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Abstract. We discuss in this note the stickiness phenomena for nonlocal minimal sur-

faces. Classical minimal surfaces in convex domains do not stick to the boundary of the

domain, hence examples of stickiness can be obtained only by removing the assumption

of convexity. On the other hand, in the nonlocal framework, stickiness is “generic”. We

provide various examples from the literature, and focus on the case of complete stickiness

in highly nonlocal regimes.

Sunto. In questa nota ci occupiamo del fenomeno di attaccamento al bordo delle su-

perfici minime nonlocali. Generalmente, le superfici minime classiche non presentano

tale fenomeno in un dominio convesso, pertanto alcuni esempi di attaccamento al bordo

si ottengono solamente in assenza della condizione di convessità. Per contro, nel con-

testo nonlocale, l’attaccamento al bordo è un comportamento “generico”. Proporremo

diversi esempi dalla letteratura, per di più incentrati sul caso di attaccamento completo

al bordo, nei cosiddetti regimi altamente nonlocali.
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The problem regarding surfaces with least area among those enclosed by a given curve

is one of the first questions that arose in the calculus of variations. Named after Plateau

due to his experiments on soap films and bubbles, carried out by the French physicist in
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the nineteenth century, the question on minimal surfaces actually dates back to Lagrange

(1760). Plateau’s problem received some first answers in R3 in the thirties, given by

Douglas and Radò. In its full generality, it was attacked by several outstanding mathe-

maticians, who tackled the problem from different, very ingenious perspectives, such as,

to mention the most famous: Almgren and Allard, introducing the theory of varifolds,

Federer and Fleming developing the theory of currents, Reifenberg applying methods from

algebraic topology, De Giorgi working with the perimeter operator (see the beautiful In-

troduction of [25] for more details). The achievements and the history on Plateau’s and

closely related problems are inscribed in many branches of mathematics, such as geomet-

ric measure theory (actually born to study this problem), differential geometry, calculus

of variations, potential theory, complex analysis and mathematical physics. The story is

far from being over, since the various fields of study are nowdays very active, they present

a variety of new accomplishments and still pose many open problems. The reader can

consult the following books, surveys and papers [13, 33] for classical minimal surfaces,

[31, 32] for the Willmore conjecture and min-max theory approach, [2, 17, 18] for recent

achievements in geometric measure theory, and can find further references of their interest

therein.

This note will just “scratch the surface” in the attempt to give an introduction to the

argument. We will focus on the case of co-dimension one, following the approach of the

Italian mathematician Ennio De Giorgi, who defines minimal surfaces as boundaries of sets

which minimize a perimeter operator inside a domain, among sets with given boundary

data. In this context, the main argument on which we focus is the so-called stickiness

phenomenon: in some occasions, minimal surfaces are forced by the minimization problem

and the boundary constraints to “attach” to the boundary of the given domain.

For classical minimal surfaces, this phenomena is rare and happens only in “extreme”

conditions. In convex domains, minimal surfaces reach transversally the boundary of

the domain, so stickiness is not contemplated. Furthermore, minimal graphs (i.e., mini-

mal surfaces which are also graphs) always attain in convex domains their (continuous)

boundary data in a continuous way. We will present in Example 1.2 a situation in which

stickiness may happen if the domain is not convex.
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On the other hand, nonlocal minimal surfaces, introduced as the nonlocal (fractional)

counterpart of the classical ones, typically stick. Even taking the “best” domain (i.e. a

ball) and a very nice exterior data, surprisingly the stickiness phenomenon is not only

possible, but it appears in many circumstances. In this note, we gather several examples

from the literature and we discuss in more detail the case of complete stickiness (that is,

when the nonlocal minimal surface attaches completely to the boundary of the domain),

in highly nonlocal regimes (that is, for small values of the fractional parameter).

In the rest of the paper, we set the following notations:

• points in Rn as x = (x1, . . . , xn) and points in Rn+1 as X = (x, xn+1),

• the (n− 1)-Hausdorff measure as Hn−1,

• the complementary of a set Ω ⊂ Rn by CΩ = Rn \ Ω,

• the ball of radius r > 0 and center x ∈ Rn as

Br(x) =
{
y ∈ Rn

∣∣ |y − x| < r
}
, Br := Br(0),

• the area of the unit sphere as

ωn := Hn−1(∂B1).

1. An introduction to classical minimal surfaces

Just to give a basic idea, the approach of De Giorgi to minimal surfaces can be sum-

marized as follows.

Consider an open set Ω ⊂ Rn and a measurable set E ⊂ Rn. If the set E has C2

boundary inside Ω, the area of the boundary of E in Ω is given by

(1) Area(∂E ∪ Ω) = Hn−1(∂E ∩ Ω).

On the other hand, in case E does not have a smooth boundary, one can introduce a weak

version of the perimeter.
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Definition 1.1. Let Ω ⊂ Rn be an open set and E ⊂ Rn be a measurable set. The

perimeter of E in Ω is given by

(2) P (E,Ω) := sup
g∈C1

c (Ω,Rn),|g|≤1

∫
E

divg dx.

Notice that when E has C2 boundary, the expected (1) is recovered. Indeed, taking

any g ∈ C1
c (Ω,Rn), we have that∫

E

divg dx =

∫
∂E

g · νE dHn−1,

using the divergence theorem and denoting νE as the exterior normal derivative to E.

Then

P (E,Ω) = sup
g∈C1

c (Ω,Rn),|g|≤1

∫
E

divg dx

= sup
g∈C1

c (Ω,Rn),|g|≤1

∫
∂E

g · νE dHn−1

≤
∫
∂E∩Ω

dHn−1 = Hn−1(∂E ∩ Ω).

A particular choice of g leads to the opposite inequality and proves the statement. Since

E has smooth boundary, νE is a C1 vector valued function, so it can be extended to a

vector field N ∈ C1(Rn,Rn), with ‖N‖ ≤ 1. Consider a cut-off function η ∈ C∞c (Ω) with

|η| ≤ 1 and use g = ηN . Then

P (E,Ω) = sup
g∈C1

c (Ω,Rn),|g|≤1

∫
∂E

g · νE dHn−1

≥ sup
η∈C∞c (Ω),|η|≤1

∫
∂E

η dHn−1

= Hn−1(∂E ∩ Ω).

We recall that the space of functions of bounded variation BV (Ω) is defined as

BV (Ω) :=
{
u ∈ L1(Ω)

∣∣ [u]BV (Ω) <∞
}
,

where

[u]BV (Ω) = sup
g∈C1

c (Ω,Rn),|g|≤1

∫
Rn
u divg dx,

and that BV (Ω) is a Banach space with the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + [u]BV (Ω).
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It is evident then that the perimeter of a set E ⊂ Rn is the total variation of its charac-

teristic function, i.e. the BV norm of the characteristic function of E

χE(x) =

 1, x ∈ E

0, x ∈ CE,

so we can write that

(3) P (E,Ω) = [χE]BV (Ω).

Sets of (locally) finite perimeter, or of (local) finite total variation (i.e., sets with

P (E,Ω) < ∞) bear the name of the Italian mathematician Renato Caccioppoli, who

introduced them in 1927. Among sets of finite perimeter, minimal sets are the ones that

minimize the perimeter with respect to some fixed “boundary” data. Of course, we work

in the class of equivalence of sets, that is, we identify sets which coincide up to sets of

measure zero. Maintaining the same perimeter, in principle sets could have completely

different topological boundaries. That is why in this note we assume measure theoretic

notions (see for instance [25, Chapter 3], [7, Section 1.2]). In order to avoid any tech-

nical difficulties, a set is defined as minimal in Ω if it minimizes the perimeter among

competitors with whom it coincides outside of Ω. Precisely:

Definition 1.2. Let Ω ⊂ Rn be an open, bounded set, B be an open ball such that Ω̄ ⊂ B

and E ⊂ Rn be a measurable set. Given E0 := E ∩ (B \Ω), then E is a minimal set in Ω

with respect to E0 if P (E,B) <∞ and

P (E,B) ≤ P (F,B)

for any F such that

F ∩ (B \ Ω) = E0.

