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Abstract. Maximum Principles on unbounded domains play a crucial rôle in several

problems related to linear second-order PDEs of elliptic and parabolic type. In the

present notes, based on a joint work with E. Lanconelli, we consider a class of sub-elliptic

operators L in RN and we establish some criteria for an unbounded open set to be a

Maximum Principle set for L. We extend some classical results related to the Laplacian

(proved by Deny, Hayman and Kennedy) and to the sub-Laplacians on homogeneous

Carnot groups (proved by Bonfiglioli and Lanconelli).

Sunto. I Principi del Massimo su domini non limitati rivestono un ruolo fondamentale

in diversi problemi legati alle equazioni alle derivate parziali del secondo ordine, sia

ellittiche sia paraboliche. In queste note, basate su un lavoro scritto in collaborazione

con E. Lanconelli, consideriamo una classe di operatori sub-ellittici L in RN e proviamo

alcuni criteri che garantiscono la validità del Principio del Massimo per L su un aperto

non limitato. In particulare, estendiamo alcuni classici risultati per l’operatore di Laplace

(provati da Deny, Hayman e Kennedy) e per i sub-Laplaciani sui gruppi omogenei di

Carnot (provati da Bonfiglioli e Lanconelli).

2010 MSC. Primary: 35B50, 35J70; Secondary 31C05.

Keywords. Maximum principle, sub-elliptic operators, homogeneous Hörmander ope-
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1. Introduction

The present notes are based on the talk titled Large sets at infinity and Maximum

Principle on unbounded domains for a class of sub-elliptic operators, given by the author

in Bologna at the “Bruno Pini Mathematical Analysis Seminar”. In its turn, this talk

was based on the paper [5], which is a joint work with E. Lanconelli.

It is well known that, in Euclidean space RN , the classical Laplace operator ∆ satisfies

the following Weak Maximum Principle (WMP) on every bounded open set: if Ω ⊆ RN

is a bounded open set and if u ∈ C2(Ω,R), then

(WMP)


∆u ≥ 0 in Ω,

lim sup
x→ξ

u(x) ≤ 0 for every ξ ∈ ∂Ω
=⇒ u ≤ 0 on Ω.

Moreover, it is not difficult to produce an example showing that the hypothesis that Ω

be bounded cannot be dropped for the validity of (WMP).

Example 1.1. Let Ω := R× (0, 2π) ⊆ R2 and let u : Ω→ R be defined as follows:

u(x) := ex1 sin(x2).

A direct computation shows that ∆u ≡ 0 on Ω and

lim sup
x→ξ

u(x) = u(ξ) = 0, for every ξ ∈ ∂Ω = R× {0, 2π}.

On the other hand, u 6≤ 0 on Ω.

Even if Example 1.1 shows that (WMP) does not hold, in general, if Ω is not bounded,

there are many meaningful situations where one needs a WMP on unbounded open sets,

at least for bounded-above subharmonic functions. In this direction we have the following

theorem, originally proved by Deny in 1947 (see [8]).

Theorem 1.1. Let Ω ⊆ RN be an open set such that RN \ Ω contains an infinite open

cone. Consider a bounded-above function u ∈ C2(Ω,R) satisfying∆u ≥ 0 in Ω,

lim supy→x u(y) ≤ 0, for every x ∈ ∂Ω,
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Then u(x) ≤ 0 for every x ∈ Ω.

As a matter of fact, Theorem 1.1 was obtained by Deny as a corollary of the next

result, which contains an interesting property concerning the behavior at infinity of any

bounded-above subharmonic function.

Theorem 1.2 ([8, Theorem 3.1]). Let u : RN → R be a bounded-above subharmonic

function on RN . Then, we have

lim
|x|→∞

u(x) = sup
RN

u

along almost all fixed rays through the origin.

Remark 1.1. It is easy to see that neither the assumption of the upper-boundedness of u

nor the assumption on the “size” of RN \ Ω in Theorem 1.1 can be dropped.

