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Abstract. We report on some recent results obtained for positive radial solutions of

Lane-Emden-Fowler type equations with Pucci’s operators as principal parts. The pre-

sented results include the asymptotic analysis of almost critical solutions in the unit

ball, existence results in annular domains and sharp Liouville-type results for exterior

Dirichlet problems.

Sunto. Vengono presentati alcuni risultati recenti riguardanti soluzioni radiali positive

di equazioni tipo Lane-Emden-Fowler aventi gli operatori di Pucci come parte principale.

I risultati includono un’analisi asintotica per soluzioni quasi-critiche nella palla unitaria,

teoremi di esistenza per domini anulari e teoremi di tipo Liouville ottimali per problemi

di Dirichlet in domini esterni.
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1. Introduction

We report on some recent results from [2, 11, 12] about positive radial solutions of the

Lane-Emden-Fowler type equations

(1) −M±
λ,Λ(D2u) = up
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where p > 1 and M±
λ,Λ are the Pucci extremal operators. For fixed constants Λ ≥ λ > 0

we set

M−
λ,Λ(X) = inf

λI≤A≤ΛI
tr(AX) = λ

∑
µi>0

µi + Λ
∑
µi<0

µi

M+
λ,Λ(X) = sup

λI≤A≤ΛI
tr(AX) = Λ

∑
µi>0

µi + λ
∑
µi<0

µi

µ1, . . . , µn being the eigenvalues of any squared symmetric matrix X.

Pucci’s extremal operators, acting as barriers in the whole class of operators with fixed

ellipticity constants λ ≤ Λ, are the prototype of fully nonlinear uniformly elliptic operators

and they play a crucial role in the regularity theory for fully nonlinear elliptic equations,

see [4].

We recall that if Λ = λ, both Pucci’s operators reduce, up to a multiplicative factor,

to the Laplace operator. Thus, the semilinear equation −∆u = up is included as a very

special case of the problems we are considering.

Associated with the operators M±
λ,Λ, there are the dimension like parameters

ñ− : = Λ
λ

(n− 1) + 1 for M−
λ,Λ ,

ñ+ : = λ
Λ

(n− 1) + 1 for M+
λ,Λ ,

which are referred to as “intrinsic” or “effective” dimensions of the considered operators.

Let us observe that one has always ñ+ ≤ n ≤ ñ−, and equalities hold true if and only if

Λ = λ.

In some previously studied cases, the numbers ñ± are known to determine the optimal

threshold for the exponent p separating the existence from the nonexistence range for

solutions of equation (1). Namely, in [5] the case of entire supersolutions was considered,

by proving that, in the case ñ± > 2,

∃u > 0 , −M±
λ,Λ(D2u) ≥ up in Rn ⇐⇒ p >

ñ±
ñ± − 2

,

and, in the case ñ± ≤ 2, no positive supersolutions exist for any p > 0. In the sequel, we

will always assume that ñ± > 2. The same threshold has been proved in [1] to be optimal
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for the existence of solutions in any exterior domain, that is

∃u > 0 , −M±
λ,Λ(D2u) = up in Rn \K ⇐⇒ p >

ñ±
ñ± − 2

,

where K ⊂ Rn is any nonempty compact set. In the above results, supersolutions are

meant in the viscosity sense and any symmetry property on u is required.

The above Liouville type results may be used to obtain a-priori estimates and con-

sequent existence results for positive solutions of Dirichlet problems posed in bounded

domains, see [15]. However, these are obtained under the restriction p ≤ ñ±
ñ±−2

which is

not the optimal threshold on p for the existence of solutions. For existence results in

half-spaces we refer to [14].

Better existence results under optimal thresholds on the exponent p can be obtained

if we restrict our attention to radially symmetric solutions. In the radial setting, the

existence of entire positive solutions has been studied in [9], where it has been proved that

there exist two critical exponents p∗+ and p∗− associated withM+
λ,Λ andM−

λ,Λ respectively,

such that

∃u radial, u > 0 , −M±
λ,Λ(D2u) = up in Rn ⇐⇒ p ≥ p∗± .

The dependence of the radial critical exponents on the effective dimensions is not explicitly

known, but they are shown to satisfy, when λ < Λ,

ñ− + 2

ñ− − 2
< p∗− <

n+ 2

n− 2
< p∗+ <

ñ+ + 2

ñ+ − 2
.