Since the perimeter is a local operator, the “boundary” data considered is in the prox-

imity of ∂Ω. That is why it is not necessary to require that E = F in the whole com-

plementary of Ω, and it suffices to consider the ball B (and hence, not to worry about

what happens far away from Ω). We make the choice of a ball B for simplicity, one could

consider an open set O ⊃ Ω̄, or for some ρ > 0 the set Ωρ := {x ∈ Rn | d(x, ∂Ω) = ρ}.
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In the space BV (Ω), it is also quite natural to prove the existence of minimal sets.

The lower semi-continuity of BV (Ω) functions and the fact that sequences of sets with

uniformly bounded perimeters are precompact in the L1
loc topology, allow to employ direct

methods in the calculus of variations (see, for instance, [25, Theorem 1.20], [14, Theorem

3.1]) and to prove the existence of a minimal set, for a given E0 of finite perimeter.

Theorem 1.1. Let Ω ⊂ Rn be a bounded open set and let E0 ⊂ CΩ be a set of finite

perimeter. Then there exists E a minimal set in Ω with respect to E0.

The arduous part is to prove regularity: are the boundaries of these sets actually

smooth (almost everywhere)? This is indeed the case, and this entitles the theory to refer

to boundaries of minimal sets as minimal surfaces. The boundary regularity of minimal

sets can be summed up in the following theorem.

Theorem 1.2. Let Ω ⊂ Rn be a bounded open set and E be a minimal set. Then ∂E is

smooth, up to a closed, singular set of Hausdorff dimension at most n− 8.

In other words, minimal surfaces are smooth for n ≤ 7 (and they are actually analyti-

cal). In R8, there exist minimal surfaces with singular points. A well known example is

Simons cone, which is a minimal cone (with a singularity in the origin):

S =
{
x = (x, y) ∈ R4 × R4

∣∣ |x| = |y|}.
1.1. Minimal graphs. In the first part of this Section, we have introduced the perimeter

operator and have discussed some essential properties of the following problem.

Problem 1. Given Ω ⊂ Rn a bounded open set, B an open ball such that Ω̄ ⊂ B and

E0 ⊂ B \ Ω a set of finite perimeter, find

min
{
P (E,B)

∣∣ P (E,B) <∞, E = E0 in B \ Ω
}
.

A special case of minimal sets that we look for are minimal subgraphs, case in which the

minimal surfaces are called minimal graphs. We recall the space of Lipschitz continuous
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functions, denoted by C0,1(Ω), defined for some open set Ω ⊂ Rn by continuous functions

with finite Lipschitz constant

[u]C0,1(Ω) = sup
x,y∈Ω,x 6=y

|u(x)− u(y)|
|x− y|

.

The problem of looking for minimal graphs in C0,1(Ω) can be stated as follows.

Problem 2. Given Ω ⊂ Rn a bounded open set with Lipschitz continuous boundary, and

fixing ϕ smooth enough on ∂Ω, find u ∈ C0,1(Ω) that realizes

min
u=ϕ on ∂Ω

A(u,Ω),

where A is the area operator, defined as

(4) A(u,Ω) =

∫
Ω

√
1 + |Du|2 dx.

Notice that the area operator is well defined for u ∈ C0,1(Ω).

Existence and uniqueness (given that the area functional is convex) can be proved in

the following context (see [25, Theorem 12.10]).

Theorem 1.3. Let Ω be a bounded open set with C2 boundary of non-negative mean

curvature, and ϕ ∈ C2(Rn). Then Problem 2 is uniquely solvable in C0,1(Ω).

Tools of regularity of nonlinear partial differential equations in divergence form allow

then to go from Lipschitz to analyticity in the interior and, in the hypothesis of the above

theorem, to C2(Ω̄), settling the question on regularity of minimizers of Problem 2 (see

[25, Theorem 12.11, 12.12]).

Theorem 1.4. Let u ∈ C0,1(Ω) be a solution of Problem 2. Then u is analytic in Ω. If

moreover ∂Ω and ϕ are of class Ck,α, with k ≥ 2, then u ∈ Ck,α(Ω̄).

We stress out that in order to ensure existence of a solution of Problem 2, the condition

that the mean curvature of ∂Ω is nowhere negative is necessary. We provide here [25,

Example 12.15] (see also [26, Example 1.1], [24, Section 2.3]) showing that for a domain

whose boundary is somewhere non-positive, the solution may not exist, or may not be

regular up to the boundary. The following example is depicted in Figure 1.
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Example 1.1. Let 0 < ρ < R, M > 0 be fixed, and let ARρ be the annulus

AρR =
{
x ∈ R2

∣∣ ρ < |x| < R
}
.

Define ϕ on the boundary of AρR as

ϕ(x) =

 0, for |x| = R

M, for |x| = ρ.

If u is a minimum for the area in AρR, then the spherical average of u

v(r) :=
1

2π

∫ 2π

0

u(r, θ) dθ

decreases the area. Indeed, given the strict convexity of the area functional, by Jensen’s

inequality one gets that

A(v,AρR) < A(u,AρR).

This implies that the minimum must be radial, i.e. u = u(r). The area functional can

then be written as

F (u) = 2π

∫ R

ρ

r
√

1 + (u′(r))2 dr,

with Euler-Lagrange equation implying that ru′/
√

1 + u′2 is a constant, hence

ru′(r)√
1 + (u′(r))2

= −c,

with c ∈ [0, ρ] (positive since u is non-increasing in r) to be determined using the boundary

conditions. The ODE, combined with u(R) = 0, has the unique solution

u(r) = c log

√
R2 − c2 +R√
r2 − c2 + r

.

One notices that the map

f(c) := c log

√
R2 − c2 +R√
ρ2 − c2 + ρ

is non-decreasing in [0, ρ], thus

sup
0≤c≤ρ

u(ρ) = sup
c∈[0,ρ)

f(c) = ρ log

√
R2 − ρ2 +R

ρ
:= M0,

with M0 = M0(R, ρ). However, by boundary conditions, one should have u(ρ) = M , thus

a solution exists if only if M0 ≥M . Furthermore, notice that
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• if M0 < M , Problem 2 does not have a solution;

• if M0 = M , thus when

(5) u(r) = ρ log

√
R2 − ρ2 +R√
r2 − ρ2 + r

we have that

lim
r↘ρ
|u′(r)| =∞,

implying that u is not smooth up to the boundary.

Taking into account Example 1.1, we see that looking for a minimum in C0,1(Ω) can

lead to a problem without any classical solution. Another formulation can be considered

for Problem 2, which for the existence does not require non-negative mean curvature of Ω

and relaxes the condition on the boundary data. As with general sets, one works in the

space of functions of bounded variation. For u ∈ BV (Ω), the area functional is defined as

(6) A(u,Ω) = sup
g∈C∞c (Ω,Rn+1),|g|≤1

∫
Ω

gn+1 + u divg dx,

with divg =
∑n

i=1 ∂igi(x). Notice that for u ∈ C0,1(Ω), Definition 4 is recovered.

With definition (6), the problem can be considered in this way (see [25, 14.4]).

Problem 3. Let Ω ⊂ Rn be a bounded open set, B be an open ball containing Ω̄ and let

ϕ ∈ W 1,1(B \ Ω). Find

min
{
A(u,B)

∣∣ u ∈ BV (B), u = ϕ in B \ Ω̄
}
.

Problem 3 can be reformulated. Notice that

(7)

A(u,B) = A(u,Ω) +A(u,B \ Ω̄) +

∫
∂Ω

|u− ϕ| dHn−1

= A(u,Ω) +A(ϕ,B \ Ω̄) +

∫
∂Ω

|u− ϕ| dHn−1.

Since ϕ is fixed outside of Ω, minimizing u in B with exterior data ϕ boils down to

minimizing both the area of u in Ω and the area along the vertical wall ∂Ω × R, lying

between the graph of ϕ and u. The existence for any smooth set Ω is settled in the next

Theorem, see [25, Theorem 14.5].
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Theorem 1.5. For Ω with Lipschitz continuous boundary, there exists a solution of Prob-

lem 3.

