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Abstract. In this Note we collect some results in Rn about (p, q) Poincaré and Sobolev

inequalities, with 1 ≤ p < n, for differential forms obtained in a joint research with

Franchi and Pansu. In particular, we focus to the the case p = 1 . From the geometric

point of view, Poincaré and Sobolev inequalities for differential forms provide a quanti-

tative formulation of the vanishing of the cohomology. As an application of the results

obtained in the case p = 1 we obtain a Poincaré and Sobolev inequalities for Euclidean

currents.

Sunto. In questa Nota presentiamo alcuni risultati ottenuti in una ricerca in collabo-

razione con Franchi e Pansu che riguardano disuguaglianze (p, q) di Poincaré e di Sobolev

(1 ≤ p < n) per forme differenziali e correnti in Rn. Ci soffermeremo in particolare sul

caso dell’ esponente p = 1. Dal punto di vista geometrico le disuguaglianze di Poincaré

e Sobolev per forme differenziali sono una formulazione di tipo quantitativo in teoria

della coomologia. Il caso p = 1 si presta inoltre ad essere generalizzato alla teoria delle

correnti e in questa Nota otteniamo una disuguaglianz di Poincaré (e di Sobolev) per

correnti.
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1. Introduction

In the Euclidean setting Rn, when dealing with differential forms there is a well known

topological problem, whether a given closed form is exact. Beside, for several applications

to the cohomology theory for example, we can study also an analytical problem: whether

a primitive φ of a given exact form ω can be upgraded to one which satisfies a (p, q)

estimate of the type ‖φ‖q ≤ c‖ω‖p. More precisely, if 1 ≤ p < n, we ask whether, given a

closed differential h-form ω in Lp(Rn), there exists an (h− 1)-form φ in Lq(Rn) for some

q ≥ p such that dφ = ω and

(1) ‖φ‖q ≤ C ‖ω‖p,

for C = C(n, p, q, h). We refer to the above inequality as to the (p, q)-Poincaré inequality

for h-forms (notice that, by the scale invariance, we must have 1
p
− 1

q
= 1

n
). We notice that

there is a connection between the above inequality and the classical Poincaré inequality.

Recall that classical Poincaré inquality for functions says that, if 1 ≤ p < n, for any (say)

Lipschitz continuous function u there exists a constant cu such that

‖u− cu‖q ≤ C(N, p) ‖∇u‖p provided
1

p
− 1

q
=

1

n
.

Classical Poincaré inequality for functions (i.e. 0-forms) can be derived from Poincaré

inequality for differential forms. Indeed, we notice that du =: ω is a closed form so that,

if there exists φ in Lq(Rn) such that dφ = ω, then u− φ = cu (since u− φ is closed) and

then

‖u− cu‖q = ‖φ‖q ≤ C ‖du‖p ≤ C ‖∇u‖p.

Sobolev inequality in Rn deals with compactly supported 0-forms, i.e. functions u on

Rn, and 1-forms, their differentials du. It states that

‖u‖q ≤ Cp,q,n‖du‖p

whenever

1 ≤ p, q < +∞, 1

p
− 1

q
=

1

n
.

In 1993 Iwaniec & Lutoborski (see [11], Corollary 4.2) proved the following remarkable

Poincaré inequalities for differential forms, for 1 < p < ∞. Let D be (say) a ball in
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Rn, and let ω be a h-form in Rn with distributional coefficients such that dω has Lp

coefficients, then there exists a closed h-form ωD such that

(2) ‖ω − ωD‖Lpn/(n−p)(D) ≤ C‖dω‖Lp(D),

(a Sobolev inequality was proved by [14], Theorem 4.1 and equation (169)).

A straightforward computation shows that this statement can be formulated as in (1).

The statement above actually holds for bounded convex domains. However, for more

general Euclidean domains, the validity of Poincaré inequality is sensitive to irregularities

of boundaries. One way to eliminate such a dependence is to allow a loss on domain (this

has been done, in a more general subriemannian setting in [2]). In fact, if we are for

example interested in applications to the cohomology theory, a weaker form of Poincaré

inequality (2) suffices. We can call it interior Poincaré inequality or Poincaré inequality

with loss of domain (see [15]), and it reads as follows.

