous

polynomial. In particular, this implies

Theorem 1.3. Given L, a divergence form operator with Lipschitz leading coefficients,

and s ∈ (0, 1), let u be (−L)s-harmonic in B1. Then there holds

S(u) = S∗(u) ∪ Ss(u)

where S∗(u) is contained in a countable union of (n − 2)-dimensional C1 manifolds and

Ss(u) is contained in a countable union of (n− 1)-dimensional C1 manifolds. Moreover

S∗(u) =
n−2⋃
j=0

S∗j (u) and Ss(u) =
n−1⋃
j=0

Ssj (u),

where both S∗j (u) and Ssj (u) are contained in a countable union of j-dimensional C1 man-

ifolds.

We underline that the result on the existence of (n − 1)-dimensional singular set is

optimal in the sense that for any vanishing order k ≥ 2 there exists an s-harmonic

function in B1 which vanishes of order k and such that Γ(u) = Ssn−1(u).

x

y

−1 1

(−∆)su = 0 in (−1, 1)
{
u = g in R \ (−1, 1)

g(x) =
2 + xs(s− 2)

(s− 2)x2 (x2 − 1)s

Figure 2. Explicit example of s-harmonic function in (−1, 1) ⊂ R with

Dirichlet condition on R\(−1, 1) which vanishes at the origin with vanishing

order O(u, 0) = 2.

Finally, we are able to state and prove in our context, the nonlocal counterpart of a

conjecture proposed by Lin in [Lin91]. Following his strategy, we give an explicit estimate
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on the (n− 1)-Hausdorff measure of the nodal set Γ(u) of s-harmonic functions in terms

of the Almgren frequency previously introduced. We have

Theorem 1.4. Given s ∈ (0, 1), let u be an s-harmonic function in B1 and 0 ∈ Γ(u).

Then

Hn−1
(

Γ(u) ∩B 1
2

)
≤ C(n, s)N,

where v is the La-harmonic extension of u in B+
1 and N = N(0, v, 1) is the frequency

defined by

N =

∫
B+

1

|y|a |∇v|2 dX∫
∂B+

1

|y|a v2dσ
.

Recently, in [BET17] the authors studied the geometry of sets that admit arbitrarily

good local approximations by zero sets of harmonic polynomials. In the light of the

previous Theorems, it would be interesting to adapt their strategies to our degenerate-

singular framework.
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