Remark 1.1. Notice the resemblance of Problem 3 with Problem 1. The similitude does

not stop at the way the problem is defined: for sets that are graphs, the two formulations

are actually equivalent. This follows after some considerations:

(1) defining the subgraph of u ∈ BV (Ω) as

Sg(u,Ω) =
{

(x, xn+1) ∈ Ω× R ⊂ Rn+1
∣∣ xn+1 < u(x)

}
,

it holds that

A(u,Ω) = P (Sg(u,Ω),Ω× R);

(2) given a set F in a cylinder, then the perimeter decreases by replacing F with a

suitable subgraph, obtained with a “vertical rearrangement” of the set F (check

[14, Lemma 5.1], [25, Lemma 14.7, Theorem 14.8]);

(3) observe that the domain in which we minimize the perimeter in the class of sub-

graphs is unbounded, so additional care is needed to deal with local minimizers

(we say that u is a local minimizer in Ω if it minimizes the functional in any set

compactly contained in Ω).

In particular, finding a minimal graph is equivalent to finding a local minimizer of the

perimeter in the class of subgraphs ([25, Theorem 14.9]). Precisely:

Theorem 1.6. Let u ∈ BVloc(Ω) be a local minimum for the area functional. Then

Sg(u,Ω) minimizes locally the perimeter in Ω× R.

Since for graphs Problem 1 and Problem 3 are equivalent, regularity of general minimal

surfaces applies to minimal graphs. Actually, purely functional techniques are used to

prove that minimal graphs are smooth in any dimension [25, Theorem 14.13].

Theorem 1.7. Let u ∈ BVloc(Ω) locally minimize the area functional. Then u is analytical

inside Ω.

On the other hand, looking at boundary regularity, [25, Theorem 15.9] states that:



52 CLAUDIA BUCUR

Theorem 1.8. Let Ω ∈ Rn be a bounded open set with C2 boundary, and let u solve

Problem 3. Suppose that ∂Ω has non-negative mean curvature near x0 and that ϕ is

continuous at x0. Then

lim
x→x0

u(x) = ϕ(x0).

The above theorem can actually be stated for domains Ω with Lipschitz boundary, by

using a suitable notion of mean curvature. Also, notice that asking for non-negative mean

curvature is more general than asking Ω to be convex.

A more attentive look at Theorem 1.8 allows us to conclude that in general, for continu-

ous boundary data ϕ and for convex domains, the stickiness phenomena does not happen

for minimal graphs. We will see that the situation dramatically changes for nonlocal

minimal graphs.

On the other hand, looking at Example 1.1, one can provide an example of stickiness

in non-convex domains.

Example 1.2. Let 0 < ρ < R, M > 0 be fixed, and let ARρ be the annulus

AρR =
{
x ∈ R2

∣∣ ρ < |x| < R
}
.

Define ϕ as

ϕ(x) =

 0, for x ∈ CBR

M, for x ∈ B̄ρ,

and let u(x) be the minimum of the area functional, defined by (5) as

u(x) = ρ log

√
R2 − ρ2 +R√
|x|2 − ρ2 + |x|

.

Consider

v(x) :=

u(x), ρ ≤ |x| ≤ R

ϕ(x), x ∈ Bρ ∪ CB̄R.

Notice that according to (7) we have that

A(v,BR+2) = A(v, AρR) +A(v,BR+2 \ ĀρR) +

∫
∂AρR

|v − ϕ| dHn−1

= A(u,AρR) +A(ϕ,BR+2 \ ĀρR) + (M0 −M)ωnρ
n−1.
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Now, u is a minimum for the area in AρR (as shown in Example 1.1), the contribution of

ϕ is fixed, and M0 is the highest possible value that u can reach. This implies that v is

a solution of Problem 3. In this case, we notice that on ∂Bρ × R the solution v sticks at

the boundary, that v is not continuous across the boundary, and the subgraph of v has a

vertical wall along the boundary of the cylinder in which we minimize. See Figure 1.

Figure 1. The geometric construction in Examples 1.1 and 1.2

2. An introduction to nonlocal minimal surfaces

Justified by nonlocal phase transition problems and by imaging processing, one is led

to introduce a nonlocal (and fractional version) of the perimeter. This was admirably

accomplished in the seminal paper [10] by Caffarelli, Roquejoffre and Savin in 2010. The

readers can check also the beautiful and useful review [23].

Roughly speaking, one would like to have a definition of the nonlocal perimeter that takes

into account long-range interactions between points in the set and in its complement, in

the whole space, weighted by the their mutual distance. The goal is then to minimize

such a perimeter in a domain Ω ⊂ Rn among all competitors coinciding outside of Ω, in a

similar way to Definition 1.2. Notice now that in the nonlocal framework the data coming

from far away plays a role, so the “boundary” data E0 is given in the whole of Rn \Ω and

the data even very distant from Ω gives a contribution.
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To arrive at the definition of fractional perimeter introduced in [10], one could start

from (3) and make use of a “fractional counterpart” of the BV semi-norm. Notice that

W 1,1(Ω) ⊂ BV (Ω), hence a good candidate turns out to be the Gagliardo W s,1 semi-norm.

For some given s ∈ (0, 1), we recall that for a measurable function u : Rn → R

[u]W s,1(Ω) =

∫
Ω

∫
Ω

|u(x)− u(y)|
|x− y|n+s

dx dy.

Informally thus (because these quantities may well be infinite), the fractional perimeter

is given by the W s,1 semi-norm of the characteristic function of the set E

Ps(E,Ω) =
1

2

(
[χE]W s,1(Rn) − [χE]W s,1(CΩ)

)
.

Of course, it would not be enough to take the W s,1 semi-norm only in Ω, because all far

away information would be lost. Nonetheless, one excludes the interactions CΩ with CΩ.

This is due to the fact that in the minimization problem the data outside of the domain

Ω is fixed, and so is that contribution. All in all, the fractional perimeter is defined as

follows.

Definition 2.1. Let s ∈ (0, 1) be fixed, Ω ⊂ Rn be an open set and E ⊂ Rn be a measurable

set. Then

Ps(E,Ω) =
1

2

∫∫
R2n\(CΩ)2

|χE(x)− χE(y)|
|x− y|n+s

dx dy.

In the above definition, notice that only the interactions between E and its complement

survive. Thus, denoting for two disjoint sets A,B ⊂ Rn

Ls(A,B) =

∫
A

∫
B

dx dy

|x− y|n+s

we can write

(8) Ps(E,Ω) = PL
s (E,Ω) + PNL

s (E,Ω),

where we separate the “local” and the “nonlocal” contributions to the perimeter (see

Figure 2)

PL
s (E,Ω) := Ls(E ∩ Ω, CE ∩ Ω),

PNL
s (E,Ω) := Ls(CE ∩ Ω, E ∩ CΩ) + Ls(E ∩ Ω, CE ∩ CΩ).
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Figure 2. The contributions to the fractional perimeter

As a remark, it holds that

W 1,1(Ω) ⊂ BV (Ω) ⊂
⋂

s∈(0,1)

W s,1(Ω),

in particular if E has finite perimeter, then it has finite fractional perimeter, for every

s ∈ (0, 1) (on the other hand, the converse is not true). One notices that sending s↘ 1,

the local perimeter comes up. This further justifies the fractional perimeter as a good

generalization, in this sense, of the classical perimeter. As a matter of fact, in [11] the

authors prove, under local regularity assumptions on ∂E, that (1− s)Ps(E,B1) as s↘ 1,

goes to the classical P (E,B1) (the result in the Γ-convergence sense is reached in [3]).

The optimal result (in the pointwise sense) can be found in [29, Theorem 1.6] (which is

based on the previous[5, Theorem 2] and [16, Theorem 1]). One has that for a set E with

finite perimeter in a neighborhood of Ω, the local component of the fractional perimeter

recovers, in the renormalized limit, the local perimeter of the set inside the domain Ω,

lim
s↗1

(1− s)PL
s (E,Ω) =

ωn−1

n− 1
P (E,Ω),

while we have that

lim
s↗1

(1− s)PNL
s (E,Ω) =

ωn−1

n− 1
P (E, ∂Ω),

concluding that

(9) lim
s↗1

(1− s)Ps(E,Ω) =
ωn−1

n− 1
P (E, Ω̄).
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Basically, in the limit, the far away data vanishes and the nonlocal component concentrates

on the boundary of the domain.

The minimization problem is the following.