Let D,D′ be two balls in Rn, D ⊂⊂ D′ and let ω be a closed form in D′ with Lp

coefficients. Then ω admits a potential φ in Lpn/(n−p)(D) and

‖φ‖Lpn/(n−p)(D) ≤ C‖ω‖Lp(D′).

Analogously, by interior Sobolev inequalities, we mean that, if ω is supported in D, then

there exists φ supported in D′ such that dφ = α and

‖φ‖Lpn/(n−p)(D′) ≤ C ‖ω‖Lp(D).(3)

We stress that the interior Poincaré inequality, though apparently weaker than the Poincaré

inequality without loss of domain, is, under other respects, more general since it is not

affected by the geometry of the boundary of D (the word “interior” refers precisely to

this feature). Moreover, the interior Sobolev and Poincaré inequalities that we derive

from [11], [14] can be extended to the endpoint case p = 1 (the case p = 1 has been

studied indeed in [3], see Theorem 2.1 below and in a subriemannian setting in [1]). The

interior Sobolev and Poincaré inequalities can be extended also to the case p = n (it is a

straightforward consequence of [11] and [5] in Rn, see also [4] for a non-Euclidean setting).

In this note, In Section 2 we expose the results and the scheme of the proof of Poincaré

inequality for differential forms (1), in fact very shortly, since the details are already
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contained in the papers quoted above. On the other hand, interesting consequences of the

results contained in [3] (see Theorem 2.1 below) are the following Poincaré and Sobolev

type inequalities for Euclidean currents. The statement for currents reads as follows (see

Section 3 below for precise definitions):

Theorem 1.1. For h = 1, . . . , n − 1, let q = n/(n − 1). Let B ⊂ Rn be a bounded open

convex set, and let B′ be an open set, B ⊂⊂ B′. Then there exists C = C(n,B,B′) with

the following property:

(1) Interior Poincaré inequality. For every h-current T in B′ with finite mass M(T )

and such that ∂T = 0, there exists an (h − 1)-form φ ∈ Lq(B), such that, if we

denote by Tφ the current associated with φ,

∂Tφ = T, and ‖φ‖Lq(B) ≤ CM(T ).

(2) Sobolev inequality. For every h-current supported in B with finite mass M(T ) and

such that ∂T = 0, there exists an (h − 1)-form φ ∈ Lq(B′), with support in B′,

such that

∂Tφ = T and ‖φ‖Lq(B′) ≤ CM(T ).

2. Poincaré and Sobolev inequalities for differential forms in Rn

Throughout the present note our setting will be the Euclidean space Rn with n > 2. If

f is a real function defined in Rn, we denote by vf the function defined by vf(p) := f(−p),

and, if T ∈ D′(Rn), then vT is the distribution defined by 〈vT |φ〉 := 〈T |vφ〉 for any test

function φ.

We remind also that the convolution f ∗ g is well defined when f, g ∈ D′(Rn), provided

at least one of them has compact support.

As customary, a basis of the tangent space
∧

1(Rn) := Rn is given by (∂x1 , . . . , ∂xn). We

denote by 〈·, ·〉 the scalar product making (∂x1 , . . . , ∂xn) orthonormal.

The dual space of
∧

1(Rn) is denoted by
∧1(Rn) =: (Rn)∗. The basis of

∧1(Rn), dual

to the basis (∂x1 , . . . , ∂xn), is the family of covectors (dx1, . . . , dxn) and we again indicate

as 〈·, ·〉 the inner product in (Rn)∗ that makes (dx1, . . . , dxn) an orthonormal basis.
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We put
∧

0(Rn) =
∧0(Rn) := R and, for 1 ≤ h ≤ n,∧

h

(Rn) := span{∂xi1 ∧ · · · ∧ ∂xih : 1 ≤ i1 < · · · < ih ≤ n}

and

h∧
(Rn) := span{dxi1 ∧ · · · ∧ dxih : 1 ≤ i1 < · · · < ih ≤ n} .

If I := (i1, . . . , ih) with 1 ≤ i1 < · · · < ih ≤ n, we set |I| := h and

dxI := dxi1 ∧ · · · ∧ dxih .