Thus, the critical exponents p∗± play in the fully nonlinear radial setting the same role

played by the well known Sobolev exponent n+2
n−2

in the semilinear case, with p∗+ (p∗−) being

subcritical (respectively, supercritical) with respect to the intrinsic dimensions.

The analysis of [9] yields, as a byproduct, the dual result on the existence of positive

solutions of Dirichlet problems in balls, namely

∃u > 0 , −M±
λ,Λ(D2u) = up in B, u = 0 on ∂B ⇐⇒ p < p∗± .

Note that, in this case, the radial symmetry of the solutions is not a restriction, since, by

[6], any positive solution in the ball is radial. The critical exponents p∗±, therefore, give

the optimal thresholds for the existence of positive solutions in balls and, as proved in [8],

also in domains sufficiently closed to balls.
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We are concerned here with some further results recently obtained for radial solutions.

In particular, we report in Section 2 on the asymptotic analysis performed in [2] about

almost critical solutions in balls, that are solutions of the Dirichlet problems

(2)


−M±

λ,Λ(D2u±ε ) = (u±ε )p
∗
±−ε in B ,

u±ε > 0 in B , u±ε = 0 on ∂B ,

In the semilinear case Λ = λ, the problem has been largely studied, and it is well known

that the unique positive radial solutions uε blow up and concentrate at the center of the

ball as ε→ 0, while the energy satisfies

J(uε) =

(
1

2
− 1

pε + 1

)∫
B

upε+1
ε dx

ε→0−→ 1

n
Sn,

where

S = inf
u∈H1(Rn)\{0}

‖Du‖L2

‖u‖L2?

is the best constant in the Sobolev inequality. The local profile of uε, suitably rescaled,

is that of

U(x) =
1(

1 + |x|2
n(n−2)

)n−2
2

the Talenti’s function which realizes the constant S, see [16], and satisfies the limiting

equation

−∆U = Up∗ in Rn

We obtained in [2] an extension of the above results to the fully nonlinear framework.

Solutions u±ε of problems (2) are proved to concentrate at the center of B, blowing up

at the center and vanishing locally uniformly outside the center, while a suitably defined

related energy is preserved, despite the lack of a variational structure in the problem.

In Section 3 we present the results obtained in [11] about the existence, for any p > 1,

of positive radial solutions of Dirichlet problems in annular domains, as well as the more

recent sharp Liouville type results for exterior Dirichlet problems obtained in [12]. Once

again the results are obtained through a careful analysis of the ODE associated with radial

solutions, and despite the fact that the critical radial exponents p∗± are not explicitly

known.
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As a general final remark, let us observe that, when considering radial solutions of

problems (1), because of the dependence of operatorsM±
λ,Λ on the sign of the eigenvalues

of the hessian matrix, one obtains an ODE with discontinuous coefficients, having jumps

at points where the solution changes its monotonicity and/or its concavity. This is a

feature of the fully nonlinear problem which makes the previous techniques developed in

the semilinear case not directly applicable, and requires sometimes new ad hoc proofs.

2. Radial solutions for Pucci’s operators

In this section we recall some well known facts about radial solutions of Lane-Emden-

Fowler equations relative to Pucci’s operators. So, let us focus on positive radial solutions

u(x) = u(|x|) of the elliptic equation (1).

Without loss of generality, we consider C2 classical solutions, since, even if we look at

weak solutions in the viscosity sense, the elliptic regularity theory immediately applies.

We then observe that the eigenvalues of the hessian matrix D2u(x) of a smooth radial

function u are nothing but u′′(r), which is simple, and u′(r)
r

, which has multiplicity n− 1,

where r = |x|.

Hence, taking into account the expression of Pucci’s operators in dependence of the

sign of the eigenvalues, we can easily obtain the ODE satisfied by any radial solution

according to its monotonicity and convexity properties.