Definition 2.2. Let Ω ⊂ Rn be a bounded open set. Given E0 := E \ Ω, then E is an

s-minimal set in Ω with respect to E0 if Ps(E,Ω) <∞ and

Ps(E,Ω) ≤ Ps(F,Ω)

for any F such that

F \ Ω = E0.

As in the classical case one obtains existence in the nonlocal framework by direct

methods (check [10, Theorem 3.2], [28, Theorem 1.8]).

Theorem 2.1. Let Ω ⊂ Rn be an open set and let E0 ⊂ CΩ. There exists an s-minimal

set in Ω with respect to E0 if and only if there exists F ⊂ Rn with F \ Ω = E0 such that

Ps(F,Ω) <∞.

In particular, asking Ps(Ω,Rn) < ∞ is enough to guarantee existence. Furthermore,

interestingly, as a corollary of the previous theorem, local minimizers always exist (see

[28, Corollary 1.9]).

As in the classical case again, it is much more involved to study the regularity of s-

minimal sets. Accordingly to (9), for s close to 1, it is natural to expect properties similar

to those of classical minimal surfaces (and this is proved in [12]). For any s ∈ (0, 1),

however, it is known that minimal surfaces are smooth up to dimension 2 (thanks to

[34]). As a matter of fact, the best result to this day, following from [12], [34] and [4], is

the following.

Theorem 2.2. Let s ∈ (0, 1) be the fractional parameter, Ω ⊂ Rn be a bounded open set

and E be an s-minimal set. Then

(1) ∂E is smooth, up to a closed, singular set, of Hausdorff dimension at most n− 3,

(2) there exists ε0 ∈ (0, 1/2) such that for all s ∈ (0, 1 − ε0), ∂E is smooth, up to a

closed, singular set of Hausdorff dimension at most n− 8.
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2.1. Nonlocal minimal graphs. The problem we look at in this subsection can be

thought as the fractional version of Problem 3.

Problem 4. Let Ω ⊂ Rn be a bounded open set, and let ϕ have integrable “local tail”.

Find

min
{
Fs(u,B)

∣∣ u ∈ W s,1(Ω), u = ϕ in CΩ
}
.

Consider F ⊂ Rn+1, that is the subgraph of some function u, that is

F := Sg(u,Ω) =
{

(x, xn+1) ∈ Ω× R ⊂ Rn+1
∣∣ xn+1 < u(x)

}
.

In order to deal with nonlocal minimal graphs, one could take into consideration Remark

1.1 and work in the geometric setting, thus trying to find the s-minimal graph which

locally minimizes the s-perimeter in the class of subgraphs. This approach is motivated

by a couple of observations:

• according to [20, Theorem 1.1], if one considers Ω a bounded open set with C1,1

boundary and the exterior data as a continuous subgraph in CΩ × R, then the

(local) minimizer of the s-perimeter is indeed a subgraph in Ω × R (and a local

minimizer always exists according to [28, Corollary 1.9]),

• an analogue of Point 2) of Remark 1.1 is proved in [30, Theorem 4.1.10] (and in the

upcoming paper [15]). If F \ (CΩ×R) is a subgraph, and F ∩ (Ω×R) is contained

in a cylinder, then the perimeter decreases if F is replaced by a subgraph, built

with a “vertical rearrangement ” of the set F .

In this setting, analogously to Point 3) in Remark 1.1, it is necessary to work with local

minimizers, since the nonlocal part of the perimeter could give infinite contribution.

However, remarkably in [30] (and [15]), a very nice functional setting is introduced for

the area of a graph, which is is equivalent to the perimeter framework in the following

sense.

Proposition 2.1. Let Ω ⊂ Rn be a bounded open set and u : Rn → R be a measurable

function such that u ∈ W s,1(Ω). If u is a minimizer for Fs, then u locally minimizes

Ps(·,Ω× R) among sets with given exterior data Sg(u, CΩ).
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This s-fractional area functional is introduced in the next definition.

Definition 2.3. Let Ω ⊂ Rn be a bounded open set, and let u : Rn → R be a measurable

function. Then

Fs(u,Ω) :=

∫∫
R2n\(CΩ)2

Gs
(
u(x)− u(y)

|x− y|

)
dx dy

|x− y|n−1+s
,

where

Gs(t) =

∫ t

0

(∫ τ

0

dρ

(1 + ρ2)
n+1+s

2

)
dτ.

The formula for the area functional is motivated on the one hand, by the Euler-Lagrange

equation for nonlocal minimal graphs. Namely, critical points of Fs are weak solutions

of the Euler-Lagrange equation (see also Section 2.2). On the other hand, as mentioned

previously, it is equivalent to minimize the area functional or the perimeter operator. It

actually holds that the local part of the area functional (that is, the interactions of Ω with

itself) equals the perimeter of the subgraph of the function u ∈ W s,1(Ω) (plus a constant

term), and roughly speaking, the same relation holds between the nonlocal part of the

area and that of the perimeter (see [30, Lemma 4.2.7, 4.2.8], [15]).

In order to have existence of Problem 4 in W s,1(Ω), one needs to ask a quite strong

condition on the tail. This difficulty is surmounted by the authors of [15] by choosing a

good notion of minimizer. We leave further explanations to the previously cited paper,

mentioning that the existence result is obtained in the following setting. Let O ⊂ Rn be

a given open set such that Ω is compactly contained in O. Defining the “local tail” of a

measurable function ϕ : CΩ→ R as

Tails(ϕ,O \ Ω;x) :=

∫
O\Ω

|ϕ(y)|
|x− y|n+s

dy,

we can state the existence of solutions of Problem 4 (see [30, Theorem 4.1.3] and [15]).

Theorem 2.3. Suppose that Tails(ϕ,O\Ω; ·) ∈ L1(Ω) for O big enough depending on Ω.

Then there exists a unique minimizer of Problem 4.

As for regularity, combining results from [30, 15, 8] one has the following interior reg-

ularity theorem.
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Theorem 2.4. If u ∈ W s,1(Ω) is a minimizer of Fs(·,Ω), then u ∈ C∞(Ω).

Boundary regularity of nonlocal minimal surfaces is a much more complicated and

surprising story, and it gives a quite exhaustive answer to questions about the stickiness

phenomena. A very recent result of [22] establishes, at least in the plane, a dichotomy:

either nonlocal minimal graphs are continuous across the boundary (and in that case, their

derivatives are Hölder continuous), or they are not continuous, which equals to presenting

stickiness. This result is contained in [22, Corollary 1.3]. More precisely:

Theorem 2.5. Let u : R→ R, with u ∈ C1, 1+s
2 ([−h, 0]) for some h ∈ (0, 1), be such that

u is locally s-minimal for Fs(·, (0, 1)). Then

∂Sg(u) ∩ ((0, 1)× R) is a closed, C1, 1+s
2 curve.

Moreover, the following alternative holds:

(1) either

lim
x1↘0

u(x1) = lim
x1↗0

u(x1)

and

u ∈ C1, 1+s
2 ([0, 1/2]),

(2) or

l = lim
x1↘0

u(x1) 6= lim
x1↗0

u(x1)

and there exists µ > 0 such that

u−1 ∈ C1, 1+s
2 ([l − µ, l + µ]).

Notice that this theorem says that geometrically, the s-minimal graph is a C1, 1+s
2 curve

in the interior of the cylinder, and up to the boundary. We further discuss Point 2) of

this theorem in Section 3.
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2.2. The fractional Euler-Lagrange equation. Classical minimal surfaces are char-

acterized by the fact that at regular points, the mean curvature vanishes. This holds

also in the fractional case, so we begin by introducing the fractional mean curvature (see

[1, 10]). Let E ⊂ Rn and q ∈ ∂E. Then

Is[E](q) := P.V.

∫
Rn

χCE(x)− χE(x)

|x− q|n+s
dx.

We will, for the sake of simplicity, omit the P.V. in our computations.

Just like for the s-perimeter, it holds that sending s to 1, the classical mean curvature

appears. More precisely, let E have C2 boundary, then for any q ∈ ∂E it holds that

lim
s↗1

(1− s)Is[E](q) = ωn−1H[E](q),

where H[E](q) denotes the classical mean curvature at q ∈ ∂E, with the convention that

balls have positive mean curvature.

