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Abstract. We deal with non negative functions which are s-harmonic on a given cone of

the n-dimensional Euclidean space with vertex at zero, vanishing on the complementary.

We consider the case when the parameter s approaches 1, wondering whether solutions of

the problem do converge to harmonic functions in the same cone or not. Surprisingly, the

answer will depend on the opening of the cone through an auxiliary eigenvalue problem

on the upper half sphere. These conic functions are involved in the study of the nodal

regions in the case of optimal partitions and other free boundary problems and play a

crucial role in the extension of the Alt-Caffarelli-Friedman monotonicity formula to the

case of fractional diffusions.

Sunto. Ci occupiamo di funzioni non negative che sono s-armoniche su un dato cono

dello spazio euclideo n-dimensionale con vertice in zero, e che si annullano sul comple-

mentare. Consideriamo il caso in cui il parametro s converge a 1, chiedendoci se le

soluzioni del problema convergano o meno a funzioni armoniche nello stesso cono. Sor-

prendentemente, la risposta dipenderá dall’apertura del cono attraverso un problema

agli autovalori ausiliario sulla semisfera superiore. Queste funzioni coniche si incontrano

nello studio delle regioni nodali nel caso di partizioni ottimali e altri problemi di fron-

tiera libera e svolgono un ruolo cruciale nell’estensione della formula di monotonia di

Alt-Caffarelli-Friedman al caso di diffusioni frazionarie.
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1. Introduction

This is a note based on the work [22], written in collaboration with S. Terracini and

G. Tortone. The aim is to give an introduction to the problem, trying to explain the

reasons behind this study and the interest of the results obtained. Any further detail can

be found in [22].

Let n ≥ 2 and let C be an open cone in Rn with vertex at 0; for a given s ∈ (0, 1),

we consider the problem of the classification of nontrivial functions which are s-harmonic

inside the cone and vanish identically outside, that is:

(1)


(−∆)sus = 0 in C,

us ≥ 0 in Rn

us ≡ 0 in Rn \ C.

Here we define the fractional Laplacian

(−∆)su(x) = C(n, s) P.V.

∫
Rn

u(x)− u(η)

|x− η|n+2s dη ,

where u is a sufficiently smooth function and

(2) C(n, s) =
22ssΓ(n

2
+ s)

πn/2Γ(1− s)
> 0,

where

Γ(x) =

∫ ∞
0

tx−1e−tdt.

The principal value is taken at η = x: hence, though u needs not to decay at infinity, it

has to keep an algebraic growth with a power strictly smaller than 2s in order to make

the above expression meaningful. We consider the following definition of distributional

solutions to (1) (see [6])

Definition 1.1. Let s ∈ (0, 1), n ≥ 2 and C be an open cone in Rn with vertex at 0. We

say that the function us is solution to (1) if belongs to Ls; that is,∫
Rn

|us(x)|
(1 + |x|)n+2s

< +∞,
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it is continuous in C, and it is s-harmonic in C in the sense of distributions; that is, for

any φ ∈ C∞c (C) ∫
Rn
us(−∆)sφ = 0.

By Theorem 3.2 in [4], it is known that there exists a homogeneous, nonnegative and

nontrivial solution to (1) of the form

us(x) = |x|γsus
(
x

|x|

)
,

where γs := γs(C) is a definite homogeneity degree (characteristic exponent), which de-

pends on the cone. Moreover, such a solution is continuous in Rn and unique, up to

multiplicative constants. We can normalize it in such a way that ‖us‖L∞(Sn−1) = 1. We

consider the case when s approaches 1, wondering whether solutions of the problem do

converge to a harmonic function in the same cone and, in case, which are the suitable

spaces for convergence.

Such conic s-harmonic functions appear as limiting blow-up profiles and play a major

role in many free boundary problems with fractional diffusions and in the study of the

geometry of nodal sets, also in the case of partition problems (see, e.g. [1, 5, 11, 14, 16]).

Moreover, as we shall see later, they are strongly involved with the possible extensions

of the Alt-Caffarelli-Friedman monotonicity formula to the case of fractional diffusion.

The study of their properties and, ultimately, their classification is therefore a major

achievement in this setting. The problem of homogeneous s-harmonic functions on cones

has been deeply studied in [4, 6, 7, 17]. The present note mainly focuses on the limiting

behaviour as s↗ 1.