In particular, recalling the expression of the intrinsic dimensions ñ±, one obtains that

u is a radial solution of −M+
λ,Λ(D2u) = up if and only if u satisfies

C1: if u′(r) ≥ 0 and u′′(r) ≤ 0, then

u′′(r) + (ñ− − 1)
u′(r)

r
= −u

p(r)

λ
;

C2: if u′(r) ≤ 0 and u′′(r) ≤ 0, then

u′′(r) + (n− 1)
u′(r)

r
= −u

p(r)

λ
;

C3: if u′(r) ≤ 0 and u′′(r) ≥ 0, then

u′′(r) + (ñ+ − 1)
u′(r)

r
= −u

p(r)

Λ
.
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Let us emphasize that any solution u cannot be at the same time positive, convex and

increasing in any interval, since otherwise −M+
λ,Λ(D2u) < 0 < up. In particular, any

critical point of u is a local strict maximum point for u.

For radial solutions of the equation −M−
λ,Λ(D2u) = up one obtains analogous ODEs as

above, with λ and Λ interchanged.

In any case, the differential problem satisfied by a radial solution u can be written as

a second oder ODE of the form

(3) u′′(r) = G
(
u′(r)

r
,−up(r)

)
with G Lipschitz continuous in R2. Conversely, solutions of suitable Cauchy problem

associated with the ODE (3) will produce radially symmetric solutions for Pucci’s op-

erators. We recall that the existence and uniqueness of maximal solutions of Cauchy

problems for equation (3) can be obtained by the classical Peano-Picard’s Theorem and

by approximation arguments needed to handle the singularity at r = 0, see [7, 13].

As in the semilinear case, a powerful tool for studying the problem is the so called

Emden-Fowler transformation (see [10]), which reduces the initial problem to an au-

tonomous equation. Setting

(4) x(t) = r
2
p−1u(r) , r = et ,

a direct computation shows that

u′ ≥ 0 ⇐⇒ x′ ≥ 2

p− 1
x ,

u′′ ≤ 0 ⇐⇒ x′ ≥ 2

p− 1
x− xp

λ (n− 1)
.

Hence, the new unknown x satisfies

(5)



x′′ = ã−x
′ + 2b̃−x−

xp

λ
if x′ ≥ 2

p− 1
x

x′′ = ax′ + 2bx− xp

λ
if

2

p− 1
x ≥ x′ ≥ 2

p− 1
x− xp

λ (n− 1)

x′′ = ã+x
′ + 2b̃+x−

xp

Λ
if x′ ≤ 2

p− 1
x− xp

λ (n− 1)
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with coefficients defined respectively as

(6)

a =
n+ 2− (n− 2)p

p− 1
, ã± =

ñ± + 2− (ñ± − 2)p

p− 1
,

b =
2 ((n− 2)p− n)

(p− 1)2
, b̃± =

2 ((ñ± − 2)p− ñ±)

(p− 1)2
.

Associated with a solution x of the above problem, one can consider the trajectory γ(t) =

(x(t), x′(t)) in the phase plane. Thus, the coefficients of the autonomous equation satisfied

by x are piecewise constant and jump whenever the trajectory γ intersects either the half-

line L =
{
x′ = 2

p−1
x
}

or the curve C =
{
x′ = 2

p−1
x− xp

λ (n−1)

}
, see the picture below.

3. Solutions in balls or in the whole space

Looking for radial solutions of equation (1) in balls or in the whole space is equivalent

to looking at solutions of the ODE (3) for r > 0, equipped with the initial conditions

u(0) = α > 0 , u′(0) = 0

for any α > 0. The resulting Cauchy problem has a unique solution uα defined on a

maximal interval [0, ρ(α)], with ρ(α) ≤ +∞ and uα(ρα) = 0 if ρ(α) < +∞. By a scaling

invariance of the equation, it is easy to see that

uα(r) = αu1(α
p−1
2 r) ,

so that the fact that ρ(α) is finite or not, only depends on p.
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To the Emden-Fowler tranformed xα(t) of uα, according to (4), is associated in the

phase plane a trajectory γα(t) exiting from the origin for t = −∞ and either intersecting

the x′−axis in a finite time or staying in the right half-plane for all t ∈ R. In this latter

case, by the Poncaré-Bendixon theorem, for t → +∞, γα(t) will either approximate a

periodic orbit or converge to one of the two equilibrium points (0, 0) and
(

(2Λb̃+)
1
p−1 , 0

)
,

see (5) and (6).