(i) Let Ω := {x ∈ R2 : x2 > 0} and let

u : Ω −→ R, u(x) := x2.

Clearly, R2 \ Ω contains an infinite open cone; moreover, ∆u ≡ 0 on Ω and

lim sup
x→ξ

u(x) = u(ξ) = 0, for every ξ ∈ ∂Ω = {x ∈ R2 : x2 = 0}.

On the other hand, u > 0 on Ω.

(ii) Let Ω := R3 \ {0} and let u : Ω→ R be defined as follows:

u(x) := 1− 1

‖x‖
.

A direct computation shows that

• u is subharmonic and bounded-above on Ω;

• lim sup
x→0

u(x) = −∞.

On the other hand, u 6≤ 0 on Ω (note that R3 \ Ω = {0}).

Motivated by the phenomena just described, in these notes we consider a class of sub-

elliptic operators L in RN and we try to establish some criteria ensuring the validity of

the WMP (for L) on unbounded open sets.
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Remark 1.2. It is interesting to point out that, in the particular case of R2, it is not

possible to construct an analog of the example in Remark 1.1-(ii): in fact, Theorem 1.1

holds without the need of assuming that R2 \ Ω contains an infinite open cone.

The proof of this assertion is essentially based on the fact that there do not exist a Green

function for the whole space R2; if, instead, N ≥ 3, the Green function for RN exists and

it coincides with the fundamental solution of ∆.

2. Main assumptions and notations

On Euclidean space RN , we consider linear second-order differential operators L (PDOs,

in the sequel) of the following quasi-divergence form

(1) L =
1

V (x)

N∑
i,j=1

∂

∂xi

(
V (x) ai,j(x)

∂

∂xj

)
,

and satisfying the structural assumptions listed below:

(S): V, ai,j ∈ C∞(RN ,R) and V > 0 on RN ;

(DE): A(x) =
(
ai,j(x)

)
≥ 0 for every x ∈ RN ;

(NTD): trace(A(x)) > 0 for every x ∈ RN ;

(HY): there exists a real ε > 0 such that both L and Lε := L−ε are C∞-hypoelliptic

in every open subset of RN .

The class of operators of the form (1) and satisfying the structural assumptions (S)-to-

(HY) is quite large, as the next Example 2.1 shows.

Example 2.1. (a) Let G = (RN , ∗) be a Lie group and let µ be a Haar measure on G. If

Z = {Z1, . . . , Zm} is a system of Lie-generators for Lie(G), then

∆G := −
m∑
j=1

Z∗,µj Zj,

takes the form (1) and satisfies assumptions (S)-to- (HY). Here, Z∗,µj denotes the (formal)

adjoint of Zj in the space L2(RN , dµ) (for j = 1, . . . ,m).

(b) More generally, if X1, . . . , Xm are smooth vector fields on RN satisfying the Hör-

mander Rank Condition at every point of RN , then

LX := −
m∑
j=1

X∗jXj,
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takes the form (1) and satisfies assumptions (S)-to-(HY).

(c) Let X1, . . . , Xm be smooth vector fields on RN satisfying the Hörmander Rank Con-

dition at every point of RN . If div(Xi) ≡ 0 for every i = 1, . . . ,m, then the PDO

LX := X2
1 + · · ·+X2

m,

takes the form (1) and satisfies assumptions (S)-to-(HY).

(d) The following semi-elliptic non-Hörmander operators

L1 :=
∂2

∂x2
1

+
(

exp(−1/|x1|)
∂

∂x2

)2

+
(

exp(−1/|x1|)
∂

∂x3

)2

,

L2 :=
∂2

∂x2
1

+
(

exp(−1/
√
|x1|)

∂

∂x2

)2

+
∂2

∂x2
3

,

L3 :=
(
x2

∂

∂x1

)2

+
∂2

∂x2
2

+
(

exp(−1/ 3
√
|x1|)

∂

∂x3

)2

+
∂2

∂x2
4

,

take the form (1) and satisfy assumptions (S)-to-(HY) (the validity of (HY) for the Li’s
was proved, respectively, by Christ [7], Kusuoka and Stroock [9] and Morimoto [11]).