Our problem (1) can be linked to a specific spectral problem of local nature in the

upper half sphere; indeed let us look at the extension technique popularized by Caffarelli

and Silvestre (see [10]), characterizing the fractional Laplacian in Rn as the Dirichlet-to-

Neumann map for a function v depending on one more space dimension and satisfying:

(3)

Lsv = div(y1−2s∇v) = 0 in Rn+1
+ ,

v(x, 0) = u(x) on Rn .
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Such an extension exists unique (for a suitable class of functions u) in the sense of con-

volution with the Poisson kernel of the half space and it is given by the formula:

v(x, y) = d(n, s)

∫
Rn

y2su(η)

(|x− η|2 + y2)n/2+s
dη where d(n, s)−1 :=

∫
Rn

1

(|η|2 + 1)n/2+s
dη .

Then, the nonlocal original operator translates into a boundary derivative operator of

Neumann type:

−C(n, s)

d(n, s)
lim
y→0

y1−2s∂yv(x, y) = (−∆)su(x).

Now, let us consider an open region ω ⊆ Sn−1 = ∂Sn+, with Sn+ = Sn∩{y > 0}, and define

the eigenvalue

λs1(ω) = inf


∫
Sn+

y1−2s|∇Snw|2dσ∫
Sn+

y1−2sw2dσ
: w ∈ H1(Sn+; y1−2sdσ) \ {0} and w ≡ 0 in Sn−1 \ ω

 .

Next, define the characteristic exponent of the cone Cω spanned by ω as

(4) γs(Cω) = γs(λ
s
1(ω)) ,

where the function γs(t) is defined by

γs(t) :=

√(
n− 2s

2

)2

+ t− n− 2s

2
.

Remark 1.1. There is a remarkable link between the nonnegative λs1(ω)-eigenfunctions

and the γs(λ
s
1(ω))-homogeneous Ls-harmonic functions: let consider the spherical coordi-

nates (r, θ) with r > 0 and θ ∈ Sn. Let ϕs be the first nonnegative eigenfunction associated

to λs1(ω) and let vs be its γs(λ
s
1(ω))-homogeneous extension to Rn+1

+ , i.e.

vs(r, θ) = rγs(λ
s
1(ω))ϕs(θ),

which is well defined as soon as γs(λ
s
1(ω)) < 2s (this fact is always granted by an easy

inclusion of spaces which says that the maximal homogeneity degree is given by the function

with zero trace in Rn; that is, y2s). By [19], the operator Ls can be decomposed as

Lsw = sin1−2s(θn)
1

rn
∂r
(
rn+1+2s∂rw

)
+

1

r1+2s
LS

n

s w
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where y = r sin(θn) and the Laplace-Beltrami type operator is defined as

LS
n

s w = divSn(sin1−2s(θn)∇Snw)

with ∇Sn denoting the tangential gradient on Sn. Then, we easily get that vs is Ls-

harmonic in the upper half-space; moreover its trace us(x) = vs(x, 0) is s-harmonic in the

cone Cω spanned by ω, vanishing identically outside: in other words us is a solution of

our problem (1).

In a symmetric way, for the standard Laplacian, we consider the problem of γ-homogeneous

functions which are harmonic inside the cone spanned by ω and vanish outside:

(5)


−∆u1 = 0 in Cω,

u1 ≥ 0 in Rn

u1 = 0 in Rn \ Cω.

Is is well known that the associated eigenvalue problem on the sphere is that of the

Laplace-Beltrami operator with Dirichlet boundary conditions:

λ1(ω) = inf


∫
Sn−1

|∇Sn−1u|2dσ∫
Sn−1

u2dσ
: u ∈ H1(Sn−1) \ {0} and u = 0 in Sn−1 \ ω

 ,

and the characteristic exponent of the cone Cω is

(6) γ(Cω) =

√(
n− 2

2

)2

+ λ1(ω)− n− 2

2
= γs|s=1(λ1(ω)) .

In the classical case, the characteristic exponent enjoys a number of nice properties:

it is minimal on spherical caps among sets having a given measure. Moreover for the

spherical caps, the eigenvalues enjoy a fundamental convexity property with respect to

the colatitude θ ([3, 15]). The convexity plays a major role in the proof of the Alt-

Caffarelli-Friedman monotonicity formula, a key tool in the Free Boundary Theory ([9]).