This problem has been carefully analyzed by Felmer and Quaas [9], who classified the

solutions uα according to the asymptotic behavior of γα(t) for t → +∞. Following the

terminology used in [9], for an entire solutions uα(r) defined in [0,+∞) we say that

• uα is a fast decaying solution if γα(t)→ (0, 0), that is if

lim
r→+∞

r
2
p−1uα(r) = 0 ;

• uα is a slow decaying solution if γα(t)→
(

(2Λb̃+)
1
p−1 , 0

)
, that is if

lim
r→+∞

r
2
p−1uα(r) = (2Λb̃+)

1
p−1 ;

• uα is a pseudo-slow decaying solution if γα(t) approaches a periodic orbit, that is

if

0 < lim inf
r→+∞

r
2
p−1uα(r) < lim sup

r→+∞
r

2
p−1uα(r) < +∞ .

The deep analysis of [9] yields the existence of unique critical exponents p±∗ , forM+
λ,Λ and

M−
λ,Λ respectively, such that entire radial solutions of equation (1) do exist if and only if

p ≥ p±∗ . The critical exponents p±∗ are characterized as the unique exponents for which

there exist fast decaying solutions (uα)∗±, whereas for p > p±∗ solutions may be slow or

pseudo-slow depending on p. Moreover, for p = p±∗ , the stable-unstable manifold theorem

applied to the trajectories γα(t) yields the vanishing order of xα(t) and x′α(t). In terms of

any critical solution (uα)∗±, this implies that there exists a positive constant cα > 0 such

that

lim
r→∞

rñ±−2(uα)∗±(r) = cα , lim
r→∞

rñ±−1((uα)∗±)′(r) = −(ñ± − 2)cα .

More than that, precise pointwise estimates on solutions (uα)∗± are given in [2]. We state

the results for α = 1, and we refer to [2] for the proof.
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Theorem 3.1. Let u∗± be the unique positive radial solution of

−M±
λ,Λ(D2u∗±) = (u∗±)p

±
∗ in Rn , u∗±(0) = 1 .

There exist unique r±0 > 0 such that (u∗±)′′(r±0 ) = 0 and positive constants c± < C± such

that, for any r ≥ r±0 , one has

(7)
u∗±(r±0 )(

1 + C±(r2 − (r±0 )2)
) ñ±−2

2

≤ u∗±(r) ≤
u∗±(r±0 )(

1 + c±(r2 − (r±0 )2)
) ñ±−2

2

.

Let us emphasize that, for r sufficiently large, u∗± is a solution of

(u∗±)′′(r) + (ñ± − 1)
(u∗±)′(r)

r
= −

(u∗±)p
∗
±(r)

Λ
,

while the functions appearing on the left and right hand side of (7) satisfy

v′′(r) + (ñ− 1)
v′(r)

r
= −Av

ñ+2
ñ−2 ,

for a suitable constant A > 0. Thus, any form of comparison principle may be applied

in order to prove (7), which is obtained instead by using monotonicity properties of a

Pohozaev-type energy functional associated with the solution u∗±.

As a dual result, the analysis of [9] about radial entire solutions produces a sharp

existence result for the Dirichlet problems

(8)


−M±

λ,Λ(D2u) = up in B ,

u > 0 in B , u = 0 on ∂B ,

where B is, say, the unit ball in Rn centered at the origin. We recall that, for any exponent

p > 1, positive solutions of problem (8), when exist, are radially symmetric and radially

decreasing, since the moving plane technique of Gidas, Ni and Nirenberg applies (see [6]).

For other partial symmetry results in the fully nonlinear framework (also for sign changing

solutions), see [3].

Therefore, one obtains that problem (8) admits solution if and only if p < p∗±.

In the recent paper [2], we analyzed the asymptotic behaviour as ε → 0 of the almost

critical solutions u±ε of problems (2), by proving that a concentration phenomenon occurs.

Precisely, we have the following result, for the proof of which we refer to [2]. In the
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statement below, we drop the subscripts ± in order to simplify the notations, and we set

pε = p∗± − ε.

Theorem 3.2. As ε→ 0, the solutions uε satisfy:

• Mε := uε(0)→ +∞ ;

• uε(x)→ 0 in C2
loc(B \ {0}) ;

• M
pε(ñ−2)−ñ

2
ε uε(x)→ c0

(
1

|x|ñ−2 − 1
)

for all x ∈ B \ {0} ;

•
∫
B
upε+1
ε (x)guε,pε(x) dx →

∫
Rn(u∗)p

∗+1(x)gu∗,p∗(x) dx, for suitable radial weights

guε,pε and gu∗,p∗ associated with the solutions uε and u∗ respectively.