Remark 2.1. The C∞-hypoellipticity of L implies that of L− ε (for every real ε > 0) in

the following meaningful cases (see [12] for a discussion on this problem):

- for Hörmander operators, and, more generally, for second order sub-elliptic ope-

rators (in the usual sense of fulfilling a subelliptic estimate);

- for operators with real-analytic coefficients.

Under assumptions (S)-to-(HY), a satisfactory Potential Theory for L can be con-

structed (see, e.g., [1, 2]). In this theory, the ‘harmonic’ functions are the L-harmonic

functions, that is, the (smooth) solutions to

Lu = 0

on some open subset of RN . The corresponding L-subharmonic functions are the upper

semi-continuous (u.s.c., for short) functions u : Ω→ [−∞,∞) (where Ω is an open subset

of RN) satisfying the next two properties:

(i) {x ∈ Ω : u(x) > −∞} is dense in Ω;
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(ii) for every bounded open set V ⊆ V ⊆ Ω and for every function h L-harmonic in

V and continuous up to ∂V such that u∣∣∂V ≤ h∣∣∂V , one has u ≤ h in V .

Accordingly, a function u : Ω → (−∞,∞] (where Ω ⊆ RN is open) is L-superharmonic

in Ω if −u is L-subharmonic in Ω.

By the results in [2] (and by the fact that h ≡ 1 is L-harmonic), the following Maximum

Principle for L-subharmonic functions holds true (see [5, Theorem A.2]):

Let Ω ⊆ RN be open and bounded and let u ∈ L(Ω). Then

(2) lim sup
x→ξ

u(x) ≤ 0 for every ξ ∈ ∂Ω =⇒ u ≤ 0 in Ω.

Throughout the sequel, if Ω ⊆ RN is open, we shall use the subsequent notations:

- L(Ω) denotes the cone of the L-subharmonic functions in Ω;

- Lb(Ω) denotes the cone of the bounded-above L-subharmonic functions in Ω;

- L(Ω) denotes linear space of the L-harmonic functions in Ω;

- L(Ω) denotes the cone of the L-superharmonic functions in Ω.

We explicitly observe that all the above cones are actually convex cones.

We now fix the following (crucial) definition.

Definition 2.1 (MP set for L). Let Ω ⊆ RN be open. We say that Ω is a maximum

principle set (MP set, in short) for L if it satisfies the following property:
u ∈ Lb(Ω)

lim sup
x→ξ

u(x) ≤ 0 for every ξ ∈ ∂Ω
=⇒ u ≤ 0 in Ω.

Remark 2.2. A couple of remarks are in order.

(i) If Ω ⊆ RN is open and bounded, then Ω is a maximum principle set for L (and one

can replace the cone Lb(Ω) with L(Ω)).

(ii) Since L(1) = 0, if Ω ⊆ RN is an MP set for L we have
u ∈ Lb(Ω)

lim sup
x→ξ

u(x) ≤M for every ξ ∈ ∂Ω
=⇒ u ≤M in Ω

(whatever the chosen M ∈ R).



MAXIMUM PRINCIPLE ON UNBOUNDED DOMAINS 89

3. A first characterization of MP sets: L-largeness

To present our first result, we fix the following definition.

Definition 3.1 (L-largeness). We say that a subset F of RN is L-large at infinity if

(3) lim sup
x→∞
x∈F

u(x) = lim sup
x→∞
x∈RN

u(x) for every u ∈ Lb(RN).

If F ⊆ RN is not L-large at infinity, we shall say that F is L-thin at infinity. More

explicitly, F is L-thin at infinity if and only if there exists u ∈ Lb(RN) such that

lim sup
x→∞
x∈F

u(x) < lim sup
x→∞
x∈RN

u(x).

Remark 3.1. A set F ⊆ RN is L-large at infinity if and only if

(?) sup
F
u = sup

RN

u, for every u ∈ Lb(RN).