The elements of
∧
h(Rn) and

∧h(Rn) are called h-vectors and h-covectors respectively.

The scalar products in the spaces of 1-vectors and 1-covectors can be canonically extended

to
∧
h(Rn) and

∧h(Rn) respectively.

The Hodge star operator is a linear operator

∗ :
h∧

(Rn)→
n−h∧

(Rn)

defined by ξ ∧ η = 〈ξ, ∗η〉 for any η ∈
∧n−h(Rn) .

If v ∈
∧
h(Rn) and ξ ∈

∧h(Rn), |v| and |ξ| denote as costumary their Euclidean norm.

We recall now the definition of the comass norm of a covector (see [9], Chapter 2, Section

2.1).

Definition 2.1. We denote by ‖ξ‖ the comass norm of a covector ξ ∈
∧h(Rn) by

‖ξ‖ = sup

{
〈ξ|v〉

∣∣ v ∈∧
h

(Rn), |v| ≤ 1, v simple

}
.

By formula (13) of [10], Chapter 1, Section 2.2, there exists a geometric constant c1 > 0

such that

(4) c−11 |ξ| ≤ ‖ξ‖ ≤ |ξ| for all ξ ∈
∧h(Rn).

By translation,
∧h(Rn) defines a fibre bundle over Rn, still denoted by

∧h(Rn). A

differential form on Rn is a section of this fibre bundle.

Through this Note, if 0 ≤ h ≤ n and U ⊂ Rn is an open set, we denote by Ωh(U) the

space of differential h-forms on U , and by d : Ωh(U)→ Ωh+1(U) the exterior differential.
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Thus (Ω•(U), d) is the de Rham complex in U and any u ∈ Ωh can be written as u =∑
|I|=h uIdx

I .

If U is an open set in Rn we write that a h-form ω ∈ D(U) if their components with

respect to a fixed basis belong to D(U). Analogously, a h form ω ∈ Lp(U) if their

components with respect to a fixed basis are in Lp(U), endowed with its natural norm.

Clearly, these definition are independent of the choice of the basis itself.

In the following two subsections we sketch the principal steps used to prove the Poincaré

inequality (1) respectively for the case p > 1 and p = 1. The details of the proofs, as

remarked above, can be found in the references already quoted [11] and [3] (and if one is

interested to a non-Euclidean setting analougus results are proved respectively in [2] and

[1] for the Heisenberg groups).

2.1. Scheme of proof of (1) for p > 1: homotopy operators. The most efficient way

to prove a Poincaré inequality in the whole Rn is to find a homotopy between identity

and 0 on the complex of differential forms, i.e. a linear operator K that raises the degree

by 1 and satisfies

1 = dK +Kd.

The Laplacian provides us with such a homotopy. Write ∆ = dd∗+ d∗d where d∗ is the

formal L2-adjoint of d. Denote by ∆−1 the operator of convolution with the fundamental

solution of the Laplacian. Then ∆−1 commutes with d and its adjoint d∗, hence K :=

d∗∆−1 satisfies 1 = dK +Kd on globally defined Lp differential forms. The operator K is

given by convolution with a homogeneous kernel of type 1 in the terminology of [6], hence

it is bounded from Lp to Lq if p > 1. This proves the (p, q)-Poincaré inequality in Rn .

To pass to bounded sets, we recall that Poincaré’s Lemma asserts that every closed

form on a ball is exact. We need a quantitative version of this statement. The standard

proof of Poincaré’s Lemma relies on a homotopy operator which depends on the choice

of an origin. Iwaniec and Lutoborski, [11] observed that averaging it over origins yields

a bounded operator K : Lp → Lq. Hence we get the Euclidean Poincaré inequality for



20 ANNALISA BALDI

convex domains. A support preserving variant J : Lp → Lq appears in Mitrea-Mitrea-

Monniaux, [14] and this proves the (p, q)-Sobolev inequality for bounded convex Euclidean

domains with p > 1.