Since the standard Laplacian can be viewed as the limiting operator of the family (−∆)s

as s↗ 1, some questions naturally arise:
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Problem 1.1. Is it true that

(a) lims→1 γs(C) = γ(C)?

(b) lims→1 us = u1 uniformly on compact sets, or better, in Hölder local norms?

(c) for spherical caps of opening θ is there any convexity of the map θ 7→ λs1(θ) at

least, for s near 1?

We therefore addressed the problem of the asymptotic behavior of the solutions of

problem (1) for s ↗ 1, obtaining a rather unexpected result: our analysis shows high

sensitivity to the opening solid angle ω of the cone Cω, as evaluated by the value of

γ(C). In the case of wide cones, when γ(C) < 2 (that is, θ ∈ (π/4, π) for spherical

caps of colatitude θ), our solutions do converge to the harmonic homogeneous function

of the cone; instead, in the case of narrow cones, when γ(C) ≥ 2 (that is, θ ∈ (0, π/4]

for spherical caps), then the limit of the homogeneity degree will be always two and the

limiting profile will be something different, though related, of course, through a correction

term. Similar transition phenomena have been detected in other contexts for some types

of free boundary problems on cones ([2, 20]). As a consequence of our main result, we

will see a lack of convexity of the eigenvalue as a function of the colatitude. Our main

result is the following Theorem (corresponding to Theorem 1.3 in [22]).

Theorem 1.1. Let C be an open cone with vertex at the origin. There exist finite the

following limits:

γ(C) := lim
s→1−

γs(C) = min{γ(C), 2}

and

µ(C) := lim
s→1−

C(n, s)

2s− γs(C)
=

0 if γ(C) ≤ 2,

µ0(C) if γ(C) ≥ 2,

where C(n, s) is defined in (2) and

µ0(C) := inf


∫
Sn−1

|∇Sn−1u|2 − 2nu2dσ(∫
Sn−1

|u|dσ
)2 : u ∈ H1(Sn−1) \ {0} and u = 0 in Sn−1 \ C

 .
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θ

y

0 π/4 π/2 3π/4 π

2
2s

s

y = γ(λ1(θ))

y = γs(λ
s
1(θ))

Figure 1. Characteristic exponents of spherical caps of aperture 2θ for

s < 1 and s = 1.

Let us consider the family (us) of nonnegative solutions to (1) such that ‖us‖L∞(Sn−1) = 1.

Then, as s↗ 1, up to a subsequence, we have

1. us → u in L2
loc(Rn) to some u ∈ H1

loc(Rn) ∩ L∞(Sn−1).

2. The convergence is uniform on compact subsets of C , u is nontrivial with ‖u‖L∞(Sn−1) =

1 and is γ(C)-homogeneous.

3. The limit u solves

(7)


−∆u = µ(C)

∫
Sn−1

udσ in C,

u = 0 in Rn \ C .

Remark 1.2. Uniqueness of the limit u and therefore existence of the limit of us as s↗ 1

holds in the case of connected cones and, in any case, whenever γ(C) > 2. One can see

that under symmetry assumptions on the cone C, the limit function u is unique and hence

it does not depend on the choice of the subsequence (we refer to Proposition 4.3 in [22]).

A nontrivial improvement of the main Theorem concerns uniform bounds in Hölder

spaces holding uniformly for s→ 1 (corresponding to Theorem 1.5 in [22]).

Theorem 1.2. Assume the cone is spanned by a cap ω ⊂ Sn−1 which is a finite union

of caps of class C1,1. Let α ∈ (0, 1), s0 ∈ (max{1/2, α}, 1) and A an annulus centered
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at zero. Then the family of solutions us to (1) is uniformly bounded in C0,α(A) for any

s ∈ [s0, 1).

1.1. On the fractional Alt-Caffarelli-Friedman monotonicity formula. In the case

of reaction-diffusion systems with strong competition between a number of densities which

spread in space, one can observe a segregation phenomenon: as the interspecific competi-

tion rate grows, the populations tend to separate their supports in nodal sets, separated

by a free boundary. For the case of standard diffusion, both the asymptotic analysis and

the properties of the segregated limiting profiles are fairly well understood, we refer to

[8, 12, 13, 18, 21] and references therein. Instead, when the diffusion is nonlocal and mod-

eled by the fractional Laplacian, the only known results are contained in [23, 24, 25, 26].