In fact, let u ∈ Lb(RN) be arbitrarily fixed. By using the Strong Maximum Principle

for L-subharmonic functions in [5, Theorem A.2], together with the fact that u is upper

semi-continuous on RN , it can be proved that

sup
RN

u = lim sup
x→∞
x∈RN

u(x).

Thus, if Ω is L-large at infinity (so that (3) holds), we obtain

lim sup
x→∞
x∈F

u(x) ≤ sup
F
u ≤ sup

RN

u = lim sup
x→∞
x∈RN

u(x) = lim sup
x→∞
x∈F

u(x),

and this proves that (?) is satisfied.

Conversely, if we assume that (?) holds, it is not difficult to deduce that

sup
F∩B(0,r)

u < sup
F\B(0,r)

u for every r > 0;

from this, by letting r →∞ we derive

sup
F
u ≤ lim sup

x→∞
x∈F

u(x) ≤ lim sup
x→∞
x∈RN

u(x) ≤ sup
RN

u = sup
F
u,

and this proves that (3) is satisfied.

Here is our first basic result.
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Theorem 3.1 (MP sets and L-largeness). An open set Ω ⊆ RN is a maximum principle

set for L if and only if its complement RN \ Ω is L-large at infinity.

Proof. Let us assume that Ω is a maximum principle set for L, and let u ∈ Lb(RN). We

define u0 := supRN\Ω u. Since u is u.s.c. on RN , we have

lim sup
x→ξ

u(x) ≤ u(ξ) ≤ u0 (ξ ∈ ∂Ω);

as a consequence, Ω being an MP set for L, we get

u ≤ u0 = sup
RN\Ω

u on Ω, whence sup
RN\Ω

u = sup
RN

u.

This proves that RN \ Ω is L-large at infinity.

Conversely, let us assume that RN \ Ω is L-large at infinity, and let u ∈ Lb(Ω) satisfy

(4) lim sup
x→ξ

u(x) ≤ 0, for every ξ ∈ ∂Ω.

We then consider the function v : RN → R defined as follows:

v(x) :=

max{u(x), 0}, if x ∈ Ω,

0, if x /∈ Ω.

Taking into account (4), it can be proved that v ∈ Lb(RN); as a consequence, since RN \Ω

is L-large at infinity we get (see Remark 3.1)

sup
RN

v = sup
RN\Ω

v = 0, whence u ≤ 0 on Ω.

This proves that Ω is an MP set for L. �

4. A sufficient condition for L-largeness: pL-unboundedness

In view of the results in Section 3 (see, in particular, Theorem 3.1), it is natural to look

for some simple criteria ensuring the L-largeness at infinity of a set F ⊆ RN .

In order to do this, we require the following additional assumptions on L.

(FS) L is endowed with a “well-behaved” global fundamental solution, that is, it is

possible to find a function

Γ : O :=
{

(x, y) ∈ RN × RN : x 6= y
}
−→ R

satisfying the following properties:
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(a) Γ ∈ C∞(O,R) and Γ(x, y) > 0 for every x, y ∈ O;

(b) Γ is symmetric, that is, Γ(x, y) = Γ(y, x) for every (x, y) ∈ O;

(c) for every x ∈ RN , we have Γ(x, ·) ∈ L1
loc(RN) and∫

RN

Γ(x, y)Lϕ(y)V (y) dy = −ϕ(x), ∀ϕ ∈ C∞0 (RN ,R);

(d) for every x ∈ RN , Γ(x, ·) has a pole at x and it vanishes at infinity, i.e,

lim
y→x

Γ(x, y) =∞ and lim
‖y‖→∞

Γ(x, y) = 0.

For the sake of brevity, given x ∈ RN , in the sequel we set:

Γx : RN \ {x} −→ R, Γx(y) := Γ(x, y).