We observe that, taking advantage of the scaling invariance of the equation, one can

define the rescaled functions

ũε(x) =
1

Mε

uε

(
x

M
pε−1

2
ε

)
which satisfy 

−M+
λ,Λ(D2ũε) = ũpεε in B

M
pε−1

2
ε

,

ũε = 0 on ∂B
M

pε−1
2

ε

.

The functions ũε are uniformly bounded, being ‖ũε‖∞ = ũε(0) = 1. By elliptic estimates,

there is a sequence εk → 0 such that

ũεk → u∗ in C2
loc(Rn)

where u∗ is the entire fast decaying solution satisfying u∗(0) = 1. Scaling back ũε, we

have

uε(x) = Mεũε(M
pε−1
ε r) ,

so that the asymptotic analysis of uε is equivalent to the asymptotic analysis at infinity

of ũε. This is performed through a careful analysis of the ODE satisfied by uε, ũε and u∗,

and by relying on the estimates given by Theorem 3.1, despite the fact that the limiting

exponent p∗ and function u∗ are not explicitly known.
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4. Solutions in annuli or in exterior domains

In this section we consider positive radial solutions, vanishing on the boundary, for

equations (1) posed in possibly unbounded annular domains. Fixing the inner radius at,

say, 1, this amounts to consider solutions uα(r) of the ODE (3) for r > 1, satisfying the

initial conditions

(9) uα(1) = 0 , u′α(1) = α > 0 .

The solution uα is positive on a maximal interval [1, ρ(α)), with 1 < ρ(α) ≤ +∞, and

uα(ρ(α)) = 0 if ρ(α) < +∞. We observe that, differently from the case considered in the

previous section, the current problem is no more invariant by rescaling, so that ρ(α) can

be finite or not in dependence of α and p.

In the recent paper [11], again through a careful analysis of the ODE (3) and some

maximum principle arguments, we proved that, for any p > 1, if α is sufficiently large,

then ρ(α) < +∞. This yields the following existence result, whose proof is given in [11].

Theorem 4.1. Let Aa,b = {a < |x| < b} be any bounded annular domain in Rn. Then,

for any p > 1, there exist positive solutions of the Dirichlet problems

(10)


−M±

λ,Λ(D2u) = up in Aa,b ,

u > 0 in Aa,b , u = 0 on ∂Aa,b ,

The existence result of Theorem 4.1 is actually proved in [11] for general uniformly

elliptic and invariant by rotations operators. Moreover, it also gives existence of negative

solutions and, by gluing together the positive and the negative ones, one can obtain sign

changing solutions, see [11].

In the specific case of Pucci’s operator, we investigated further on the solutions uα

satisfying the initial conditions (9) in the recent work [12]. This further analysis shows that

the critical exponents p∗± play a role also in the existence of solutions for exterior Dirichlet

problems. Indeed, we have the following Liouville-type result for exterior domains.

Theorem 4.2. There exist positive radial solutions of problems

−M±
λ,Λ(D2u) = up in Rn \B , u = 0 on ∂B
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if and only if p > p∗±.

Moreover, for any fixed p > p∗±, one has

• there exist infinitely many solutions;

• there exists a unique fast decaying solution.

A particularly delicate step in the proof of Theorem 4.2 is the proof of the nonexistence

of solutions in the critical cases p = p∗±, as well as of the uniqueness of the fast decaying

solutions, which is obtained in [12] by using different arguments forM+
λ,Λ andM−

λ,Λ. For

M−
λ,Λ, the fact that p∗− >

ñ−+2
ñ−−2

is exploited, jointly with some properties of solutions of

supercritical semilinear problems. ForM+
λ,Λ, whose critical exponent satisfies p∗+ < ñ++2

ñ+−2
,

a different proof is obtained as an application of Gauss-Green Theorem in the phase-plane.

Let us finally remark that the existence of positive solutions for exterior Dirichlet prob-

lems is naturally related to the existence of sign changing radial solutions in balls or in

the whole space (see also Remark 5.2 in [11]). We plan to study the existence of such

solutions and their asymptotic behavior in a forthcoming work.
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