2.2. Scheme of the proof of (1) for p = 1. As noticed above, the case p > 1 has been

fully understood on bounded convex sets by Iwaniec & Lutoborsky ([11]) and in the full

space Rn an easy proof consists in putting φ = d∗∆−1ω. Unfortunately, this argument

does not suffice for p = 1 since, by the Hardy-Littlewood-Sobolev inequality (see [16]

Theorem 1 pag.119 ), d∗∆−1 maps L1 only into the weak Marcinkiewicz space Ln/(n−1),∞.

Upgrading from Ln/(n−1),∞ to Ln/(n−1) is possible for functions (see [13], [7], [8]). but the

trick used for functions does not seem to generalize to differential forms.

We explain here, very roughtly the idea contained in [3] to prove Poincaré inequality

(1) in the case p = 1.

Set q = n/(n − 1). The core of the proof consists of two points. The first one is the

following result due to Lanzani-Stein [12], that says that for smooth compactly supported

differential forms φ of degrees < n− 1 with d∗φ = 0, we have

(5) ‖φ‖n/(n−1) ≤ C ‖dφ‖1 .

In other words, the classical Gagliardo-Nirenberg inequality is the first link of a chain of

analogous inequalities for compactly supported smooth differential forms. Starting from a

closed differential forms ω in L1, to prove Poincaré inequality, micking the proof for p > 1

one could be tempted to take again φ = d∗∆−1ω and replace the usual Lp−Lq boundedness

of singular integrals of potential type by using Lanzani-Stein inequality (5). Indeed, it

is easy to check d∗φ = 0 and the desired estimate ‖φ‖n/n−1 ≤ ‖ω‖1 almost follows from

Lanzani-Stein inequality, except that φ is not compactly supported so cannot be directly

plugged in (5). The trick used in [3] then is to show instead (up to a regularization

argument) that

‖φR‖n/n−1 ≤ c‖ω‖1 + o(1)

where φR := d∗(χR∆−1) is a suitable smooth localization of φ to a (large) ball of radius

R, and o(1)→ 0 as R→ +∞.
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In expression above we have o(1) since the use of an argument of truncation produces

commutation terms. They have to be handled carefully:

dφR = [dd∗, χR]∆−1ω + χRdd
∗∆−1ω = [dd∗, χR]∆−1ω + χRω.

Using (5) (possible because now φR is compactly supported),

‖φR‖Ln/(n−1) ≤ C‖dφR‖L1(Rn) = C‖dd∗(χR∆−1ω)‖L1(Rn)

≤ C
{
‖[dd∗, χR](∆−1ω)‖L1(Rn) + ‖χR(dd∗∆−1ω)‖L1(Rn)

}
.

(6)

The second term of the left hand side can be handled by a duality argument. In fact,

we can show that

ω = ∆∆−1ω = dd∗∆−1ω + d∗d∆−1ω

= dd∗∆−1ω + d∗∆−1dω = dd∗∆−1ω.

The point is to estimate the garbage term ‖[dd∗, χR]∆−1ω‖1.

Notice that [dd∗, χR] is a first order differential operator, of the form [dd∗, χR] = P0+P1

where P0 has order 0 and depends on second derivatives ∇2χR and P1 has order 1 and

depends on first derivatives∇χR only. Both P0∆
−1 and P1∆

−1 have homogeneous kernels.

Now we can use the key trick used in [3] (Lemma 2.6), that is if P is the operator of

convolution with a kernel of type µ > 0, and ω ∈ L1, then the L1 norm of Pω on shells

B(0, 2R) \B(0, R) is o(Rµ).

Therefore, if we take χR such that dχR is supported in the shell B(0, 2R) \ B(0, R),

|∇χR| ≤ 1
R

and |∇2χR| ≤ 1
R2 , then ‖P0∆

−1ω‖1 and ‖P1∆
−1ω‖1 tend to 0 as R → ∞.

Then, letting R → ∞ in (6), ‖φ‖q stays uniformly bounded, yielding eventually that

d∗∆−1ω ∈ Lq, thanks to Fatou’s theorem. The Poincaré inequality (1) is proved also for

p=1.