(G) Defining the open Γ-ball of centre x and radius r as

Ω(x, r) := {y ∈ RN \ {x} : Γx(y) > 1/r} ∪ {x},

there exists a constant θ ∈ (0, 1) such that

x /∈ Ω(y, r) =⇒ Ω(x, θr) ∩ Ω(y, θr) = ∅

for every x, y ∈ RN and every r > 0.

(L) If u ∈ L(RN) is any L-harmonic function which is bounded from above (or from

below) on RN , then u is constant throughout RN .

Remark 4.1. It is easy to see that assumption (G) is equivalent to requiring that γ := 1/Γ

is a quasi-distance in RN , that is, there exists a real c > 1 such that

γ(x, z) ≤ c
(
γ(x, y) + γ(y, z)

)
, for any x, y, z ∈ RN .

Remark 4.2. Assumptions (FS)-to-(L) are satisfied by any sub-Laplacian on a homoge-

neous Carnot group (see, e.g., [6, Chap. 5]); moreover, we shall see that these assumptions

are fulfilled also by any homogeneous Hörmander operator in RN .

Under assumptions (FS)-to-(L), we obtain a geometrical criterion for L-largeness at in-

finity which is based on the notion of pL-unboundedness introduced below.

Definition 4.1 (pL-unboundedness). Let F ⊆ RN and let p ∈ (1,∞). We say that F is

pL-bounded if there exists a family F =
{

Ω(xn, rn)
}
n∈J , with J ⊆ N, such that
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(a) F ⊆
⋃
n∈J Ω(xn, rn);

(b)
∑
n∈J

(
Γ(0;xn) rn

)p
<∞.

If F ⊆ RN is not pL-bounded, we shall say that F is pL-unbounded.

We then have the following result (see [5, Theorem 1.5]).

Theorem 4.1 (Criterion for L-largeness). Let F ⊆ RN be any non-void set. If there

exists some p ∈ (1,∞) such that F is pL-unbounded, then F is L-large at infinity.

The proof of Theorem 4.1 rests on the following result, which is resemblant to the

classical result demonstrated by Deny in the case L = ∆ (see Theorem 1.2).

Theorem 4.2 (of Deny-type). Let u ∈ Lb(RN) and let p ∈ (1,∞) be arbitrarily fixed.

Then, it is possible to construct a pL-bounded set F ⊆ RN such that

lim
x→∞
x/∈F

u(x) = sup
RN

u.

For a proof of Theorem 4.2, see [5, Theorem 1.6].

5. A sufficient condition for pL-unboudedness: Γ-cones

In view of the criterion for L-largeness contained in Theorem 4.1, it is natural to look

for some geometrical conditions ensuring the pL-unboundedness of a set F ⊆ RN .

To this end, we require another additional assumption on L.

(D) There exist two constants α′, α′′ > 2, with α′ < α′′, such that

α′
∣∣Ω(x, r)

∣∣ ≤ ∣∣Ω(x, 2r)
∣∣ ≤ α′′

∣∣Ω(x, r)
∣∣

for every x ∈ RN and every r > 0 (here, |A| indicate the standard N -dimensional

Lebesgue measure in RN of a Borel set A ⊆ RN).

Remark 5.1. As for the case of assumptions (FS)-to-(L), also assumption (D) is satisfied

by any sub-Laplacian on a Carnot group; moreover, as we shall see, this assumption is

satisfied also by any homogeneous Hörmander operator in RN .

Under assumption (D), the sufficient condition for pL-unboundedness we obtain is related

with the definition of Γ-cone given below.
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Definition 5.1 (Γ-cone). Let K ⊆ RN be any set. We say that K is a Γ-cone if it

contains a countable family F = {Ω(zj, Rj)}j∈N of Γ-balls such that

(i) ‖zj‖ → ∞ as j →∞;

(ii) lim infj→∞
(
Γ0(zj)Rj

)
> 0.

Then, the following theorem holds true (see [5, Theorem 1.8]).

Theorem 5.1 (Criterion for pL-unboundedness). Let F ⊆ RN and let us assume that

there exists a Γ-cone K ⊆ F . Then, there exists p > 1 such that F is pL-unbounded.

