Minimal connections: the classical Steiner problem and generalizations
DOI:
https://doi.org/10.6092/issn.2240-2829/3421Keywords:
Steiner problem, minimal connectionsAbstract
The classical Steiner problem is the problem of nding the shortest graph connecting a given finite set of points. In this seminar we review the classical problem and introduce a new, generalized formulation, which extends the original one to infinite sets in metric spaces.References
[aMK34] V. Jarnk and M. Kossler. O minimalnch grafech, obsahujcch n danych bodu. Casopis propestovanmatematiky a fysiky, 063(8):223{235, 1934.
[CR41] R. Courant and Robbins. What Is Mathematics? Oxford Univ. Press, 1941.
[DHW87] Ding-Zhu Du, Frank K. Hwang, and J. F. Weng. Steiner minimal trees for regular polygons. Discrete & Computational Geometry, 2:65{84, 1987.
[FKH92] P. Winter F. K. Hwang, D. S. Richards. The Steiner tree problem. Elsevier Science Publisher B.V., 1992.
[IT94] A. O. Ivanov and A. A. Tuzhilin. Minimal networks: the Steiner problem and its generalizations. CRC Press, 1994.
[PS12] Emanuele Paolini and Eugene Stepanov. Existence and regularity results for the steiner problem. Calc. Var. Partial Di. Equations, 2012.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2012 Emanuele Paolini
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
This journal is licensed under a Creative Commons Attribution 4.0 International License. (full legal code)
See also our Open Access Policy.