2.2.1. Interior results for p = 1. We recall now to the following result proved in [3] (see

Corollary 1.2 and the proof therein), that concerns interior Poincaré and interior Sobolev

inequality in the case p = 1, where the world “interior” is meant to stress the loss of

domain from B′ to B.
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Theorem 2.1. For h = 1, . . . , n − 1, let q = n/(n − 1). Let B ⊂ Rn be a bounded open

convex set, and let B′ be an open set, B ⊂⊂ B′. Then there exists C = C(n,B,B′) with

the following property:

(1) Interior Poincaré inequality. For every closed h-form ω in L1(B′), there exists an

(h− 1)-form φ ∈ Lq(B), such that

dφ = ω|B, and ‖φ‖Lq(B) ≤ C ‖ω‖L1(B′).

(2) Sobolev inequality. For every closed h-form ω ∈ L1 with support in B, there exists

an (h− 1)-form φ ∈ Lq, with support in B′, such that

dφ = ω and ‖φ‖Lq(B′) ≤ C ‖ω‖L1(B).

Sketch of the proof: The proof of this local Poincaré inequality is based on Iwaniec-Lutoborsky’s

homotopy, [11]. The core of Iwaniec & Lutoborski’s argument relies on the construction

of an homotopy operator TIL : Lp(B)→ W 1,p(B) which is defined by a kernel k that can

be estimated by a singular integral of potential type that is homogeneous of degree 1−N .

We start from the homotopy operator d∗∆−1 (that is associated with an homogeneous

kernel), through successive localizations obtained by means of a family of cut-off functions,

we obtain an approximate homotopy formula for L1-forms α on B′ such that dα ∈ L1(B′):

α = dTα + Tdα + Sα on B

(here is the loss of the domain). Here T a bounded operator

T : L1(B′) ∩ d−1(L1(B′))→ Lq(B)

with if q = n/(n− 1) (in other words, T has the good continuity properties), and S is a

smoothing operator

S : L1(B′)→ W s,q(B).

Take now α = ω that is a closed form. Thus Sω = ω − dTω is closed and belongs to

Lq(B), with norm controlled by the L1-norm of ω in B′. Thus we can apply Iwaniec &

Lutoborski’s homotopy TIL to the smoothed form Sω to obtain

Sω = dTILSω =: dγ
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on B with the norm of γ in W 1,q(B) controlled by the Lq-norm of Sω in B, and therefore

by the L1-norm of ω. Set φ := Tω + γ. Clearly

dφ = dTω + dγ = dTω + Sω = ω.

In addition

‖φ‖Lq(B) ≤ C
(
‖ω‖L1(B) + ‖Sω‖Lq(B)

)
≤ C‖ω‖L1(B),

and we are done.

�

3. Poincaré and Sobolev inequalities for currents

To keep the paper self contained we recall briefly some definitions and results concerning

Euclidean currents. We refer to e.g. [9] for a detailed presentation.

Definition 3.1. If U ⊂ Rn is an open set and 0 ≤ h ≤ n, we say that T is a h-current on

U if T is a continuous linear functional on smooth compactly differential h-forms endowed

with the usual topology. The space of h-dimensional currents in U is denoted by Dh(U). If

u is a h differential form in L1
loc(U), then u can be identified canonically with a h-current

Tu through the formula

〈Tu|ϕ〉 :=

∫
U
∗u ∧ ϕ =

∫
U
〈u, ϕ〉 dx

for any h form ϕ smooth compactly supported on U .

From now on, if there is no way to misunderstandings, and u is differential forms with

coefficients belonging to L1
loc(U), we could write also u instead of Tu.

Suppose now u be a h form sufficiently smooth (take for instance u ∈ C∞(Rn). If

φ ∈ D(Rn) is n− h+ 1 form, then, by Stokes formula,∫
Rn
du ∧ φ dx = (−1)h

∫
Rn
u ∧ dφ dx.

Thus, if T ∈ Dh(Rn) it is natural to set

〈∂T |φ〉 = 〈T |dφ〉

for any (h− 1) form φ ∈ D(Rn) and we call the h− 1 current ∂T the boundary of T .
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Definition 3.2. Let U be open set. Let T, Tj ∈ Dh(U), we say that the sequence {Tj}

converges in the sense of currents to T , and we write Tj → T in the sense of currents, if

〈Tj|α〉 → 〈T |α〉 for any h form α ∈ D(U).