Gathering together Theorems 3.1, 4.1 and 5.1 we obtain the following result, in which

all the hypotheses (H1)-to-(H3), (FS), (G), (L) and (D) are assumed.

Theorem 5.2. The open set Ω ⊆ RN is a maximum principle set for L if one of the

following (sufficient) conditions is satisfied:

(i) RN \ Ω is L-large at infinity (this condition is also necessary);

(ii) RN \ Ω is pL-unbounded (for a suitable p > 1);

(iii) RN \ Ω contains a Γ-cone.

Proof. (i) This is precisely the statement of Theorem 3.1.

(ii) If RN \Ω is pL-unbounded (for some p > 1), we know from Theorem 4.1 that RN \Ω

is L-large at infinity; thus, by (i), Ω is an MP set for L.

(iii) If RN \Ω contains a Γ-cone K, we know from Theorem 5.1 that there exists a real

p > 1 such that RN \Ω is pL-unbounded; thus, by (ii), we conclude that Ω is a maximum

principle set for L. This ends the proof. �

As a consequence of Theorem 5.2 we easily obtain the following result.

Corollary 5.1. Let Ω ⊆ RN be an open set satisfying one of conditions (i)-to-(iii) in

Theorem 5.2. Moreover, let f : Ω× R→ R be such that

(5) f(x, z) ≤ 0 for every x ∈ Ω and z ≥ 0.

If u ∈ C2(Ω,R) is bounded above and satisfies

(6)


Lu+ f(x, u) ≥ 0 in Ω,

lim sup
x→y

u(x) ≤ 0 for every y ∈ ∂Ω,
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then u ≤ 0 throughout Ω.

Proof. We argue by contradiction and we assume the existence of some point x0 ∈ Ω such

that u(x0) > 0. We then consider the following set

(7) Ω+ := {x ∈ Ω : u(x) > 0} 6= ∅.

By combining (5) with (6) we infer that, on Ω+, we have Lu ≥ −f(x, u) ≥ 0; as a con-

sequence, u ∈ L(Ω+). On the other hand, by the boundary condition in (6) and the fact

that u ≡ 0 on ∂Ω+ ∩ Ω, it is readily seen that

lim sup
x→y

u(x) ≤ 0 for every y ∈ ∂Ω+.

From this, it can be proved that (see [5, Lemma 2.1])

v : Ω −→ R, v(x) = max{u(x), 0}

is L-subharmonic in Ω; furthermore, since u is bounded above in Ω, the same is true of v.

Taking into account that, by assumption, Ω is an MP-set for L, we conclude that v ≤ 0,

whence u ≤ 0, but this is in contradiction with (7). �

6. A class of examples: homogeneous Hörmander operators

Let X = {X1, . . . , Xm} be a family of linearly independent smooth vector fields on

Euclidean space RN , with N ≥ 3, satisfying the following properties:

(H.1) X1, . . . , Xm are δλ-homogeneous of degree 1 with respect to a family of non-

isotropic dilations {δλ}λ>0 of the following type

δλ : RN → RN , δλ(x) =
(
λσ1x1, . . . , λ

σNxN
)
,

where 1 = σ1 ≤ . . . ≤ σN are positive integers;

(H.2) X1, . . . , Xm satisfy the Hörmander rank condition, i.e.,

dim

{
X(x) : X ∈ Lie

{
X1, . . . , Xm}

}
= N for every x ∈ RN .

Then, the second-order linear operator L defined by

L :=
m∑
j=1

X2
j ,

will be called a homogeneous Hörmander operator.
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Example 6.1. Some examples of homogeneous Hörmander operators are in order.

(i) The Bony-type vector fields on RN :

X1 = ∂x1 , X2 = x1 ∂x2 + · · ·+ xN−1
1 ∂xN ,

which are homogeneous of degree 1 w.r.t. δλ(x) = (λx1, λ
2x2, . . . , λ

NxN).

