A Liouville Theorem for Nonlocal Equations in the Heisenberg Group
DOI:
https://doi.org/10.6092/issn.2240-2829/5289Keywords:
Fractional sublaplacian, Heisenberg group, Louville theorem, moving plane methodAbstract
We establish a Liouville-type theorem for a subcritical nonlinear problem, involving a fractional power of the sub-Laplacian in the Heisenberg group. To prove our result we will use the local realization of fractional CR covariant operators, which can be constructed as the Dirichlet-to-Neumann operator of a degenerate elliptic equation in the spirit of Caffarelli and Silvestre [8], as established in [14]. The main tools in our proof are the CR inversion and the moving plane method, applied to the solution of the lifted problem in the half-space ℍn × ℝ+.References
Alexandrov, A.D.; Uniqueness theorems for surfaces in the large I, Vestnik Leningrad Univ. Math. 11 (1956), 5-17.
Berestycki H.; Nirenberg L.; On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. 22 (1991), 1-37.
Birindelli, I.; Cutri, Al., A semi-linear problem for the Heisenberg Laplacian, Rend. Sem. Mat. Univ. Padova 94 (1995), 137-153.
Birindelli, I.; Prajapat, J.; Nonlinear Liouville theorems in the Heisenberg group via the moving plane method, Comm. Part. Diff. Equa. 24 (1999), no. 9-1, 1875-1890.
Birindelli, I.; Capuzzo Dolcetta, I.; Cutri, A.; A Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poin. Anal. Non Lin. 14 (1997), no. 3, 295-308.
Bonfiglioli, A.; Lanconelli, E.; Uguzzoni F.; Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monogr. Math.Springer, Berlin (2007).
Bony, J.M.; Principe du maximum, inegalite de Harnack et unicite du probleme de Cauchy pour les operateurs elliptiques degeneres. Ann. Inst. Fourier (Grenoble) 19 (1969) 277-304.
Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. in Part. Diff. Equa. 2 (2007), 1245-1260.
Chen W.; Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622.
Chipot M.; Chlebík M.; Fila M.; Shafrir I.; Existence of positive solutions of a semilinear elliptic equation in R n + with a nonlinear boundary condition, J. Math. Anal. Appl. 223 (1998), 429-471.
Cinti, E.; Tan, J.; A nonlinear Liouville theorem for fractional equations in the Heisenberg group . Preprint.
Epstein, C.; Melrose, R.; Mendoza, G.; Resolvent of the Laplacian on pseudoconvex domains, Acta Math. bf 167 (1991), 1-106.
Ferrari, F; Franchi, B; Harnack inequality for fractional laplacians in Carnot groups, preprint.
Frank, R.; Gonzalez M.d.M; Monticelli, D.; Tan, J.; Conformal fractional Laplacians on the Heisenberg group, Advances in Mathematics, 270 (2015) 97-137.
Garofalo, N; Lanconelli, E: Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J. 41 (1992), 71-98.
Gidas B.; Ni W.-M.; Nirenberg L.; Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
Gidas B., Spruck J.; Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure App. Math. 35 (1982), 528-598.
Gover A., Graham C.R.; CR invariant powers of the sub-Laplacian, J. Reine Angew. Math. 583 (2005), 1-2.
Guillarmou, C. Sa Barreto, A. Scattering and inverse scattering on ACH manifolds, J. Reine Angew. Math. 622 (2008) 1-55.
Hislop, P.; Perry, P.; Tang, S., CR-invariants and the scattering operator for complex manifolds with boundary, Anal. PDE 1 (2008) 197-227.
Lanconelli E., Uguzzoni F., Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 1, 139-168.
Li, Y.Y.; Zhang, L.; Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math. 90 (2003), 27-87.
Li, Y.Y.; Zhu, M.; Uniqueness theorems through the method of moving spheres, Duke Math. J. 80 (1995), 383-417.
Jerison, D.S.; Lee, J.M.; The Yamabe problem on CR manifolds, J. Diff. Geo. 25, (1987), 167-197.
Serrin, J.; A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971), 304-318.
Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, (1993).
Uguzzoni, F., A non-existence theorem for a semilinear Dirichlet problem involving critical exponent on halfspaces of the Heisenberg group, NoDEA Nonlinear Diff. Equa. Appl. 6 (1999), 191-206.
Xu, L; Semi-linear Liouville theorems in the Heisenberg group via vector field methods, J. Differential Equations 247 (2009), 2799-2820.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Eleonora Cinti
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
This journal is licensed under a Creative Commons Attribution 4.0 International License. (full legal code)
See also our Open Access Policy.