In the case of nonlocal minimal subgraphs Sg(u) ⊂ Rn+1, one can give an explicit

formula for the mean curvature, in dependence of the function u. Suppose for simplicity

that we have a global minimal graph of u ∈ C1,α(Rn), which up to translations and

rotations satisfies u(0) = 0,∇u(0) = 0. Then for Q ∈ ∂Sg(u), (i.e. u(q) = qn+1) one can

write

Is[Sg(u)](Q) =

∫
Rn

χCSg(u)(X)− χSg(u)(X)

|X −Q|n+1+s
dX

=

∫
Rn
dx

∫ ∞
u(x)

dxn+1

(|x− q|2 + |xn+1 − qn+1|2)
n+1+s

2

−
∫
Rn
dx

∫ u(x)

−∞

dxn+1

(|x− q|2 + |xn+1 − qn+1|2)
n+1+s

2

=

∫
Rn

dx

|x− q|n+s

∫ ∞
u(x)−qn+1
|x−q|

dρ

(1 + ρ2)
n+1+s

2

−
∫
Rn

dx

|x− q|n+s

∫ u(x)−qn+1
|x−q|

−∞

dρ

(1 + ρ2)
n+1+s

2

= 2

∫
Rn

dx

|x− q|n+s

∫ u(x)−qn+1
|x−q|

0

dρ

(1 + ρ2)
n+1+s

2

,
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where we have changed variables and have used symmetry. Denoting

Gs(τ) =

∫ τ

0

dρ

(1 + ρ2)
n+1+s

2

,

recalling Definition 2.3 we notice that

G ′s(t) = Gs(t)

which allows to prove, at least formally, that

d

dε

∣∣∣∣∣
ε=0

Fs(u+ εv) = 0,

implies that, in a weak sense,

Is[Sg(u)] = 0.

This explains the connection between the fractional mean curvature operator and the

functional formulation for the area operator in Definition 2.3, introduced in [15].

The formula for the mean curvature operator can be written also “locally”, having F ⊂

Rn+1 a set that is locally the graph of a function u ∈ C1,α(Br(q)). Up to rotations and

translations, and denoting for r, h > 0

Kh
r (Q) := Br(q)× (qn+1 − h, qn+1 + h),

one has that

(10)

Is[F ](q) = 2

∫
Br(q)

Gs

(
u(x)− u(q)

|x− q|

)
dx

|x− q|n+s
+

∫
Rn\Kh

r (Q)

χCSg(u)(X)− χSg(u)(X)

|X −Q|n+1+s
dX.

The reader can check [12] where formula (10) was first introduce, [4] where the formula

for the non-zero gradient is given, [1, 27] for further discussion on the mean curvature.

We give the Euler-Lagrange equation mentioned here above in the strong form, both

in the interior and at the boundary of the domain. The following result, stated in a

condensed form in [7, Appendix B], is a consequence of [10, Theorem 5.1], where the

equation is given in the viscosity sense, [9, 4] where regularity is settled, and [20], where

the authors go from the viscosity to the strong formulation.

Theorem 2.6. Let Ω ⊂ Rn be an open set and let E be locally s-minimal in Ω.
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(1) If q ∈ ∂E and E has either an interior or an exterior tangent ball at q, then there

exists r > 0 such that ∂E ∩Br(q) is C∞ and

Is[E](x) = 0 for any x ∈ ∂E ∩Br(q).

In particular,

Is[E](x) = 0 Hn−1 − a.e. for x ∈ ∂E ∩ Ω.

(2) If q ∈ ∂E ∩ ∂Ω and ∂Ω is C1,1 in BR0(q) for some R0 > 0, and BR0(p) \Ω ⊂ CE,

then

Is[E](q) ≤ 0.

Moreover, if there exists R < R0 such that

∂E ∩ (Ω ∩Br(q)) 6= ∅ for any r < R

then

Is[E](q) = 0.

This theorem provides the Euler-Lagrange equation almost anywhere in the interior of

the domain Ω (at all regular points), and at the boundary of Ω with smooth boundary,

as long as, roughly speaking, E detaches from the boundary of Ω towards the interior, or

∂E coincides with ∂Ω near the point q.

3. The stickiness phenomena for nonlocal minimal surfaces

In the nonlocal setting, the stickiness phenomena is typical. The situation drastically

changes with respect to the classical objects since even in convex domains and with smooth

exterior data, the s-minimal surface may attach to the boundary of the domain. A first

example is given in [21, Theorem 1.1] showing stickiness to half-balls. We look for a

nonlocal minimal set in a ball, having as exterior data a half-ring around that ball. A

small enough radius of the ring will lead to stickiness. Precisely:

Theorem 3.1. For any δ > 0, denote

Kδ := (B1+δ \B1) ∩ {xn < 0},
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and let Eδ be s-minimal for Ps(·, B1) with E \ B1 = Kδ. There exists δ0 := δ0(n, s) > 0

such that for any δ ∈ (0, δ0] we have that

Eδ = Kδ.

Not only does stickiness happen in unexpected situations, what is more is that small

perturbations of the exterior data may cause stickiness. We describe this phenomena with

the example given in [21, Theorem 1.4]. It is well known that the only s-minimal set with

exterior data given by the half-plane is the half-plane itself. But surprisingly, flat lines

are “unstable” s-minimal surfaces in the following sense. Changing slightly the exterior

data by adding two compactly contained “bumps”, the s-minimal surface in the cylinder

sticks to the walls of the cylinder, for a portion which is comparable to the height of the

bumps. The exact statement is the following.

Theorem 3.2. Fix ε0 > 0 arbitrarily small. Then there exists δ0 := δ0(ε0) > 0 such that

for any δ ∈ (0, δ0] the following holds true. Consider

H = R× (−∞, 0) F− = (−3,−2)× [0, δ), F+ = (2, 3)× [0, δ),

and

F ⊃ H ∪ F− ∪ F+.

Let E be the s-minimal set in (−1, 1) × R among all sets such that E = F outside of

(−1, 1)× R. Then

E ⊇ (−1, 1)× (−∞, δ
2+ε0
1−s ).

The proof of this theorem is very interesting in itself, carried out by building a suitable

barrier from below.

As a matter of fact, taking into account the dichotomy in Theorem 2.5, it is clear that

this unstable behavior appears to be typical. This is the case: even in the plane, if we have

an s-minimal surface which is continuous across the boundary, it is enough to perturb

slightly the exterior data in order to get stickiness. Indeed, consider v : R → R smooth

enough, fixed outside of the interval (0, 1), which plays the role of the exterior data, and

let u : R → R, s-minimal with respect to v, be continuous across the boundary. Then
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smoothly perturbing v outside of the cylinder will produce an s-minimal graph which

sticks to the cylinder. This generic behavior is better explained in [22, Theorem 1.1].

Theorem 3.3. Let α ∈ (s, 1), the function v ∈ C1,α(R), and ϕ ∈ C1,α(R) non-negative

and not identically zero, such that ϕ = 0 in (−d, d + 1) for some d > 0. Consider then

u : R× [0,∞)→ R such that

u(x1, t) = v(x1) + tϕ(x1), t ≥ 0, x1 ∈ R \ (0, 1)

and suppose that the set

Et =
{

(x1, x2) ∈ R2
∣∣x2 < u(x1, t)

}
is locally s-minimal in (0, 1)× R. Assume that

lim
x1↘0

u(x1, 0) = v(0).

Then for any t > 0

lim sup
x1↘0

u(x1, t) > v(0).

4. Complete stickiness in highly nonlocal regimes

A very nice example of complete stickiness, that is when the minimal surface attaches

completely to the boundary of the domain, was recalled in Theorem 3.1. On the one

hand, complete stickiness depends on how “large” the exterior data is. On the other

hand, fixing the exterior data, we obtain complete stickiness for s small enough. Indeed,

as s gets smaller, the nonlocal contribution prevails and the effects are quite surprising.

In this section, we sum up some results from the literature related to highly nonlocal

regimes, and provide examples of complete stickiness both for nonlocal minimal sets and

graphs.

To describe the “purely nonlocal contribution”, one makes use of the set function in-

troduced in [19]

(11) α(E) = lim
s↘0

s

∫
CB1

χE(x)

|x|n+s
dx.