(ii) The vector fields on R3:

X1 = ∂x1 , X2 = x1 ∂x2 , X3 = x1 ∂x3 ,

which are homogeneous of degree 1 w.r.t. δλ(x) = (λx1, λ
2x2, λ

2 x3).

(iii) The vector fields on R3:

X1 = ∂x1 , X2 = ∂x2 , X3 = x1x2 ∂x3 ,

which are homogeneous of degree 1 w.r.t. δλ(x) = (λx1, λx2, λ
3x3).

Let now L =
∑m

j=1 X
2
j be a homogeneous Hörmander operator in RN , with N ≥ 3.

By exploiting several known results, we see that L satisfies most of the assumptions

introduced in the previous sections; in fact, we have

(a) L satisfies assumptions (S)-to-(HY) (see Example 2.1-(c));

(b) L satisfies assumption (FS) (by the results in [3]);

(c) L satisfies assumption (L) (by the results in [10]).

Furthermore, the following theorem holds true.

Theorem 6.1. If L =
∑m

j=1X
2
j is a homogeneous Hörmander operator in RN (with

N ≥ 3), then L satisfies assumptions (G) and (D).

The proof of Theorem 6.1 is quite long, and we refer to [5, Section 5] for all the details.

Here, we limit ourselves to point out that the key ingredients for proving Theorem 6.1

are suitable global estimates for two objects associated with L: its global fundamental

solution Γ and the measure of the balls in the Carnot-Carathéodory metric associated

with X1, . . . , Xm (see the very recent paper [4]).

Gathering together assertions (a)-to-(c), Theorem 6.1 and Theorem 5.2, we obtain the

following result (which is just a restatement of Theorem 5.2 in the present setting).
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Corollary 6.1. Let L be a homogeneous Hörmander operator on RN (with N ≥ 3).

An open subset Ω of RN is a maximum principle set for L if one of the following

(sufficient) conditions is satisfied:

(i) RN \ Ω is L-large at infinity (this condition is also necessary);

(ii) RN \ Ω is pL-unbounded (for a suitable p > 1);

(iii) RN \ Ω contains a Γ-cone.

On the other hand, by using the family of dilations {δλ}λ>0, we can obtain a “homoge-

neous version” of the cone criterion (iii), which is based on the definition of δλ-cone.

Definition 6.1 (δλ-cone). Let C ⊆ RN be any set. We say that C is a non-degenerate

δλ-cone if it satisfies the following properties:

(i) int(F ) 6= ∅;
(ii) there exists λ0 > 0 such that δλ(C) ⊆ C for every λ ≥ λ0.

Then, we have the following crucial result (see [5, Prop. 1.12] for a proof).

Proposition 6.1. If F ⊆ RN contains a non-degenerate δλ-cone, then there exists p > 1

such that F is pL-unbounded. (in the sense of Definition 4.1).

It can be easily proved that every half-space of RN contains a non-degenerate δλ-cone

(see [5, Remark 5.11]); as a consequence, by combining Proposition 6.1 with Theorem 5.2,

we readily obtain the announced “homogeneous version” of Corollary 6.1.

Theorem 6.2. Let L be a homogeneous Hörmander operator in RN (with N ≥ 3) and

let Ω ⊆ RN be an open set satisfying one of the following conditions:

(i) RN \ Ω contains a non-degenerate δλ-cone;

(ii) Ω is contained in a half-space.

Then Ω is a maximum principle for L.

Proof. (i) If RN \ Ω contains a non-degenerate δλ-cone, it follows from Proposition 6.1

that RN \Ω is pL-unbounded (for some p > 1); as a consequence, Corollary 6.1-(ii) allows

us to conclude that Ω is a maximum principle set for L.
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(ii) If Ω is contained in a half-space H, then RN \Ω contains the half-space H ′ = RN \H;

since H ′ contains a non-degenerate δλ-cone (see [5, Remark 5.11]), we conclude from (i)

that Ω is a maximum principle set for L. �
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