As shown in [23, 24], estimates in Hölder spaces can be obtained by the use of fractional

versions of the Alt-Caffarelli-Friedman (ACF) and Almgren monotonicity formulæ. For

the statement, proof and applications of the original ACF monotonicity formula we refer

to the book by Caffarelli and Salsa [9] on free boundary problems. Moreover, the nonlocal

ACF monotonicity formula has the following statement (see Proposition 4 in [23])

Proposition 1.1. Let v1, v2 ∈ H1,1−2s(B+
R(x0, 0)) = H1(B+

R(x0, 0), y1−2sdz) which corre-

sponds to C∞(B+
R(x0, 0))

‖·‖H1,1−2s

with

‖ · ‖2
H1,1−2s(B+

R(x0,0))
=

∫
B+
R(x0,0)

y1−2s
(
| · |2 + |∇ · |2

)
.

Let moreover v1, v2 be continuous functions such that

• v1v2|{y=0} = 0, vi(x0, 0) = 0;

• for every non negative φ ∈ C∞c (BR(x0, 0)),∫
Rn+1
+

(Lsvi)viφ +

∫
Rn

(∂1−2sy vi)viφ =

∫
Rn+1
+

y1−2s∇vi · ∇(viφ) ≤ 0.

Then the function

Φ(r) =
1

r4νACFs

(∫
B+
r (x0,0)

y1−2s
|∇v1|2

|z − (x0, 0)|n−2s

)(∫
B+
r (x0,0)

y1−2s
|∇v2|2

|z − (x0, 0)|n−2s

)
is monotone non decreasing in r for r ∈ (0, R).
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As for the local case, the usefulness of the ACF monotonicity formula in free boundary

problems lies in the fact that it gives control over the local behaviour of the solution on

both sides of the free boundary. Let us state here the fractional version of the spectral

problem beyond the ACF formula used in [23, 24]: consider the set of 2-partitions of Sn−1

as

P2 :=
{

(ω1, ω2) : ωi ⊆ Sn−1 open, ω1 ∩ ω2 = ∅, ω1 ∪ ω2 = Sn−1
}

and define the optimal partition value as:

(8) νACF
s :=

1

2
inf

(ω1,ω2)∈P2

2∑
i=1

γs(λ
s
1(ωi)).

It is easy to see, by a Schwarz symmetrization argument, that νACF
s is achieved by a pair

of complementary spherical caps (ωθ, ωπ−θ) ∈ P2 with aperture 2θ and θ ∈ (0, π) (for a

detailed proof of this kind of symmetrization we refer to [25]), that is:

νACF
s = min

θ∈[0,π]
Γs(θ) = min

θ∈[0,π]

γs(θ) + γs(π − θ)
2

.

This gives a further motivation to our study of (1) for spherical caps. A classical result

by Friedland and Hayman, [15], yields νACF = 1 (case s = 1), and the minimal value

is achieved for two half spheres; this equality is the core of the proof of the classical

Alt-Caffarelli-Friedman monotonicity formula.

It was proved in [23] that νACF
s is linked to the threshold for uniform bounds in Hölder

norms for competition-diffusion systems, as the interspecific competition rate diverges to

infinity, as well as the exponent of the optimal Hölder regularity for their limiting profiles.

It was also conjectured that νACF
s = s for every s ∈ (0, 1). Unfortunately, the exact value

of νACF
s is still unknown, and we only know that 0 < νACF

s ≤ s (see [23, 24]). Actually

one can easily give a better lower bound given by νACF
s ≥ max{s/2, s− 1/4} when n = 2

and νACF
s ≥ s/2 otherwise, which however it is not satisfactory. As already remarked

in [1], this lack of information implies also the lack of an exact Alt-Caffarelli-Friedman

monotonicity formula for the case of fractional Laplacians. Our contribution to this open

problem is a byproduct of the main Theorem 1.1.
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θ

y

0 π/4 π/2 3π/4 π

1s

y = Γ(θ)

y = Γs(θ)

Figure 2. Possible values of Γs(θ) = Γs(ωθ, ωπ−θ) for s < 1 and s = 1 and

n = 2.

Corollary 1.1. In any space dimension we have

lim
s→1

νACF
s = 1 .