As [19, Examples 2.8, 2.9] show, it is possible to have smooth sets (hence with finite

s-perimeter for any s) for which the limit in (11) does not exist. In this case, neither
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lims↘0 sPs(E,Ω) exists, since the two limits are intrinsically connected. Whenever this

happens, one can use lim sup and lim inf as in [7]. For simplicity, we use however α as

defined in (11), and notice that the results in this section hold for lim sup(lim inf) instead

of the limit, whenever the limit does not exist.

The fact that this set function well describes the behavior of the perimeter as s goes to

0 is given in [19, Theorem 2.5].

Theorem 4.1. Let Ω ⊂ Rn be a bounded open set with C1,γ boundary for some γ ∈ (0, 1).

Suppose that Ps0(E,Ω) is finite for some s0 ∈ (0, 1). Then

(12) lim
s↘0

sPs(E,Ω) = α(CE)|E ∩ Ω|+ α(E)|CE ∩ Ω|.

If one goes back to (8), one gets that the local contribution completely vanishes in the

limit

lim
s↘0

sPL
s (E,Ω) = 0.

On the other hand, in the limit, the nonlocal part gives a combination of the purely

nonlocal contribution, expressed in terms of the function α, and the Lebesgue measure of

the set (or its complement) in Ω. Recalling also the limit as s ↗ 1 in (9), one could say

that in some sense, the fractional perimeter interpolates between the perimeter of the set

and its volume. It is even clearer if we take, for example, a set E bounded, with finite

perimeter, contained in Ω. Then (12) and (9) give that

lim
s↘0

sPs(E,Ω) = ωn|E|

and

lim
s↗1

(1− s)Ps(E,Ω) =
ωn−1

n− 1
P (E,Ω).

A second element describing purely nonlocal regimes comes from the mean curvature

operator. What we discover is that, as s decreases towards zero, in the limit the mean

curvature operator forgets any local information it had detained on the local geometry of

the set, and measures only the nonlocal contribution of the set. More precisely

(13) lim
s↘0

sIs[E](p) = ωn − 2α(E),

for any p ∈ ∂E and whenever ∂E is C1,γ around p, for some γ ∈ (0, 1].
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We provide a few more details on the set function α(E), which are useful in the sequel.

Denote for q ∈ Rn and R > 0

(14) αs(E,R, q) :=

∫
CBR(q)

χE(x)

|x− q|n+s
dx.

Then it holds that

lim
s↘0

sαs(E,R, q) = α(E).

In particular, this says that α represents indeed the contribution from infinity, as it does

not depend neither on the fixed point q ∈ Rn, nor on the radius we pick. So, to compute

the contribution from infinity of a set it is enough to compute its weighted measure outside

of a ball of any radius, centered at any point. For more details and examples, check [7,

Section 4]. We just recall here a couple of examples, which are therein explained: the

contribution from infinity

• of a bounded set is zero,

• of a cone is given by the opening of the cone,

• of a slab is zero,

• of the supergraph of a parabola is zero,

• of the supergraph of x3 in R2 is π,

• of the supergraph of a bounded function is ωn/2.

4.1. Complete stickiness. We start this subsection with an example. As we have al-

ready mentioned, the only s-minimal set having as the half-space as exterior data is the

half-space itself, for any value of s. On the other hand, let us try to understand what

happens if we minimize the perimeter in B1 ⊂ R2, using the first quadrant of the plane

as exterior data. As [21, Theorem 1.3] shows, there exists some small s0 such that for all

s ∈ (0, s0) the s-minimal surface sticks to ∂B1, and the s-minimal set is exactly the first

quadrant of the plane, deprived of its intersection with B1. This example still holds if,

instead of the ball, one picks a domain Ω, bounded, with smooth boundary and takes as

the exterior data the whole half-plane, deprived of some small cone, at some distance from

Ω. For simplicity, we give an example that one can keep in mind, before we introduce the

main theorem of the section.
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Example 4.1. Let for any given h ≥ 1 and θ ∈ (0, π/2)

Σ :=
{

(x1, x2) ∈ R2
∣∣∣ x2 ≥

(
(x1 − h) tan θ

)
+

}
and let E0 := Σ \ B1. Then there exists s0 > 0 such that for any s ∈ (0, s0), the set Es

that minimizes Ps(·, B1) with respect to E0, is empty inside B1, or in other words

Es = Σ \B1.

Sketch of proof. We argue by contradiction and suppose that there is some boundary of

E inside Ω. We follow the next steps.

(1) Step 1. We prove that, if there exists an exterior tangent ball at a point on

the boundary of E ∩ B̄1, of some suitable (uniform) radius, the fractional mean

curvature of E at that point is strictly positive.

(2) Step 2. We prove that there exists some ball, compactly contained in B1, which

is exteriorly tangent to the boundary of E.

(3) Step 3. We obtain a contradiction by comparing Step 1 with the Euler-Lagrange

equation (that holds, thanks to Step 2, check Theorem 2.6).

Step 1. We have set out to prove that, if there exists an exterior tangent ball at q ∈

∂E ∩ B̄1, there exists C̃ > 0 such that

Is[E](q) =

∫
Rn

χCE(x)− χE(x)

|x− q|n+s
dx ≥ C̃.

Let δ be a radius (that will be chosen as small as we want in the sequel), and p ∈ B1 such

that Bδ(p) is compactly contained in B1, exterior tangent to ∂E at q, that is

Bδ(p) ⊂ CE ∩B1, q ∈ ∂E ∩ ∂Bδ(p).

Denote p′ as the point symmetric to p with respect to q,

Dδ := Bδ(q) ∪Bδ(p
′),

Kδ as the convex hull of Dδ and

Pδ := Kδ \Dδ.

Let R > 4 be as large as we want, to be specified later on.

We split the integral into four different parts and estimate each one.
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(1) The contribution in Dδ is non-negative, since E covers “less” of Dδ than of its

complement, i.e.

χCE∩Dδ ≥ χE∩Dδ ,

hence ∫
Dδ

χCE(x)− χE(x)

|x− q|n+s
≥ 0.

(2) The contribution on Pδ is bounded from below thanks to [20, Lemma 3.1],∫
Pδ

χCE(x)− χE(x)

|x− q|n+s
≥ −C1δ

−s.

(3) As for the contribution in BR(q) \Kδ, we have that∣∣∣∣ ∫
BR(q)\Kδ

χCE(x)− χE(x)

|x− q|n+s

∣∣∣∣ ≤ ∣∣∣∣ ∫
BR(q)\Bδ(q)

χCE(x)− χE(x)

|x− q|n+s

∣∣∣∣
≤ ωn

∫ R

δ

ρ−1−s dρ = ωn
δ−s −R−s

s
.

(4) We prove that the contribution of CBR(q) is bounded by∫
CBR(q)

χCE(x)− χE(x)

|x− q|n+s
≥ C(θ)R−s

s
,

for some constant C(θ) ∈ (0, ωn/2), in particular independent on q.

Of course, ωn is actually ω2, but we keep the above formulas in this general from since

the estimates hold in any dimension.

Putting the four contributions together, our goal is to obtain that

sIs[E](q) ≥ (C(θ) + ωn)R−s − δ−s(C1s+ ωn) ≥ C(θ)

8
> 0.

Since R−s ↗ 1 as s↘ 0, there exists s small enough such that

C(θ)R−s ≥ C(θ)

2
, ωnR

−s ≥ ωn −
C(θ)

4
, C1s ≤

C(θ)

16

thus

sIs[E](q) ≥ C(θ)

4
+ ωn − δ−s

(
ωn +

C(θ)

16

)
≥ C(θ)

8
,

if and only if

(15) δ ≥ e
−1
s

log
8ωn+C(θ)

8ωn+C(θ)/2 := δs.
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Notice that δs < 1, hence for any s ∈ (0, σ) taking δ > δσ,

δ−s < δ−σ < δ−σσ ,

hence for any radius greater than δσ the s-curvature will remain strictly positive for any

s < σ. We can conclude that there exists σ such that, having at q an exterior tangent

ball of radius (at least) δσ, implies that

sIs[E](q) ≥ C(θ)

8
> 0 for all s ≤ σ.

