A Liouville Theorem for Nonlocal Equations in the Heisenberg Group

Authors

  • Eleonora Cinti Weierstrass Institute for Applied Analysis and Stochastics

DOI:

https://doi.org/10.6092/issn.2240-2829/5289

Keywords:

Fractional sublaplacian, Heisenberg group, Louville theorem, moving plane method

Abstract

We establish a Liouville-type theorem for a subcritical nonlinear problem, involving a fractional power of the sub-Laplacian in the Heisenberg group. To prove our result we will use the local realization of fractional CR covariant operators, which can be constructed as the Dirichlet-to-Neumann operator of a degenerate elliptic equation in the spirit of Caffarelli and Silvestre [8], as established in [14]. The main tools in our proof are the CR inversion and the moving plane method, applied to the solution of the lifted problem in the half-space ℍn × ℝ+.

References

Alexandrov, A.D.; Uniqueness theorems for surfaces in the large I, Vestnik Leningrad Univ. Math. 11 (1956), 5-17.

Berestycki H.; Nirenberg L.; On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. 22 (1991), 1-37.

Birindelli, I.; Cutri, Al., A semi-linear problem for the Heisenberg Laplacian, Rend. Sem. Mat. Univ. Padova 94 (1995), 137-153.

Birindelli, I.; Prajapat, J.; Nonlinear Liouville theorems in the Heisenberg group via the moving plane method, Comm. Part. Diff. Equa. 24 (1999), no. 9-1, 1875-1890.

Birindelli, I.; Capuzzo Dolcetta, I.; Cutri, A.; A Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poin. Anal. Non Lin. 14 (1997), no. 3, 295-308.

Bonfiglioli, A.; Lanconelli, E.; Uguzzoni F.; Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monogr. Math.Springer, Berlin (2007).

Bony, J.M.; Principe du maximum, inegalite de Harnack et unicite du probleme de Cauchy pour les operateurs elliptiques degeneres. Ann. Inst. Fourier (Grenoble) 19 (1969) 277-304.

Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. in Part. Diff. Equa. 2 (2007), 1245-1260.

Chen W.; Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622.

Chipot M.; Chlebík M.; Fila M.; Shafrir I.; Existence of positive solutions of a semilinear elliptic equation in R n + with a nonlinear boundary condition, J. Math. Anal. Appl. 223 (1998), 429-471.

Cinti, E.; Tan, J.; A nonlinear Liouville theorem for fractional equations in the Heisenberg group . Preprint.

Epstein, C.; Melrose, R.; Mendoza, G.; Resolvent of the Laplacian on pseudoconvex domains, Acta Math. bf 167 (1991), 1-106.

Ferrari, F; Franchi, B; Harnack inequality for fractional laplacians in Carnot groups, preprint.

Frank, R.; Gonzalez M.d.M; Monticelli, D.; Tan, J.; Conformal fractional Laplacians on the Heisenberg group, Advances in Mathematics, 270 (2015) 97-137.

Garofalo, N; Lanconelli, E: Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J. 41 (1992), 71-98.

Gidas B.; Ni W.-M.; Nirenberg L.; Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.

Gidas B., Spruck J.; Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure App. Math. 35 (1982), 528-598.

Gover A., Graham C.R.; CR invariant powers of the sub-Laplacian, J. Reine Angew. Math. 583 (2005), 1-2.

Guillarmou, C. Sa Barreto, A. Scattering and inverse scattering on ACH manifolds, J. Reine Angew. Math. 622 (2008) 1-55.

Hislop, P.; Perry, P.; Tang, S., CR-invariants and the scattering operator for complex manifolds with boundary, Anal. PDE 1 (2008) 197-227.

Lanconelli E., Uguzzoni F., Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 1, 139-168.

Li, Y.Y.; Zhang, L.; Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math. 90 (2003), 27-87.

Li, Y.Y.; Zhu, M.; Uniqueness theorems through the method of moving spheres, Duke Math. J. 80 (1995), 383-417.

Jerison, D.S.; Lee, J.M.; The Yamabe problem on CR manifolds, J. Diff. Geo. 25, (1987), 167-197.

Serrin, J.; A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971), 304-318.

Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, (1993).

Uguzzoni, F., A non-existence theorem for a semilinear Dirichlet problem involving critical exponent on halfspaces of the Heisenberg group, NoDEA Nonlinear Diff. Equa. Appl. 6 (1999), 191-206.

Xu, L; Semi-linear Liouville theorems in the Heisenberg group via vector field methods, J. Differential Equations 247 (2009), 2799-2820.

Downloads

Published

2014-12-30

How to Cite

Cinti, E. (2014). A Liouville Theorem for Nonlocal Equations in the Heisenberg Group. Bruno Pini Mathematical Analysis Seminar, 5(1), 127–146. https://doi.org/10.6092/issn.2240-2829/5289

Issue

Section

Articles