As for distributions, the support of a current T ∈ Dh(U) is defined as sptT =
⋂
{K ⊂

U | K relatively closed in U , 〈T |α〉 = 0 for all h form α ∈ D(U) with suppα ⊂ U \K}.

Following [9] Section 2.3 and keeping in mind Definition 2.1, we introduce also the

notion of mass of a current.

Definition 3.3. Let U ,V be open sets and V ⊂ U . Let T ∈ Dh(U). We set

MV(T ) := sup {〈T |α〉 |α h− form in D(U , ) suppα ⊂ V , ‖α‖ ≤ 1 ∀x ∈ U} ,

and we say that T is of finite mass if MV(T ) is finite. If V = U we shall simply write

M(T ) instead of MV(T ).

With the previous definitions in mind, we are ready to prove the following regularization-

type results for currents.

Theorem 3.1. Let U ⊂ Rn be an open set, and let T be a h-current in U of finite mass

M(T ). Then for any 0 < ε << 1 there exists ωε ∈ C∞(U) h-form such that, if we set

Tε := Tωε we have:

i) Tε → T in the sense of currents;

ii) ‖ωε‖L1(U) ≤ c1M(Tε) ≤ c2M(T );

iii) if ∂T = 0 then the forms ωε are closed;

iv) if T is compactly supported in U then the the forms ωε are compactly supported in

an open set Ũ ⊂⊂ U depending only on the support of T .

Proof. The existence of a sequence of currents Tε satisfying i) is proved in Proposition 3

of [9], Chapter 5, Section 2.1. On the other hand, by the subsequent Proposition 6, the

currents Tε can be written as Tε := Tωε , where ωε is a h-form in C∞(U). We notice now

that, if denote by ‖ξ‖ the comass norm of a covector ξ ∈
∧h(Rn) (see Definition 2.1), by

formula (4) there exists a geometric constant c1 > 0 such that

|ξ| ≤ c1‖ξ‖ for all ξ ∈
∧h(Rn).
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Thus, keeping in mind again Proposition 6 of [9], Chapter 5, Section 2.1

‖ωε‖L1(U) ≤ c1

∫
U
‖ωε‖ dV = c1M(Tε) ≤ c2M(T ),

by Proposition 2 - iii) of [9], Chapter 5, Section 2.1. This proves ii). Moreover, assertion

iv) of the same proposition of [9], yields our iv). Finally, iii) follows from Proposition 4 -

ii) of [9], Chapter 5, Section 2.1.

�

We are now able to prove the following Poincaré and Sobolev inequalities for currents.

Proof of Theorem 1.1. Keeping the notations of Theorem 3.1 with U = B′, if we choose

a sequence (εk)k∈N, εk → 0 as k → ∞ and we write for sake of simplicity ωk := ωεk , by

Theorem 3.1 -iii) ωk are closed, hence by Theorem 2.1-(1), for any k ∈ N there exists a

(h− 1)-form

φk ∈ Lq(B) such that dφk = ωk in B,

and, by Theorem 3.1 - ii),

‖φk‖Lq(B) ≤ C ‖ωk‖L1(B′) ≤ CM(T ).(7)

Since q > 1, it follows from (7) that there exists a (h− 1)-form φ ∈ Lq(B) such that (up

to a subsequence)

φk → φ weakly in Lq(B).

Therefore

‖φ‖Lq(B) ≤ lim inf
k
‖φk‖Lq(B) ≤ CM(T ).(8)

In particular, Tφk → Tφ in the sense of currents. Therefore, keeping in mind Theorem 3.1

- i),

∂Tφ = lim
k
∂Tφk = lim

k
Tdφk = lim

k
Tωk = T.(9)

This proves Poincaré inequality. As for Sobolev inequality, we carry on the same argu-

ment relying on Sobolev inequality for L1-forms stated in Theorem 2.1-(2) and keeping

again into account Theorem 3.1.
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[3] , L1-Poincaré and Sobolev inequalities for differential forms in Euclidean spaces, Sci. China

Math. 62 (2019), no. 6, 1029–1040. MR 3951879
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