Step 2. To carry out Step 2, we prove that there exists an exterior tangent ball to ∂E,

compactly contained in a ball slightly smaller than B1. We denote

B+
1 = B1 ∩ {x2 > 0}, B−1 = B1 ∩ {x2 < 0}.

First of all, we notice by comparison with the plane, that

B−1 ⊂ CE.

Otherwise, we start moving upwards the semi-plane {x2 ≤ 2} until we first encounter

∂E ∩ B̄−1 at p = (p1, p2). Since

CE ⊃ C{x2 > p2}, E ⊂ {x2 > p2}

it holds that

Is[E](p) = Is[E](p)− Is[{x2 > p2}](p) ≥ 0,

and since E is s-minimal, it holds in the strong sense that

Is[E](p) ≤ 0.

This would imply that E = {x2 < p2} by the maximum principle (see [7, Appendix B]),

which is false.

For some r0 > 0 and s small enough (notice that δs ↘ 0 as s↘ 0, see (15)), and x ∈ B−1 ,

consider δs < δ < r0/4 such that

Bδ(x) ⊂ B−1−r0/2 ⊂ CE.
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We remark that for a domain Ω with C2 boundary, r0 is chosen to be such that

(16) the set
{
x ∈ Ω

∣∣ d(x, ∂Ω) ≤ r0

}
still has C2 boundary

(check [7, Appendix A.2], [25, Appendix B] for instance). Suppose now by contradiction

that E is not empty inside B1−r0/2, hence

|E ∩B+
1−r0/2| > 0, in particular ∃ y ∈ E ∩B+

1−r0/2.

We consider the segment connecting x and y inside B1−r0/2, and we move the ball of

radius δ along this segment starting from x, until we first hit the boundary of E. We

denote by q the first contact point (for a more detailed discussion, see [7, Lemma A.1]),

i.e. for p ∈ B+
1−r0/2

q ∈ ∂E ∩ ∂Bδ(p), Bδ(p) ⊂ CE.

Step 3. Since at q there exists an exterior tangent ball of radius δ, we use the Euler-

Lagrange equation in the strong form and have that

Is[E](q) = 0.

This provides a contradiction with Step 1, and it follows that

|E ∩B1−r0/2| = 0.

Now it is enough to “expand” B1−r0/2 towards B1. If there is some of E in the annulus

B1 \ B1−r0/2, one can find an exterior tangent ball at ∂B1−ρ ∩ ∂E for some ρ ∈ (0, r0/2)

and use again the fact that the curvature is both strictly positive and equal to zero to

obtain a contradiction. This would conclude the proof.

It remains to prove that for q ∈ ∂E ∩ B̄1∫
CBR(q)

χCE(x)− χE(x)

|x− q|2+s
≥ C(θ)R−s

s
,

for some constant C(θ) not depending on q. We do this with a geometric argument. We

want to build a parallelogram of center q, and take R as large as we need, such as to have

the parallelogram in the interior of BR(q). Then we use symmetry arguments to obtain

the conclusion.
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We build our parallelogram in the following way, check Figure 3. We denote

l1 = (x1 − h) tan θ

and draw through q the parallel to the bisecting line of the angle complementary to θ.

We call p the intersection between this parallel line and l1, and p′ the point symmetric to

p with respect to q, that sits on this parallel line. We draw through p, p′ two lines parallel

to the axis Ox. The parallelogram we need is formed by the intersections of these last

drawn parallels to Ox, l1 and the parallel to l1 through p′. We choose R such that this

parallelogram stays in the interior of BR(q), remarking that R depends only on θ, h, and

we can make this choice independent on q ∈ B̄1. In particular, one can take

R := max

{
max
x∈B̄1

d(x, l1) cot
θ

4
, 4

}
.

Figure 3. The geometric construction in Example 4.1

This ensures that both B1 and the parallelogram we built sit inside BR(q). We identify

six “corresponding” regions, which by symmetry produce some nice cancellations. Not to

introduce heavy notations, the reader can check directly Figure 4.

Notice that

A ⊂ CE, A′ ⊂ E,

B ⊂ CE, B′ ⊂ E ∪ CE,

C ∪ C ′ ⊂ CE
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Figure 4. The geometric construction in Example 4.1

and accordingly we have that∫
CBR(q)

χCE(x)− χE(x)

|x− q|2+s
dx =

(∫
A∪A′

+

∫
B∪B′

+

∫
C∪C′

)
χCE(x)− χE(x)

|x− q|2+s
dx

≥ 2

∫
C

dx

|x− q|2+s
.

Now C contains a cone Cθ(q) centered at q, of opening γ := γ(θ), independent on q.

In particular (see Figure 5) we have that

γ

2
=
π

2
− α− π − θ

2
≥ θ

2
− θ

4
=
θ

4
,

given that

cotα =
R

d(q, l1)
≥

maxx∈B̄1
d(x, l1) cot θ

4

d(q, l1)
≥ cot

θ

4
.

Passing to polar coordinates, it follows that∫
C

dx

|x− q|2+s
dx ≥

∫
Cθ(q)

dx

|x− q|2+s
dx = γ

R−s

s
≥ θ

2

R−s

s
.

This concludes the sketch of the proof. �

The reader may wonder if this behavior depends on the particular geometry of the sets

involved. The answer is no, and actually it only matters that the exterior data occupies,

at infinity, less than half the space, or mathematically written

α(E0) <
ωn
2
.
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Figure 5. The small cone Cθ(q) in Example 4.1

Intuitively, one can try to understand why this is to be expected. Let us first check

(12), and re-write it as

lim
s↘0

sPs(E,Ω) = α(E0)|Ω|+ (ωn − 2α(E0)) |E ∩ Ω|.

In broad terms, minimizing the perimeter for s small reduces to minimizing (ωn−2α(E0))|E∩

Ω|. Hence if

α(E0) < ωn/2

the best choice to select the minimal set is to take E∩Ω = ∅ (whereas, for α(E0) > ωn/2,

E ∩ Ω = Ω would be the right choice). We notice also that if α(E0) = ωn/2, we do not

get any information at this point.

Another element that can help, and that further strengthen the intuition, is the asymp-

totic behavior of the fractional mean curvature (13). Suppose now that α(E0) < ωn/2.

Then, given the continuity of the fractional mean curvature in s (see [7, Section 5]), from

(13) for s small enough it follows that

Is[E](x) > 0,

(and this holds for any set E such that E \ Ω = E0, not only for s-minimal sets). This

strict positivity of the mean curvature comes very handy when one compares it with the
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Euler-Lagrange equation recalled in Theorem 2.6. If there exists an exterior (or interior)

tangent ball to the minimal surface ∂E, then

Is[E](x) = 0.

This would provide a contradiction at all (smooth) points on the boundary of the minimal

set, inside the domain Ω, and would show that there cannot be any boundary of E inside

Ω.

This informal discussion can be set in the following theorem (see [7, Theorem 1.7]).

Theorem 4.2. Let Ω ⊂ Rn be a bounded and connected open set with C2 boundary and

let E0 ⊂ CΩ be given such that

α(E0) <
ωn
2
.

Suppose that E0 does not completely surround Ω, i.e., there exists M > 0 and x0 ∈ ∂Ω

such that

(17) BM(x0) ∩ CΩ ⊂ CE0.

Then there exists s0 ∈ (0, 1/2) such that for all s < s0, the corresponding s-minimal

surface sticks completely to the boundary of Ω, that is

E ∩ Ω = ∅.

Sketch of the proof. We follow the proof of Example 4.1, with some additional difficulties.

Step 1. In order to carry out Step 1, we split the integral into the four components,

exactly as we did in Example 4.1. Let δ be a radius (that will be chosen as small as we

want in the sequel), and p ∈ Ω such that Bδ(p) is compactly contained in Ω, exterior

tangent to ∂E, that is

Bδ(p) ⊂ CE ∩ Ω, q ∈ ∂E ∩ ∂Bδ(p).
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Let R > 4 be as large as we wish. We observe that the estimates in 1), 2) and 3) stay

exactly the same. It only remains to prove 4), and actually we notice that∫
CBR(q)

χCE(x)− χE(x)

|x− q|n+s
dx =

∫
CBR(q)

1− 2χE(x)

|x− q|n+s
dx

=
ωnR

−s

s
− αs(E,R, q),

recalling (14). Then it follows that

sIs[E](q) ≥ ωnR
−s − δ−s(C1s+ ωn) + ωnR

−s − 2sαs(E,R, q).