1.2. Ingredients for the main Theorem 1.1. The following is the idea of the proof

of the main Theorem. First, one has to obtain local C0,α-estimates in compact subsets of

C and local Hs-estimates in compact subsets of Rn for solutions us of (1). These bounds

are crucial in order to give sense to the limit for s→ 1. One can prove the following facts:

1) Local Hölder bounds: fix K ⊂ C and s0 ∈ (0, 1), there exists α ∈ (0, 1) such that

‖us‖C0,α(K) ≤ c
(

1 + C(n,s)
2s−γs(C)

)
for any s ∈ [s0, 1).

2) Local Hs bounds: fix η ∈ C∞c (Rn) and s0 ∈ (0, 1), [ηus]Hs(Rn) ≤ c
(

1 + C(n,s)
2s−γs(C)

)
for any s ∈ [s0, 1).

An important quantity which appears in this estimates and plays a fundamental role is

C(n, s)

2s− γs(C)
,

where C(n, s) > 0 is the normalization constant given in (2). It will be therefore very

important to bound this quantity uniformly in s. In this way our estimates are uniform

in s as s→ 1, and we can ensure some regularity to the limit function and the belonging

to the right Sobolev space.
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Then, one has to analyze the asymptotic behaviour of γs(C) as s converges to 1, in

order to understand the quantities γ(C) and µ(C) which appear in Theorem 1.1 and which

correspond respectively to the homogeneity and the possible deviation from harmonicity

referred to the limit function. Hence, one can prove the following facts:

3) The function s 7→ γs(C) is non decreasing and there holds the upper bound

γs(C) ≤ γ(C) (where γ(C) is the homogeneity of the harmonic function of the

same cone).

These results hold for regular cones (spanned by caps which are of class C1,1 and

connected). The boundary regularity is required in order to apply a fundamental tool in

our analysis; that is, the inequality in [17]

1

c
|x|γs−sdist(x, ∂C)s ≤ us(x) ≤ c|x|γs−sdist(x, ∂C)s.

The validity of such inequality relies on a boundary Harnack principle and on sharp

estimates for the Green function for bounded C1,1 domains.

In order to prove point 3), a distributional semigroup property for the fractional Lapla-

cian for functions which grow at infinity is required. That is, the fact that if δ ∈ (0, 1−s),

for any φ ∈ C∞c (C)

((−∆)s+δus, φ) = ((−∆)δ[(−∆)sus], φ).

This result allows to give a distributional sense to (−∆)s+δus and most of all, to give a sign

to it: more precisely, one can show that (−∆)s+δus ≥ 0 in C for any fixed δ ∈ (0, 1− s],

and this allows to order γs(C) ≤ γs+δ(C) by a comparison between us and us+δ (and

consequently the universal bound γs(C) ≤ γ(C)).

Then, as we said, the next step is the study of

4) The limit µ(C) = lims→1
C(n,s)

2s−γs(C)
for regular cones.
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We remark the fact that the normalization constant C(n, s) → 0 as s → 1. By the

universal bound γs(C) ≤ γ(C), one easily obtain that µ(C) = 0 for wide cones (by

definition γ(C) < 2). Nevertheless, in case of narrow cones, it is possible to construct

for any s ∈ [s0, 1) a function vs which is (−∆)svs ≤ 0 in a spherical narrow enough cone

Cθ ⊂ C. Such a function is γ∗s (θ)-homogeneous with γs(C) ≤ γs(θ) ≤ γ∗s (θ) := 2s−sC(n,s)
µ0(θ)

and

µ0(θ) := min
u∈H1

0 (S
n−1∩Cθ)

u6=0

∫
Sn−1 |∇Sn−1u|2 − 2nu2dσ(∫

Sn−1 |u|dσ
)2 .

So

µ(C) = lim
s→1

C(n, s)

2s− γs(C)
≤ lim

s→1

C(n, s)

2s− γ∗s (θ)
= µ0(θ) < +∞.

Thanks to these facts, we have eventually the uniformity of bounds 1) and 2), and we can

give sense to the limit us → u in Theorem 1.1. Then, the limit equation satisfied by u
−∆u = µ(C)

∫
Sn−1

udσ in C,

u = 0 in Rn \ C ,

and the fact that the limit function u is homogeneous of degree γ(C) = min{γ(C), 2}

follow from direct computations.
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