Now

lim
s↘0

(
ωnR

−s − 2sαs(E,R, q)
)

= ωn − 2α(E) := C(E).

The computations follow exactly as in the proof of Example 4.1, with C(E) instead of

C(θ). Notice also that, in case E is a cone, α(E) is exactly the opening of the cone (hence,

α(Σ) = 2θ).

Therefore there exists σ such that, for all s ≤ σ, having at q an exterior tangent ball

of radius (at least) δσ, implies that

(18) sIs[E](q) ≥ C(E)

4
> 0.

Step 2. In order to prove Step 2, we need to fit a ball of suitable small radius inside

Ω ∩ CE.

We define r0 as in (16), and σ small enough such that

δσ < δ ≤ 1

4
min{M, r0}.

Since δ > δσ, (18) holds.

Denote by νΩ(x0) the exterior normal to ∂Ω at x0 ∈ ∂Ω. “Taking a step” of length

δ away from the boundary of Ω inside the ball BM(x0), in the direction of the normal,

reaching x1, we have that Bδ(x1) ⊂ BM(x0) ∩ CΩ ⊂ CE. We want to “move” this ball

along the normal towards the interior of Ω, until we reach x2, the point on the normal at

distance r0 from the boundary of Ω. We can exclude an encounter with ∂E, both on the
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boundary of Ω and inside of Ω, since in both cases we have the Euler-Lagrange equation

and Step 1, which provide a contradiction. Thus, denoting

Ω−r0/2 :=
{
x ∈ Ω

∣∣∣ d(x, ∂Ω) =
r0

2

}
,

we have that

Bδ(x2) ⊂ Ωr0/2 ∩ CE.

Now, if the boundary of E lies inside Ω−r0/2, we pick p ∈ E ∩ Ω−r0/2 and slide the

ball Bδ(x2) along a continuous path connecting x2 with p. At the first contact point on

∂E∩∂Bδ(x̄), with x̄ lying on the continuous path between x2, p, we obtain a contradiction

from Step 1 and the Euler-Lagrange equation. We obtain the same contradiction by

“enlarging” Ω−r0/2, since, at the first contact point, the ball B r0
4

provides a tangent

exterior ball to ∂E ∩ Ω−ρ, for some ρ ∈ (0, r0/2). We obtain that E ∩ Ω = ∅, concluding

the sketch of the proof. �

Of course, the analogue holds for the data that occupies, at infinity, more than half the

space. In that case, the result is as follows.

Theorem 4.3. Let Ω ⊂ Rn be a bounded and connected open set with C2 boundary and

let E0 ⊂ CΩ be given such that

α(E0) >
ωn
2
.

Suppose that CE0 does not completely surround Ω, i.e., there exists M > 0 and x0 ∈ ∂Ω

such that

BM(x0) ∩ CΩ ⊂ E0.

Then there exists s0 ∈ (0, 1/2) such that for all s < s0, the corresponding s-minimal

surface sticks completely to the boundary of Ω, that is

E ∩ Ω = Ω.

On the other hand, if

α(E) =
ωn
2
,
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neither (12) nor (13) provide any additional information, since we get that

lim
s↘0

sPs(E,Ω) =
ωn
2
|Ω|

and that for any q ∈ ∂E

lim
s↘0

sIs[E](q) = 0.

This is actually not strange at all, since in this case, everything could happen, depending

on Ω, E0 and their respective positions. Take as an example the “simplest” minimal set,

the half-plane. If Ω ⊂ {x2 < 0}, then E ∩ Ω = Ω, if Ω ⊂ {x2 > 0} then E ∩ Ω = ∅, while

if Ω sits “in the middle”, E covers the Ω ∩ {x2 < 0}, and it is empty in Ω ∩ {x2 > 0}.

Naturally, one may wonder what happens if (17) does not holds, hence if the exterior

data completely surrounds Ω. At least with the geometrical type of reasoning we used, in

absence of (17) we are unable to obtain the conclusion of complete stickiness. However,

only two alternatives hold: either for s small enough all s-minimal surfaces stick or they

develop a wildly oscillating behavior. Indeed, as precisely stated in [7, Theorem 1.4 B],

either there exists σ > 0 such that for any s < σ, all corresponding s-minimal sets with

exterior data E0 are empty inside Ω, or there exist decreasing sequences of radii δk ↘ 0

and of parameters sk ↘ 0 such that for every corresponding sk-minimal set with exterior

data E0, it happens that ∂Esk intersects every ball Bδk(x) compactly contained in Ω. For

further details and a thorough discussion, refer to [7].

To conclude this note, we reason on Example 1.2 in the nonlocal framework for s

small enough. The question is what happens in an unbounded domain Ω and what does

complete stickiness mean in this case.

Example 4.2. Let 0 < ρ < R, M > 0 be fixed, and let ARρ be the annulus

AρR =
{
x ∈ R2

∣∣ ρ < |x| < R
}
.

Let ϕ : Rn → R be such that

ϕ(x) = M, for x ∈ B̄ρ,

ϕ(x) = 0, in ARR+2
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and such that at infinity, it satisfies

α(Sg(ϕ)) <
ωn+1

2
,

for instance, depicted in Figure 6.

Figure 6. Example 4.2

We want to minimize the s-perimeter in AρR×R, in the class of subgraphs with exterior

data given by ϕ. What happens is that for any K large enough, there exists some

s := s(K) > 0 small enough such that

us ≤ −K.

This means that for small values of the fractional parameter, the stickiness occurs on both

walls of the cylinder, with the height of the stickiness being as large as we want. The idea

of the proof starts from Theorem 4.2. The exterior data does not surround the domain,

thus we may start moving a ball from the outside towards the inside. There is however

the challenge of the unbounded domain AρR × R. We could solve this issue by cutting

the cylinder at some height, solving the problem in the cut cylinder and then making

that height as large as we want. Doing this, one should also take into account that, in

principle, the data in the infinite cylinder minus the cut cylinder will contribute to α (this

is actually negligible, since the slab has zero contribution from infinity). However, this

cutting procedure provides a non smooth domain, thus Theorem 4.2 cannot be applied
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directly. One could “smoothen” the domain by building “domes” on top of cylinders, or

find a new approach to the proof that does not require a smooth domain.

This discussion will be developed in [6], where the authors prove a general theorem

related to Example 4.2, more precisely on the Plateau problem for nonlocal minimal

graphs, with obstacles. We propose here a sketch of the theorem, referring to the original

work for the complete statement, proof and further details.

Theorem 4.4. Let Ω ⊂ Rn be a bounded and connected open set with C2 boundary and

let ϕ : Rn → R be such that

ϕ ∈ L∞loc(Rn) and α
(
Sg(ϕ)

)
<
ωn+1

2
.

Let A ⊂⊂ Ω be a bounded open set (eventually empty) with C2 boundary. Let also

a) ψ ∈ C2(A).

or

b) ψ ∈ C(A) ∩ C2(A) be such that the supgraph of ϕ has C2 boundary, i.e.

(Ω× R) \ Sg(ϕ, Ā) =
{

(x, t) ∈ Rn+1
∣∣x ∈ A, t > ψ(x)

}
has C2 boundary.

For every s ∈ (0, 1) we denote by us the unique s-minimal function that satisfiesus = ϕ a.e. in CΩ

us ≥ ψ a.e. in A.

Then for every k there exists sk ∈ (0, 1) decreasing towards 0, such that

us ≤ −k a.e. in Ω \ A and us = ψ a.e. in A,

for every s ∈ (0, sk). In particular

lim
s→0

us(x) = −∞, uniformly in x ∈ Ω \ A.

In this theorem, ϕ plays the role of the boundary data, whereas ψ is the obstacle. We

conclude by remarking that the s-minimal sets asymptotically “empties” the unbounded

domain Ω, whereas if we pick a large enough K, the s-minimal surface will stick to both
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walls of the cylinder, from −K until respectively reaching the boundary data ϕ and the

obstacle ψ.
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